1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/DebugCounter.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 44 #include <cmath> 45 #include <optional> 46 #include <string> 47 48 using namespace llvm; 49 using namespace PatternMatch; 50 51 #define DEBUG_TYPE "constraint-elimination" 52 53 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 54 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 55 "Controls which conditions are eliminated"); 56 57 static cl::opt<unsigned> 58 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 59 cl::desc("Maximum number of rows to keep in constraint system")); 60 61 static cl::opt<bool> DumpReproducers( 62 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 63 cl::desc("Dump IR to reproduce successful transformations.")); 64 65 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 66 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 67 68 // A helper to multiply 2 signed integers where overflowing is allowed. 69 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 70 int64_t Result; 71 MulOverflow(A, B, Result); 72 return Result; 73 } 74 75 // A helper to add 2 signed integers where overflowing is allowed. 76 static int64_t addWithOverflow(int64_t A, int64_t B) { 77 int64_t Result; 78 AddOverflow(A, B, Result); 79 return Result; 80 } 81 82 static Instruction *getContextInstForUse(Use &U) { 83 Instruction *UserI = cast<Instruction>(U.getUser()); 84 if (auto *Phi = dyn_cast<PHINode>(UserI)) 85 UserI = Phi->getIncomingBlock(U)->getTerminator(); 86 return UserI; 87 } 88 89 namespace { 90 /// Struct to express a condition of the form %Op0 Pred %Op1. 91 struct ConditionTy { 92 CmpInst::Predicate Pred; 93 Value *Op0; 94 Value *Op1; 95 96 ConditionTy() 97 : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {} 98 ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 99 : Pred(Pred), Op0(Op0), Op1(Op1) {} 100 }; 101 102 /// Represents either 103 /// * a condition that holds on entry to a block (=condition fact) 104 /// * an assume (=assume fact) 105 /// * a use of a compare instruction to simplify. 106 /// It also tracks the Dominator DFS in and out numbers for each entry. 107 struct FactOrCheck { 108 enum class EntryTy { 109 ConditionFact, /// A condition that holds on entry to a block. 110 InstFact, /// A fact that holds after Inst executed (e.g. an assume or 111 /// min/mix intrinsic. 112 InstCheck, /// An instruction to simplify (e.g. an overflow math 113 /// intrinsics). 114 UseCheck /// An use of a compare instruction to simplify. 115 }; 116 117 union { 118 Instruction *Inst; 119 Use *U; 120 ConditionTy Cond; 121 }; 122 123 /// A pre-condition that must hold for the current fact to be added to the 124 /// system. 125 ConditionTy DoesHold; 126 127 unsigned NumIn; 128 unsigned NumOut; 129 EntryTy Ty; 130 131 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 132 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 133 Ty(Ty) {} 134 135 FactOrCheck(DomTreeNode *DTN, Use *U) 136 : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr), 137 NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 138 Ty(EntryTy::UseCheck) {} 139 140 FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1, 141 ConditionTy Precond = ConditionTy()) 142 : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()), 143 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 144 145 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 146 Value *Op0, Value *Op1, 147 ConditionTy Precond = ConditionTy()) { 148 return FactOrCheck(DTN, Pred, Op0, Op1, Precond); 149 } 150 151 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 152 return FactOrCheck(EntryTy::InstFact, DTN, Inst); 153 } 154 155 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 156 return FactOrCheck(DTN, U); 157 } 158 159 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 160 return FactOrCheck(EntryTy::InstCheck, DTN, CI); 161 } 162 163 bool isCheck() const { 164 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 165 } 166 167 Instruction *getContextInst() const { 168 if (Ty == EntryTy::UseCheck) 169 return getContextInstForUse(*U); 170 return Inst; 171 } 172 173 Instruction *getInstructionToSimplify() const { 174 assert(isCheck()); 175 if (Ty == EntryTy::InstCheck) 176 return Inst; 177 // The use may have been simplified to a constant already. 178 return dyn_cast<Instruction>(*U); 179 } 180 181 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 182 }; 183 184 /// Keep state required to build worklist. 185 struct State { 186 DominatorTree &DT; 187 LoopInfo &LI; 188 ScalarEvolution &SE; 189 SmallVector<FactOrCheck, 64> WorkList; 190 191 State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE) 192 : DT(DT), LI(LI), SE(SE) {} 193 194 /// Process block \p BB and add known facts to work-list. 195 void addInfoFor(BasicBlock &BB); 196 197 /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares 198 /// controlling the loop header. 199 void addInfoForInductions(BasicBlock &BB); 200 201 /// Returns true if we can add a known condition from BB to its successor 202 /// block Succ. 203 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 204 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 205 } 206 }; 207 208 class ConstraintInfo; 209 210 struct StackEntry { 211 unsigned NumIn; 212 unsigned NumOut; 213 bool IsSigned = false; 214 /// Variables that can be removed from the system once the stack entry gets 215 /// removed. 216 SmallVector<Value *, 2> ValuesToRelease; 217 218 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 219 SmallVector<Value *, 2> ValuesToRelease) 220 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 221 ValuesToRelease(ValuesToRelease) {} 222 }; 223 224 struct ConstraintTy { 225 SmallVector<int64_t, 8> Coefficients; 226 SmallVector<ConditionTy, 2> Preconditions; 227 228 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 229 230 bool IsSigned = false; 231 232 ConstraintTy() = default; 233 234 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 235 bool IsNe) 236 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 237 } 238 239 unsigned size() const { return Coefficients.size(); } 240 241 unsigned empty() const { return Coefficients.empty(); } 242 243 /// Returns true if all preconditions for this list of constraints are 244 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 245 bool isValid(const ConstraintInfo &Info) const; 246 247 bool isEq() const { return IsEq; } 248 249 bool isNe() const { return IsNe; } 250 251 /// Check if the current constraint is implied by the given ConstraintSystem. 252 /// 253 /// \return true or false if the constraint is proven to be respectively true, 254 /// or false. When the constraint cannot be proven to be either true or false, 255 /// std::nullopt is returned. 256 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 257 258 private: 259 bool IsEq = false; 260 bool IsNe = false; 261 }; 262 263 /// Wrapper encapsulating separate constraint systems and corresponding value 264 /// mappings for both unsigned and signed information. Facts are added to and 265 /// conditions are checked against the corresponding system depending on the 266 /// signed-ness of their predicates. While the information is kept separate 267 /// based on signed-ness, certain conditions can be transferred between the two 268 /// systems. 269 class ConstraintInfo { 270 271 ConstraintSystem UnsignedCS; 272 ConstraintSystem SignedCS; 273 274 const DataLayout &DL; 275 276 public: 277 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 278 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 279 280 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 281 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 282 } 283 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 284 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 285 } 286 287 ConstraintSystem &getCS(bool Signed) { 288 return Signed ? SignedCS : UnsignedCS; 289 } 290 const ConstraintSystem &getCS(bool Signed) const { 291 return Signed ? SignedCS : UnsignedCS; 292 } 293 294 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 295 void popLastNVariables(bool Signed, unsigned N) { 296 getCS(Signed).popLastNVariables(N); 297 } 298 299 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 300 301 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 302 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 303 304 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 305 /// constraints, using indices from the corresponding constraint system. 306 /// New variables that need to be added to the system are collected in 307 /// \p NewVariables. 308 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 309 SmallVectorImpl<Value *> &NewVariables) const; 310 311 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 312 /// constraints using getConstraint. Returns an empty constraint if the result 313 /// cannot be used to query the existing constraint system, e.g. because it 314 /// would require adding new variables. Also tries to convert signed 315 /// predicates to unsigned ones if possible to allow using the unsigned system 316 /// which increases the effectiveness of the signed <-> unsigned transfer 317 /// logic. 318 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 319 Value *Op1) const; 320 321 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 322 /// system if \p Pred is signed/unsigned. 323 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 324 unsigned NumIn, unsigned NumOut, 325 SmallVectorImpl<StackEntry> &DFSInStack); 326 }; 327 328 /// Represents a (Coefficient * Variable) entry after IR decomposition. 329 struct DecompEntry { 330 int64_t Coefficient; 331 Value *Variable; 332 /// True if the variable is known positive in the current constraint. 333 bool IsKnownNonNegative; 334 335 DecompEntry(int64_t Coefficient, Value *Variable, 336 bool IsKnownNonNegative = false) 337 : Coefficient(Coefficient), Variable(Variable), 338 IsKnownNonNegative(IsKnownNonNegative) {} 339 }; 340 341 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 342 struct Decomposition { 343 int64_t Offset = 0; 344 SmallVector<DecompEntry, 3> Vars; 345 346 Decomposition(int64_t Offset) : Offset(Offset) {} 347 Decomposition(Value *V, bool IsKnownNonNegative = false) { 348 Vars.emplace_back(1, V, IsKnownNonNegative); 349 } 350 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 351 : Offset(Offset), Vars(Vars) {} 352 353 void add(int64_t OtherOffset) { 354 Offset = addWithOverflow(Offset, OtherOffset); 355 } 356 357 void add(const Decomposition &Other) { 358 add(Other.Offset); 359 append_range(Vars, Other.Vars); 360 } 361 362 void mul(int64_t Factor) { 363 Offset = multiplyWithOverflow(Offset, Factor); 364 for (auto &Var : Vars) 365 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 366 } 367 }; 368 369 } // namespace 370 371 static Decomposition decompose(Value *V, 372 SmallVectorImpl<ConditionTy> &Preconditions, 373 bool IsSigned, const DataLayout &DL); 374 375 static bool canUseSExt(ConstantInt *CI) { 376 const APInt &Val = CI->getValue(); 377 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 378 } 379 380 static Decomposition decomposeGEP(GEPOperator &GEP, 381 SmallVectorImpl<ConditionTy> &Preconditions, 382 bool IsSigned, const DataLayout &DL) { 383 // Do not reason about pointers where the index size is larger than 64 bits, 384 // as the coefficients used to encode constraints are 64 bit integers. 385 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 386 return &GEP; 387 388 if (!GEP.isInBounds()) 389 return &GEP; 390 391 assert(!IsSigned && "The logic below only supports decomposition for " 392 "unsinged predicates at the moment."); 393 Type *PtrTy = GEP.getType()->getScalarType(); 394 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 395 MapVector<Value *, APInt> VariableOffsets; 396 APInt ConstantOffset(BitWidth, 0); 397 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 398 return &GEP; 399 400 // Handle the (gep (gep ....), C) case by incrementing the constant 401 // coefficient of the inner GEP, if C is a constant. 402 auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand()); 403 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 404 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 405 Result.add(ConstantOffset.getSExtValue()); 406 407 if (ConstantOffset.isNegative()) { 408 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 409 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 410 if (ConstantOffsetI % Scale != 0) 411 return &GEP; 412 // Add pre-condition ensuring the GEP is increasing monotonically and 413 // can be de-composed. 414 // Both sides are normalized by being divided by Scale. 415 Preconditions.emplace_back( 416 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 417 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 418 -1 * (ConstantOffsetI / Scale))); 419 } 420 return Result; 421 } 422 423 Decomposition Result(ConstantOffset.getSExtValue(), 424 DecompEntry(1, GEP.getPointerOperand())); 425 for (auto [Index, Scale] : VariableOffsets) { 426 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 427 IdxResult.mul(Scale.getSExtValue()); 428 Result.add(IdxResult); 429 430 // If Op0 is signed non-negative, the GEP is increasing monotonically and 431 // can be de-composed. 432 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 433 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 434 ConstantInt::get(Index->getType(), 0)); 435 } 436 return Result; 437 } 438 439 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 440 // Variable } where Coefficient * Variable. The sum of the constant offset and 441 // pairs equals \p V. 442 static Decomposition decompose(Value *V, 443 SmallVectorImpl<ConditionTy> &Preconditions, 444 bool IsSigned, const DataLayout &DL) { 445 446 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 447 bool IsSignedB) { 448 auto ResA = decompose(A, Preconditions, IsSigned, DL); 449 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 450 ResA.add(ResB); 451 return ResA; 452 }; 453 454 Type *Ty = V->getType()->getScalarType(); 455 if (Ty->isPointerTy() && !IsSigned) { 456 if (auto *GEP = dyn_cast<GEPOperator>(V)) 457 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 458 if (isa<ConstantPointerNull>(V)) 459 return int64_t(0); 460 461 return V; 462 } 463 464 // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so 465 // coefficient add/mul may wrap, while the operation in the full bit width 466 // would not. 467 if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64) 468 return V; 469 470 // Decompose \p V used with a signed predicate. 471 if (IsSigned) { 472 if (auto *CI = dyn_cast<ConstantInt>(V)) { 473 if (canUseSExt(CI)) 474 return CI->getSExtValue(); 475 } 476 Value *Op0; 477 Value *Op1; 478 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 479 return MergeResults(Op0, Op1, IsSigned); 480 481 ConstantInt *CI; 482 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 483 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 484 Result.mul(CI->getSExtValue()); 485 return Result; 486 } 487 488 return V; 489 } 490 491 if (auto *CI = dyn_cast<ConstantInt>(V)) { 492 if (CI->uge(MaxConstraintValue)) 493 return V; 494 return int64_t(CI->getZExtValue()); 495 } 496 497 Value *Op0; 498 bool IsKnownNonNegative = false; 499 if (match(V, m_ZExt(m_Value(Op0)))) { 500 IsKnownNonNegative = true; 501 V = Op0; 502 } 503 504 Value *Op1; 505 ConstantInt *CI; 506 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 507 return MergeResults(Op0, Op1, IsSigned); 508 } 509 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 510 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 511 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 512 ConstantInt::get(Op0->getType(), 0)); 513 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 514 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 515 ConstantInt::get(Op1->getType(), 0)); 516 517 return MergeResults(Op0, Op1, IsSigned); 518 } 519 520 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 521 canUseSExt(CI)) { 522 Preconditions.emplace_back( 523 CmpInst::ICMP_UGE, Op0, 524 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 525 return MergeResults(Op0, CI, true); 526 } 527 528 // Decompose or as an add if there are no common bits between the operands. 529 if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && 530 haveNoCommonBitsSet(Op0, CI, DL)) { 531 return MergeResults(Op0, CI, IsSigned); 532 } 533 534 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 535 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 536 return {V, IsKnownNonNegative}; 537 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 538 Result.mul(int64_t{1} << CI->getSExtValue()); 539 return Result; 540 } 541 542 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 543 (!CI->isNegative())) { 544 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 545 Result.mul(CI->getSExtValue()); 546 return Result; 547 } 548 549 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 550 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 551 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 552 return {0, {{1, Op0}, {-1, Op1}}}; 553 554 return {V, IsKnownNonNegative}; 555 } 556 557 ConstraintTy 558 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 559 SmallVectorImpl<Value *> &NewVariables) const { 560 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 561 bool IsEq = false; 562 bool IsNe = false; 563 564 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 565 switch (Pred) { 566 case CmpInst::ICMP_UGT: 567 case CmpInst::ICMP_UGE: 568 case CmpInst::ICMP_SGT: 569 case CmpInst::ICMP_SGE: { 570 Pred = CmpInst::getSwappedPredicate(Pred); 571 std::swap(Op0, Op1); 572 break; 573 } 574 case CmpInst::ICMP_EQ: 575 if (match(Op1, m_Zero())) { 576 Pred = CmpInst::ICMP_ULE; 577 } else { 578 IsEq = true; 579 Pred = CmpInst::ICMP_ULE; 580 } 581 break; 582 case CmpInst::ICMP_NE: 583 if (match(Op1, m_Zero())) { 584 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 585 std::swap(Op0, Op1); 586 } else { 587 IsNe = true; 588 Pred = CmpInst::ICMP_ULE; 589 } 590 break; 591 default: 592 break; 593 } 594 595 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 596 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 597 return {}; 598 599 SmallVector<ConditionTy, 4> Preconditions; 600 bool IsSigned = CmpInst::isSigned(Pred); 601 auto &Value2Index = getValue2Index(IsSigned); 602 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 603 Preconditions, IsSigned, DL); 604 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 605 Preconditions, IsSigned, DL); 606 int64_t Offset1 = ADec.Offset; 607 int64_t Offset2 = BDec.Offset; 608 Offset1 *= -1; 609 610 auto &VariablesA = ADec.Vars; 611 auto &VariablesB = BDec.Vars; 612 613 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 614 // new entry to NewVariables. 615 DenseMap<Value *, unsigned> NewIndexMap; 616 auto GetOrAddIndex = [&Value2Index, &NewVariables, 617 &NewIndexMap](Value *V) -> unsigned { 618 auto V2I = Value2Index.find(V); 619 if (V2I != Value2Index.end()) 620 return V2I->second; 621 auto Insert = 622 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 623 if (Insert.second) 624 NewVariables.push_back(V); 625 return Insert.first->second; 626 }; 627 628 // Make sure all variables have entries in Value2Index or NewVariables. 629 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 630 GetOrAddIndex(KV.Variable); 631 632 // Build result constraint, by first adding all coefficients from A and then 633 // subtracting all coefficients from B. 634 ConstraintTy Res( 635 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 636 IsSigned, IsEq, IsNe); 637 // Collect variables that are known to be positive in all uses in the 638 // constraint. 639 DenseMap<Value *, bool> KnownNonNegativeVariables; 640 auto &R = Res.Coefficients; 641 for (const auto &KV : VariablesA) { 642 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 643 auto I = 644 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 645 I.first->second &= KV.IsKnownNonNegative; 646 } 647 648 for (const auto &KV : VariablesB) { 649 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 650 R[GetOrAddIndex(KV.Variable)])) 651 return {}; 652 auto I = 653 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 654 I.first->second &= KV.IsKnownNonNegative; 655 } 656 657 int64_t OffsetSum; 658 if (AddOverflow(Offset1, Offset2, OffsetSum)) 659 return {}; 660 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 661 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 662 return {}; 663 R[0] = OffsetSum; 664 Res.Preconditions = std::move(Preconditions); 665 666 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 667 // variables. 668 while (!NewVariables.empty()) { 669 int64_t Last = R.back(); 670 if (Last != 0) 671 break; 672 R.pop_back(); 673 Value *RemovedV = NewVariables.pop_back_val(); 674 NewIndexMap.erase(RemovedV); 675 } 676 677 // Add extra constraints for variables that are known positive. 678 for (auto &KV : KnownNonNegativeVariables) { 679 if (!KV.second || 680 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 681 continue; 682 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 683 C[GetOrAddIndex(KV.first)] = -1; 684 Res.ExtraInfo.push_back(C); 685 } 686 return Res; 687 } 688 689 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 690 Value *Op0, 691 Value *Op1) const { 692 Constant *NullC = Constant::getNullValue(Op0->getType()); 693 // Handle trivially true compares directly to avoid adding V UGE 0 constraints 694 // for all variables in the unsigned system. 695 if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) || 696 (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) { 697 auto &Value2Index = getValue2Index(false); 698 // Return constraint that's trivially true. 699 return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false, 700 false, false); 701 } 702 703 // If both operands are known to be non-negative, change signed predicates to 704 // unsigned ones. This increases the reasoning effectiveness in combination 705 // with the signed <-> unsigned transfer logic. 706 if (CmpInst::isSigned(Pred) && 707 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 708 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 709 Pred = CmpInst::getUnsignedPredicate(Pred); 710 711 SmallVector<Value *> NewVariables; 712 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 713 if (!NewVariables.empty()) 714 return {}; 715 return R; 716 } 717 718 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 719 return Coefficients.size() > 0 && 720 all_of(Preconditions, [&Info](const ConditionTy &C) { 721 return Info.doesHold(C.Pred, C.Op0, C.Op1); 722 }); 723 } 724 725 std::optional<bool> 726 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 727 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 728 729 if (IsEq || IsNe) { 730 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 731 bool IsNegatedOrEqualImplied = 732 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 733 734 // In order to check that `%a == %b` is true (equality), both conditions `%a 735 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 736 // is true), we return true if they both hold, false in the other cases. 737 if (IsConditionImplied && IsNegatedOrEqualImplied) 738 return IsEq; 739 740 auto Negated = ConstraintSystem::negate(Coefficients); 741 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 742 743 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 744 bool IsStrictLessThanImplied = 745 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 746 747 // In order to check that `%a != %b` is true (non-equality), either 748 // condition `%a > %b` or `%a < %b` must hold true. When checking for 749 // non-equality (`IsNe` is true), we return true if one of the two holds, 750 // false in the other cases. 751 if (IsNegatedImplied || IsStrictLessThanImplied) 752 return IsNe; 753 754 return std::nullopt; 755 } 756 757 if (IsConditionImplied) 758 return true; 759 760 auto Negated = ConstraintSystem::negate(Coefficients); 761 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 762 if (IsNegatedImplied) 763 return false; 764 765 // Neither the condition nor its negated holds, did not prove anything. 766 return std::nullopt; 767 } 768 769 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 770 Value *B) const { 771 auto R = getConstraintForSolving(Pred, A, B); 772 return R.isValid(*this) && 773 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 774 } 775 776 void ConstraintInfo::transferToOtherSystem( 777 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 778 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 779 auto IsKnownNonNegative = [this](Value *V) { 780 return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) || 781 isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1); 782 }; 783 // Check if we can combine facts from the signed and unsigned systems to 784 // derive additional facts. 785 if (!A->getType()->isIntegerTy()) 786 return; 787 // FIXME: This currently depends on the order we add facts. Ideally we 788 // would first add all known facts and only then try to add additional 789 // facts. 790 switch (Pred) { 791 default: 792 break; 793 case CmpInst::ICMP_ULT: 794 case CmpInst::ICMP_ULE: 795 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B. 796 if (IsKnownNonNegative(B)) { 797 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 798 NumOut, DFSInStack); 799 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 800 DFSInStack); 801 } 802 break; 803 case CmpInst::ICMP_UGE: 804 case CmpInst::ICMP_UGT: 805 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B. 806 if (IsKnownNonNegative(A)) { 807 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn, 808 NumOut, DFSInStack); 809 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 810 DFSInStack); 811 } 812 break; 813 case CmpInst::ICMP_SLT: 814 if (IsKnownNonNegative(A)) 815 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 816 break; 817 case CmpInst::ICMP_SGT: { 818 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 819 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 820 NumOut, DFSInStack); 821 if (IsKnownNonNegative(B)) 822 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 823 824 break; 825 } 826 case CmpInst::ICMP_SGE: 827 if (IsKnownNonNegative(B)) 828 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 829 break; 830 } 831 } 832 833 #ifndef NDEBUG 834 835 static void dumpConstraint(ArrayRef<int64_t> C, 836 const DenseMap<Value *, unsigned> &Value2Index) { 837 ConstraintSystem CS(Value2Index); 838 CS.addVariableRowFill(C); 839 CS.dump(); 840 } 841 #endif 842 843 void State::addInfoForInductions(BasicBlock &BB) { 844 auto *L = LI.getLoopFor(&BB); 845 if (!L || L->getHeader() != &BB) 846 return; 847 848 Value *A; 849 Value *B; 850 CmpInst::Predicate Pred; 851 852 if (!match(BB.getTerminator(), 853 m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value()))) 854 return; 855 PHINode *PN = dyn_cast<PHINode>(A); 856 if (!PN) { 857 Pred = CmpInst::getSwappedPredicate(Pred); 858 std::swap(A, B); 859 PN = dyn_cast<PHINode>(A); 860 } 861 862 if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 || 863 !SE.isSCEVable(PN->getType())) 864 return; 865 866 BasicBlock *InLoopSucc = nullptr; 867 if (Pred == CmpInst::ICMP_NE) 868 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0); 869 else if (Pred == CmpInst::ICMP_EQ) 870 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1); 871 else 872 return; 873 874 if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB) 875 return; 876 877 auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN)); 878 BasicBlock *LoopPred = L->getLoopPredecessor(); 879 if (!AR || AR->getLoop() != L || !LoopPred) 880 return; 881 882 const SCEV *StartSCEV = AR->getStart(); 883 Value *StartValue = nullptr; 884 if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) { 885 StartValue = C->getValue(); 886 } else { 887 StartValue = PN->getIncomingValueForBlock(LoopPred); 888 assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value"); 889 } 890 891 DomTreeNode *DTN = DT.getNode(InLoopSucc); 892 auto Inc = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT); 893 bool MonotonicallyIncreasing = 894 Inc && *Inc == ScalarEvolution::MonotonicallyIncreasing; 895 if (MonotonicallyIncreasing) { 896 // SCEV guarantees that AR does not wrap, so PN >= StartValue can be added 897 // unconditionally. 898 WorkList.push_back( 899 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue)); 900 } 901 902 APInt StepOffset; 903 if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 904 StepOffset = C->getAPInt(); 905 else 906 return; 907 908 // Make sure the bound B is loop-invariant. 909 if (!L->isLoopInvariant(B)) 910 return; 911 912 // Handle negative steps. 913 if (StepOffset.isNegative()) { 914 // TODO: Extend to allow steps > -1. 915 if (!(-StepOffset).isOne()) 916 return; 917 918 // AR may wrap. 919 // Add StartValue >= PN conditional on B <= StartValue which guarantees that 920 // the loop exits before wrapping with a step of -1. 921 WorkList.push_back(FactOrCheck::getConditionFact( 922 DTN, CmpInst::ICMP_UGE, StartValue, PN, 923 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 924 // Add PN > B conditional on B <= StartValue which guarantees that the loop 925 // exits when reaching B with a step of -1. 926 WorkList.push_back(FactOrCheck::getConditionFact( 927 DTN, CmpInst::ICMP_UGT, PN, B, 928 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 929 return; 930 } 931 932 // Make sure AR either steps by 1 or that the value we compare against is a 933 // GEP based on the same start value and all offsets are a multiple of the 934 // step size, to guarantee that the induction will reach the value. 935 if (StepOffset.isZero() || StepOffset.isNegative()) 936 return; 937 938 if (!StepOffset.isOne()) { 939 auto *UpperGEP = dyn_cast<GetElementPtrInst>(B); 940 if (!UpperGEP || UpperGEP->getPointerOperand() != StartValue || 941 !UpperGEP->isInBounds()) 942 return; 943 944 MapVector<Value *, APInt> UpperVariableOffsets; 945 APInt UpperConstantOffset(StepOffset.getBitWidth(), 0); 946 const DataLayout &DL = BB.getModule()->getDataLayout(); 947 if (!UpperGEP->collectOffset(DL, StepOffset.getBitWidth(), 948 UpperVariableOffsets, UpperConstantOffset)) 949 return; 950 // All variable offsets and the constant offset have to be a multiple of the 951 // step. 952 if (!UpperConstantOffset.urem(StepOffset).isZero() || 953 any_of(UpperVariableOffsets, [&StepOffset](const auto &P) { 954 return !P.second.urem(StepOffset).isZero(); 955 })) 956 return; 957 } 958 959 // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which 960 // guarantees that the loop exits before wrapping in combination with the 961 // restrictions on B and the step above. 962 if (!MonotonicallyIncreasing) { 963 WorkList.push_back(FactOrCheck::getConditionFact( 964 DTN, CmpInst::ICMP_UGE, PN, StartValue, 965 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 966 } 967 WorkList.push_back(FactOrCheck::getConditionFact( 968 DTN, CmpInst::ICMP_ULT, PN, B, 969 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 970 } 971 972 void State::addInfoFor(BasicBlock &BB) { 973 addInfoForInductions(BB); 974 975 // True as long as long as the current instruction is guaranteed to execute. 976 bool GuaranteedToExecute = true; 977 // Queue conditions and assumes. 978 for (Instruction &I : BB) { 979 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 980 for (Use &U : Cmp->uses()) { 981 auto *UserI = getContextInstForUse(U); 982 auto *DTN = DT.getNode(UserI->getParent()); 983 if (!DTN) 984 continue; 985 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 986 } 987 continue; 988 } 989 990 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 991 WorkList.push_back( 992 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 993 continue; 994 } 995 996 if (isa<MinMaxIntrinsic>(&I)) { 997 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 998 continue; 999 } 1000 1001 Value *A, *B; 1002 CmpInst::Predicate Pred; 1003 // For now, just handle assumes with a single compare as condition. 1004 if (match(&I, m_Intrinsic<Intrinsic::assume>( 1005 m_ICmp(Pred, m_Value(A), m_Value(B))))) { 1006 if (GuaranteedToExecute) { 1007 // The assume is guaranteed to execute when BB is entered, hence Cond 1008 // holds on entry to BB. 1009 WorkList.emplace_back(FactOrCheck::getConditionFact( 1010 DT.getNode(I.getParent()), Pred, A, B)); 1011 } else { 1012 WorkList.emplace_back( 1013 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 1014 } 1015 } 1016 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 1017 } 1018 1019 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 1020 for (auto &Case : Switch->cases()) { 1021 BasicBlock *Succ = Case.getCaseSuccessor(); 1022 Value *V = Case.getCaseValue(); 1023 if (!canAddSuccessor(BB, Succ)) 1024 continue; 1025 WorkList.emplace_back(FactOrCheck::getConditionFact( 1026 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 1027 } 1028 return; 1029 } 1030 1031 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 1032 if (!Br || !Br->isConditional()) 1033 return; 1034 1035 Value *Cond = Br->getCondition(); 1036 1037 // If the condition is a chain of ORs/AND and the successor only has the 1038 // current block as predecessor, queue conditions for the successor. 1039 Value *Op0, *Op1; 1040 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 1041 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1042 bool IsOr = match(Cond, m_LogicalOr()); 1043 bool IsAnd = match(Cond, m_LogicalAnd()); 1044 // If there's a select that matches both AND and OR, we need to commit to 1045 // one of the options. Arbitrarily pick OR. 1046 if (IsOr && IsAnd) 1047 IsAnd = false; 1048 1049 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 1050 if (canAddSuccessor(BB, Successor)) { 1051 SmallVector<Value *> CondWorkList; 1052 SmallPtrSet<Value *, 8> SeenCond; 1053 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 1054 if (SeenCond.insert(V).second) 1055 CondWorkList.push_back(V); 1056 }; 1057 QueueValue(Op1); 1058 QueueValue(Op0); 1059 while (!CondWorkList.empty()) { 1060 Value *Cur = CondWorkList.pop_back_val(); 1061 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 1062 WorkList.emplace_back(FactOrCheck::getConditionFact( 1063 DT.getNode(Successor), 1064 IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate()) 1065 : Cmp->getPredicate(), 1066 Cmp->getOperand(0), Cmp->getOperand(1))); 1067 continue; 1068 } 1069 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 1070 QueueValue(Op1); 1071 QueueValue(Op0); 1072 continue; 1073 } 1074 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1075 QueueValue(Op1); 1076 QueueValue(Op0); 1077 continue; 1078 } 1079 } 1080 } 1081 return; 1082 } 1083 1084 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 1085 if (!CmpI) 1086 return; 1087 if (canAddSuccessor(BB, Br->getSuccessor(0))) 1088 WorkList.emplace_back(FactOrCheck::getConditionFact( 1089 DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(), 1090 CmpI->getOperand(0), CmpI->getOperand(1))); 1091 if (canAddSuccessor(BB, Br->getSuccessor(1))) 1092 WorkList.emplace_back(FactOrCheck::getConditionFact( 1093 DT.getNode(Br->getSuccessor(1)), 1094 CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0), 1095 CmpI->getOperand(1))); 1096 } 1097 1098 namespace { 1099 /// Helper to keep track of a condition and if it should be treated as negated 1100 /// for reproducer construction. 1101 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 1102 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 1103 struct ReproducerEntry { 1104 ICmpInst::Predicate Pred; 1105 Value *LHS; 1106 Value *RHS; 1107 1108 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 1109 : Pred(Pred), LHS(LHS), RHS(RHS) {} 1110 }; 1111 } // namespace 1112 1113 /// Helper function to generate a reproducer function for simplifying \p Cond. 1114 /// The reproducer function contains a series of @llvm.assume calls, one for 1115 /// each condition in \p Stack. For each condition, the operand instruction are 1116 /// cloned until we reach operands that have an entry in \p Value2Index. Those 1117 /// will then be added as function arguments. \p DT is used to order cloned 1118 /// instructions. The reproducer function will get added to \p M, if it is 1119 /// non-null. Otherwise no reproducer function is generated. 1120 static void generateReproducer(CmpInst *Cond, Module *M, 1121 ArrayRef<ReproducerEntry> Stack, 1122 ConstraintInfo &Info, DominatorTree &DT) { 1123 if (!M) 1124 return; 1125 1126 LLVMContext &Ctx = Cond->getContext(); 1127 1128 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 1129 1130 ValueToValueMapTy Old2New; 1131 SmallVector<Value *> Args; 1132 SmallPtrSet<Value *, 8> Seen; 1133 // Traverse Cond and its operands recursively until we reach a value that's in 1134 // Value2Index or not an instruction, or not a operation that 1135 // ConstraintElimination can decompose. Such values will be considered as 1136 // external inputs to the reproducer, they are collected and added as function 1137 // arguments later. 1138 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1139 auto &Value2Index = Info.getValue2Index(IsSigned); 1140 SmallVector<Value *, 4> WorkList(Ops); 1141 while (!WorkList.empty()) { 1142 Value *V = WorkList.pop_back_val(); 1143 if (!Seen.insert(V).second) 1144 continue; 1145 if (Old2New.find(V) != Old2New.end()) 1146 continue; 1147 if (isa<Constant>(V)) 1148 continue; 1149 1150 auto *I = dyn_cast<Instruction>(V); 1151 if (Value2Index.contains(V) || !I || 1152 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 1153 Old2New[V] = V; 1154 Args.push_back(V); 1155 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 1156 } else { 1157 append_range(WorkList, I->operands()); 1158 } 1159 } 1160 }; 1161 1162 for (auto &Entry : Stack) 1163 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 1164 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 1165 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 1166 1167 SmallVector<Type *> ParamTys; 1168 for (auto *P : Args) 1169 ParamTys.push_back(P->getType()); 1170 1171 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 1172 /*isVarArg=*/false); 1173 Function *F = Function::Create(FTy, Function::ExternalLinkage, 1174 Cond->getModule()->getName() + 1175 Cond->getFunction()->getName() + "repro", 1176 M); 1177 // Add arguments to the reproducer function for each external value collected. 1178 for (unsigned I = 0; I < Args.size(); ++I) { 1179 F->getArg(I)->setName(Args[I]->getName()); 1180 Old2New[Args[I]] = F->getArg(I); 1181 } 1182 1183 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 1184 IRBuilder<> Builder(Entry); 1185 Builder.CreateRet(Builder.getTrue()); 1186 Builder.SetInsertPoint(Entry->getTerminator()); 1187 1188 // Clone instructions in \p Ops and their operands recursively until reaching 1189 // an value in Value2Index (external input to the reproducer). Update Old2New 1190 // mapping for the original and cloned instructions. Sort instructions to 1191 // clone by dominance, then insert the cloned instructions in the function. 1192 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1193 SmallVector<Value *, 4> WorkList(Ops); 1194 SmallVector<Instruction *> ToClone; 1195 auto &Value2Index = Info.getValue2Index(IsSigned); 1196 while (!WorkList.empty()) { 1197 Value *V = WorkList.pop_back_val(); 1198 if (Old2New.find(V) != Old2New.end()) 1199 continue; 1200 1201 auto *I = dyn_cast<Instruction>(V); 1202 if (!Value2Index.contains(V) && I) { 1203 Old2New[V] = nullptr; 1204 ToClone.push_back(I); 1205 append_range(WorkList, I->operands()); 1206 } 1207 } 1208 1209 sort(ToClone, 1210 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 1211 for (Instruction *I : ToClone) { 1212 Instruction *Cloned = I->clone(); 1213 Old2New[I] = Cloned; 1214 Old2New[I]->setName(I->getName()); 1215 Cloned->insertBefore(&*Builder.GetInsertPoint()); 1216 Cloned->dropUnknownNonDebugMetadata(); 1217 Cloned->setDebugLoc({}); 1218 } 1219 }; 1220 1221 // Materialize the assumptions for the reproducer using the entries in Stack. 1222 // That is, first clone the operands of the condition recursively until we 1223 // reach an external input to the reproducer and add them to the reproducer 1224 // function. Then add an ICmp for the condition (with the inverse predicate if 1225 // the entry is negated) and an assert using the ICmp. 1226 for (auto &Entry : Stack) { 1227 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1228 continue; 1229 1230 LLVM_DEBUG( 1231 dbgs() << " Materializing assumption icmp " << Entry.Pred << ' '; 1232 Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", "; 1233 Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n"); 1234 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1235 1236 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1237 Builder.CreateAssumption(Cmp); 1238 } 1239 1240 // Finally, clone the condition to reproduce and remap instruction operands in 1241 // the reproducer using Old2New. 1242 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1243 Entry->getTerminator()->setOperand(0, Cond); 1244 remapInstructionsInBlocks({Entry}, Old2New); 1245 1246 assert(!verifyFunction(*F, &dbgs())); 1247 } 1248 1249 static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info, 1250 unsigned NumIn, unsigned NumOut, 1251 Instruction *ContextInst) { 1252 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 1253 1254 CmpInst::Predicate Pred = Cmp->getPredicate(); 1255 Value *A = Cmp->getOperand(0); 1256 Value *B = Cmp->getOperand(1); 1257 1258 auto R = Info.getConstraintForSolving(Pred, A, B); 1259 if (R.empty() || !R.isValid(Info)){ 1260 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1261 return std::nullopt; 1262 } 1263 1264 auto &CSToUse = Info.getCS(R.IsSigned); 1265 1266 // If there was extra information collected during decomposition, apply 1267 // it now and remove it immediately once we are done with reasoning 1268 // about the constraint. 1269 for (auto &Row : R.ExtraInfo) 1270 CSToUse.addVariableRow(Row); 1271 auto InfoRestorer = make_scope_exit([&]() { 1272 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1273 CSToUse.popLastConstraint(); 1274 }); 1275 1276 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1277 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1278 return std::nullopt; 1279 1280 LLVM_DEBUG({ 1281 if (*ImpliedCondition) { 1282 dbgs() << "Condition " << *Cmp; 1283 } else { 1284 auto InversePred = Cmp->getInversePredicate(); 1285 dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " " 1286 << *A << ", " << *B; 1287 } 1288 dbgs() << " implied by dominating constraints\n"; 1289 CSToUse.dump(); 1290 }); 1291 return ImpliedCondition; 1292 } 1293 1294 return std::nullopt; 1295 } 1296 1297 static bool checkAndReplaceCondition( 1298 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1299 Instruction *ContextInst, Module *ReproducerModule, 1300 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1301 SmallVectorImpl<Instruction *> &ToRemove) { 1302 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1303 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1304 Constant *ConstantC = ConstantInt::getBool( 1305 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1306 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1307 ContextInst](Use &U) { 1308 auto *UserI = getContextInstForUse(U); 1309 auto *DTN = DT.getNode(UserI->getParent()); 1310 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1311 return false; 1312 if (UserI->getParent() == ContextInst->getParent() && 1313 UserI->comesBefore(ContextInst)) 1314 return false; 1315 1316 // Conditions in an assume trivially simplify to true. Skip uses 1317 // in assume calls to not destroy the available information. 1318 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1319 return !II || II->getIntrinsicID() != Intrinsic::assume; 1320 }); 1321 NumCondsRemoved++; 1322 if (Cmp->use_empty()) 1323 ToRemove.push_back(Cmp); 1324 return true; 1325 }; 1326 1327 if (auto ImpliedCondition = 1328 checkCondition(Cmp, Info, NumIn, NumOut, ContextInst)) 1329 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1330 return false; 1331 } 1332 1333 static void 1334 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1335 Module *ReproducerModule, 1336 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1337 SmallVectorImpl<StackEntry> &DFSInStack) { 1338 Info.popLastConstraint(E.IsSigned); 1339 // Remove variables in the system that went out of scope. 1340 auto &Mapping = Info.getValue2Index(E.IsSigned); 1341 for (Value *V : E.ValuesToRelease) 1342 Mapping.erase(V); 1343 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1344 DFSInStack.pop_back(); 1345 if (ReproducerModule) 1346 ReproducerCondStack.pop_back(); 1347 } 1348 1349 /// Check if the first condition for an AND implies the second. 1350 static bool checkAndSecondOpImpliedByFirst( 1351 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1352 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1353 SmallVectorImpl<StackEntry> &DFSInStack) { 1354 1355 CmpInst::Predicate Pred; 1356 Value *A, *B; 1357 Instruction *And = CB.getContextInst(); 1358 if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1359 return false; 1360 1361 // Optimistically add fact from first condition. 1362 unsigned OldSize = DFSInStack.size(); 1363 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1364 if (OldSize == DFSInStack.size()) 1365 return false; 1366 1367 bool Changed = false; 1368 // Check if the second condition can be simplified now. 1369 if (auto ImpliedCondition = 1370 checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn, 1371 CB.NumOut, CB.getContextInst())) { 1372 And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition)); 1373 Changed = true; 1374 } 1375 1376 // Remove entries again. 1377 while (OldSize < DFSInStack.size()) { 1378 StackEntry E = DFSInStack.back(); 1379 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1380 DFSInStack); 1381 } 1382 return Changed; 1383 } 1384 1385 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1386 unsigned NumIn, unsigned NumOut, 1387 SmallVectorImpl<StackEntry> &DFSInStack) { 1388 // If the constraint has a pre-condition, skip the constraint if it does not 1389 // hold. 1390 SmallVector<Value *> NewVariables; 1391 auto R = getConstraint(Pred, A, B, NewVariables); 1392 1393 // TODO: Support non-equality for facts as well. 1394 if (!R.isValid(*this) || R.isNe()) 1395 return; 1396 1397 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; 1398 A->printAsOperand(dbgs(), false); dbgs() << ", "; 1399 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 1400 bool Added = false; 1401 auto &CSToUse = getCS(R.IsSigned); 1402 if (R.Coefficients.empty()) 1403 return; 1404 1405 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1406 1407 // If R has been added to the system, add the new variables and queue it for 1408 // removal once it goes out-of-scope. 1409 if (Added) { 1410 SmallVector<Value *, 2> ValuesToRelease; 1411 auto &Value2Index = getValue2Index(R.IsSigned); 1412 for (Value *V : NewVariables) { 1413 Value2Index.insert({V, Value2Index.size() + 1}); 1414 ValuesToRelease.push_back(V); 1415 } 1416 1417 LLVM_DEBUG({ 1418 dbgs() << " constraint: "; 1419 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1420 dbgs() << "\n"; 1421 }); 1422 1423 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1424 std::move(ValuesToRelease)); 1425 1426 if (R.isEq()) { 1427 // Also add the inverted constraint for equality constraints. 1428 for (auto &Coeff : R.Coefficients) 1429 Coeff *= -1; 1430 CSToUse.addVariableRowFill(R.Coefficients); 1431 1432 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1433 SmallVector<Value *, 2>()); 1434 } 1435 } 1436 } 1437 1438 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1439 SmallVectorImpl<Instruction *> &ToRemove) { 1440 bool Changed = false; 1441 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1442 Value *Sub = nullptr; 1443 for (User *U : make_early_inc_range(II->users())) { 1444 if (match(U, m_ExtractValue<0>(m_Value()))) { 1445 if (!Sub) 1446 Sub = Builder.CreateSub(A, B); 1447 U->replaceAllUsesWith(Sub); 1448 Changed = true; 1449 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1450 U->replaceAllUsesWith(Builder.getFalse()); 1451 Changed = true; 1452 } else 1453 continue; 1454 1455 if (U->use_empty()) { 1456 auto *I = cast<Instruction>(U); 1457 ToRemove.push_back(I); 1458 I->setOperand(0, PoisonValue::get(II->getType())); 1459 Changed = true; 1460 } 1461 } 1462 1463 if (II->use_empty()) { 1464 II->eraseFromParent(); 1465 Changed = true; 1466 } 1467 return Changed; 1468 } 1469 1470 static bool 1471 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1472 SmallVectorImpl<Instruction *> &ToRemove) { 1473 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1474 ConstraintInfo &Info) { 1475 auto R = Info.getConstraintForSolving(Pred, A, B); 1476 if (R.size() < 2 || !R.isValid(Info)) 1477 return false; 1478 1479 auto &CSToUse = Info.getCS(R.IsSigned); 1480 return CSToUse.isConditionImplied(R.Coefficients); 1481 }; 1482 1483 bool Changed = false; 1484 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1485 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1486 // can be simplified to a regular sub. 1487 Value *A = II->getArgOperand(0); 1488 Value *B = II->getArgOperand(1); 1489 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1490 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1491 ConstantInt::get(A->getType(), 0), Info)) 1492 return false; 1493 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1494 } 1495 return Changed; 1496 } 1497 1498 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI, 1499 ScalarEvolution &SE, 1500 OptimizationRemarkEmitter &ORE) { 1501 bool Changed = false; 1502 DT.updateDFSNumbers(); 1503 SmallVector<Value *> FunctionArgs; 1504 for (Value &Arg : F.args()) 1505 FunctionArgs.push_back(&Arg); 1506 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1507 State S(DT, LI, SE); 1508 std::unique_ptr<Module> ReproducerModule( 1509 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1510 1511 // First, collect conditions implied by branches and blocks with their 1512 // Dominator DFS in and out numbers. 1513 for (BasicBlock &BB : F) { 1514 if (!DT.getNode(&BB)) 1515 continue; 1516 S.addInfoFor(BB); 1517 } 1518 1519 // Next, sort worklist by dominance, so that dominating conditions to check 1520 // and facts come before conditions and facts dominated by them. If a 1521 // condition to check and a fact have the same numbers, conditional facts come 1522 // first. Assume facts and checks are ordered according to their relative 1523 // order in the containing basic block. Also make sure conditions with 1524 // constant operands come before conditions without constant operands. This 1525 // increases the effectiveness of the current signed <-> unsigned fact 1526 // transfer logic. 1527 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1528 auto HasNoConstOp = [](const FactOrCheck &B) { 1529 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 1530 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 1531 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1532 }; 1533 // If both entries have the same In numbers, conditional facts come first. 1534 // Otherwise use the relative order in the basic block. 1535 if (A.NumIn == B.NumIn) { 1536 if (A.isConditionFact() && B.isConditionFact()) { 1537 bool NoConstOpA = HasNoConstOp(A); 1538 bool NoConstOpB = HasNoConstOp(B); 1539 return NoConstOpA < NoConstOpB; 1540 } 1541 if (A.isConditionFact()) 1542 return true; 1543 if (B.isConditionFact()) 1544 return false; 1545 auto *InstA = A.getContextInst(); 1546 auto *InstB = B.getContextInst(); 1547 return InstA->comesBefore(InstB); 1548 } 1549 return A.NumIn < B.NumIn; 1550 }); 1551 1552 SmallVector<Instruction *> ToRemove; 1553 1554 // Finally, process ordered worklist and eliminate implied conditions. 1555 SmallVector<StackEntry, 16> DFSInStack; 1556 SmallVector<ReproducerEntry> ReproducerCondStack; 1557 for (FactOrCheck &CB : S.WorkList) { 1558 // First, pop entries from the stack that are out-of-scope for CB. Remove 1559 // the corresponding entry from the constraint system. 1560 while (!DFSInStack.empty()) { 1561 auto &E = DFSInStack.back(); 1562 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1563 << "\n"); 1564 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1565 assert(E.NumIn <= CB.NumIn); 1566 if (CB.NumOut <= E.NumOut) 1567 break; 1568 LLVM_DEBUG({ 1569 dbgs() << "Removing "; 1570 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1571 Info.getValue2Index(E.IsSigned)); 1572 dbgs() << "\n"; 1573 }); 1574 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1575 DFSInStack); 1576 } 1577 1578 LLVM_DEBUG(dbgs() << "Processing "); 1579 1580 // For a block, check if any CmpInsts become known based on the current set 1581 // of constraints. 1582 if (CB.isCheck()) { 1583 Instruction *Inst = CB.getInstructionToSimplify(); 1584 if (!Inst) 1585 continue; 1586 LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 1587 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1588 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1589 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1590 bool Simplified = checkAndReplaceCondition( 1591 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1592 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1593 if (!Simplified && match(CB.getContextInst(), 1594 m_LogicalAnd(m_Value(), m_Specific(Inst)))) { 1595 Simplified = 1596 checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(), 1597 ReproducerCondStack, DFSInStack); 1598 } 1599 Changed |= Simplified; 1600 } 1601 continue; 1602 } 1603 1604 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1605 LLVM_DEBUG(dbgs() << "fact to add to the system: " 1606 << CmpInst::getPredicateName(Pred) << " "; 1607 A->printAsOperand(dbgs()); dbgs() << ", "; 1608 B->printAsOperand(dbgs(), false); dbgs() << "\n"); 1609 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1610 LLVM_DEBUG( 1611 dbgs() 1612 << "Skip adding constraint because system has too many rows.\n"); 1613 return; 1614 } 1615 1616 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1617 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1618 ReproducerCondStack.emplace_back(Pred, A, B); 1619 1620 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1621 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1622 // Add dummy entries to ReproducerCondStack to keep it in sync with 1623 // DFSInStack. 1624 for (unsigned I = 0, 1625 E = (DFSInStack.size() - ReproducerCondStack.size()); 1626 I < E; ++I) { 1627 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1628 nullptr, nullptr); 1629 } 1630 } 1631 }; 1632 1633 ICmpInst::Predicate Pred; 1634 if (!CB.isConditionFact()) { 1635 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1636 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1637 AddFact(Pred, MinMax, MinMax->getLHS()); 1638 AddFact(Pred, MinMax, MinMax->getRHS()); 1639 continue; 1640 } 1641 } 1642 1643 Value *A = nullptr, *B = nullptr; 1644 if (CB.isConditionFact()) { 1645 Pred = CB.Cond.Pred; 1646 A = CB.Cond.Op0; 1647 B = CB.Cond.Op1; 1648 if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE && 1649 !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) 1650 continue; 1651 } else { 1652 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 1653 m_ICmp(Pred, m_Value(A), m_Value(B)))); 1654 (void)Matched; 1655 assert(Matched && "Must have an assume intrinsic with a icmp operand"); 1656 } 1657 AddFact(Pred, A, B); 1658 } 1659 1660 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1661 std::string S; 1662 raw_string_ostream StringS(S); 1663 ReproducerModule->print(StringS, nullptr); 1664 StringS.flush(); 1665 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1666 Rem << ore::NV("module") << S; 1667 ORE.emit(Rem); 1668 } 1669 1670 #ifndef NDEBUG 1671 unsigned SignedEntries = 1672 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1673 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1674 "updates to CS and DFSInStack are out of sync"); 1675 assert(Info.getCS(true).size() == SignedEntries && 1676 "updates to CS and DFSInStack are out of sync"); 1677 #endif 1678 1679 for (Instruction *I : ToRemove) 1680 I->eraseFromParent(); 1681 return Changed; 1682 } 1683 1684 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1685 FunctionAnalysisManager &AM) { 1686 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1687 auto &LI = AM.getResult<LoopAnalysis>(F); 1688 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1689 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1690 if (!eliminateConstraints(F, DT, LI, SE, ORE)) 1691 return PreservedAnalyses::all(); 1692 1693 PreservedAnalyses PA; 1694 PA.preserve<DominatorTreeAnalysis>(); 1695 PA.preserve<LoopAnalysis>(); 1696 PA.preserve<ScalarEvolutionAnalysis>(); 1697 PA.preserveSet<CFGAnalyses>(); 1698 return PA; 1699 } 1700