1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/DebugCounter.h" 33 #include "llvm/Support/MathExtras.h" 34 35 #include <cmath> 36 #include <string> 37 38 using namespace llvm; 39 using namespace PatternMatch; 40 41 #define DEBUG_TYPE "constraint-elimination" 42 43 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 44 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 45 "Controls which conditions are eliminated"); 46 47 static cl::opt<unsigned> 48 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 49 cl::desc("Maximum number of rows to keep in constraint system")); 50 51 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 52 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 53 54 // A helper to multiply 2 signed integers where overflowing is allowed. 55 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 56 int64_t Result; 57 MulOverflow(A, B, Result); 58 return Result; 59 } 60 61 // A helper to add 2 signed integers where overflowing is allowed. 62 static int64_t addWithOverflow(int64_t A, int64_t B) { 63 int64_t Result; 64 AddOverflow(A, B, Result); 65 return Result; 66 } 67 68 namespace { 69 70 class ConstraintInfo; 71 72 struct StackEntry { 73 unsigned NumIn; 74 unsigned NumOut; 75 bool IsSigned = false; 76 /// Variables that can be removed from the system once the stack entry gets 77 /// removed. 78 SmallVector<Value *, 2> ValuesToRelease; 79 80 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 81 SmallVector<Value *, 2> ValuesToRelease) 82 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 83 ValuesToRelease(ValuesToRelease) {} 84 }; 85 86 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 87 struct PreconditionTy { 88 CmpInst::Predicate Pred; 89 Value *Op0; 90 Value *Op1; 91 92 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 93 : Pred(Pred), Op0(Op0), Op1(Op1) {} 94 }; 95 96 struct ConstraintTy { 97 SmallVector<int64_t, 8> Coefficients; 98 SmallVector<PreconditionTy, 2> Preconditions; 99 100 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 101 102 bool IsSigned = false; 103 bool IsEq = false; 104 105 ConstraintTy() = default; 106 107 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 108 : Coefficients(Coefficients), IsSigned(IsSigned) {} 109 110 unsigned size() const { return Coefficients.size(); } 111 112 unsigned empty() const { return Coefficients.empty(); } 113 114 /// Returns true if all preconditions for this list of constraints are 115 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 116 bool isValid(const ConstraintInfo &Info) const; 117 }; 118 119 /// Wrapper encapsulating separate constraint systems and corresponding value 120 /// mappings for both unsigned and signed information. Facts are added to and 121 /// conditions are checked against the corresponding system depending on the 122 /// signed-ness of their predicates. While the information is kept separate 123 /// based on signed-ness, certain conditions can be transferred between the two 124 /// systems. 125 class ConstraintInfo { 126 127 ConstraintSystem UnsignedCS; 128 ConstraintSystem SignedCS; 129 130 const DataLayout &DL; 131 132 public: 133 ConstraintInfo(const DataLayout &DL) : DL(DL) {} 134 135 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 136 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 137 } 138 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 139 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 140 } 141 142 ConstraintSystem &getCS(bool Signed) { 143 return Signed ? SignedCS : UnsignedCS; 144 } 145 const ConstraintSystem &getCS(bool Signed) const { 146 return Signed ? SignedCS : UnsignedCS; 147 } 148 149 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 150 void popLastNVariables(bool Signed, unsigned N) { 151 getCS(Signed).popLastNVariables(N); 152 } 153 154 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 155 156 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 157 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 158 159 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 160 /// constraints, using indices from the corresponding constraint system. 161 /// New variables that need to be added to the system are collected in 162 /// \p NewVariables. 163 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 164 SmallVectorImpl<Value *> &NewVariables) const; 165 166 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 167 /// constraints using getConstraint. Returns an empty constraint if the result 168 /// cannot be used to query the existing constraint system, e.g. because it 169 /// would require adding new variables. Also tries to convert signed 170 /// predicates to unsigned ones if possible to allow using the unsigned system 171 /// which increases the effectiveness of the signed <-> unsigned transfer 172 /// logic. 173 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 174 Value *Op1) const; 175 176 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 177 /// system if \p Pred is signed/unsigned. 178 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 179 unsigned NumIn, unsigned NumOut, 180 SmallVectorImpl<StackEntry> &DFSInStack); 181 }; 182 183 /// Represents a (Coefficient * Variable) entry after IR decomposition. 184 struct DecompEntry { 185 int64_t Coefficient; 186 Value *Variable; 187 /// True if the variable is known positive in the current constraint. 188 bool IsKnownNonNegative; 189 190 DecompEntry(int64_t Coefficient, Value *Variable, 191 bool IsKnownNonNegative = false) 192 : Coefficient(Coefficient), Variable(Variable), 193 IsKnownNonNegative(IsKnownNonNegative) {} 194 }; 195 196 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 197 struct Decomposition { 198 int64_t Offset = 0; 199 SmallVector<DecompEntry, 3> Vars; 200 201 Decomposition(int64_t Offset) : Offset(Offset) {} 202 Decomposition(Value *V, bool IsKnownNonNegative = false) { 203 Vars.emplace_back(1, V, IsKnownNonNegative); 204 } 205 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 206 : Offset(Offset), Vars(Vars) {} 207 208 void add(int64_t OtherOffset) { 209 Offset = addWithOverflow(Offset, OtherOffset); 210 } 211 212 void add(const Decomposition &Other) { 213 add(Other.Offset); 214 append_range(Vars, Other.Vars); 215 } 216 217 void mul(int64_t Factor) { 218 Offset = multiplyWithOverflow(Offset, Factor); 219 for (auto &Var : Vars) 220 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 221 } 222 }; 223 224 } // namespace 225 226 static Decomposition decompose(Value *V, 227 SmallVectorImpl<PreconditionTy> &Preconditions, 228 bool IsSigned, const DataLayout &DL); 229 230 static bool canUseSExt(ConstantInt *CI) { 231 const APInt &Val = CI->getValue(); 232 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 233 } 234 235 static Decomposition 236 decomposeGEP(GetElementPtrInst &GEP, 237 SmallVectorImpl<PreconditionTy> &Preconditions, bool IsSigned, 238 const DataLayout &DL) { 239 // Do not reason about pointers where the index size is larger than 64 bits, 240 // as the coefficients used to encode constraints are 64 bit integers. 241 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 242 return &GEP; 243 244 if (!GEP.isInBounds()) 245 return &GEP; 246 247 assert(!IsSigned && "The logic below only supports decomposition for " 248 "unsinged predicates at the moment."); 249 Type *PtrTy = GEP.getType()->getScalarType(); 250 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 251 MapVector<Value *, APInt> VariableOffsets; 252 APInt ConstantOffset(BitWidth, 0); 253 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 254 return &GEP; 255 256 // Handle the (gep (gep ....), C) case by incrementing the constant 257 // coefficient of the inner GEP, if C is a constant. 258 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand()); 259 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 260 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 261 Result.add(ConstantOffset.getSExtValue()); 262 263 if (ConstantOffset.isNegative()) { 264 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 265 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 266 if (ConstantOffsetI % Scale != 0) 267 return &GEP; 268 // Add pre-condition ensuring the GEP is increasing monotonically and 269 // can be de-composed. 270 // Both sides are normalized by being divided by Scale. 271 Preconditions.emplace_back( 272 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 273 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 274 -1 * (ConstantOffsetI / Scale))); 275 } 276 return Result; 277 } 278 279 Decomposition Result(ConstantOffset.getSExtValue(), 280 DecompEntry(1, GEP.getPointerOperand())); 281 for (auto [Index, Scale] : VariableOffsets) { 282 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 283 IdxResult.mul(Scale.getSExtValue()); 284 Result.add(IdxResult); 285 286 // If Op0 is signed non-negative, the GEP is increasing monotonically and 287 // can be de-composed. 288 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 289 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 290 ConstantInt::get(Index->getType(), 0)); 291 } 292 return Result; 293 } 294 295 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 296 // Variable } where Coefficient * Variable. The sum of the constant offset and 297 // pairs equals \p V. 298 static Decomposition decompose(Value *V, 299 SmallVectorImpl<PreconditionTy> &Preconditions, 300 bool IsSigned, const DataLayout &DL) { 301 302 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 303 bool IsSignedB) { 304 auto ResA = decompose(A, Preconditions, IsSigned, DL); 305 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 306 ResA.add(ResB); 307 return ResA; 308 }; 309 310 // Decompose \p V used with a signed predicate. 311 if (IsSigned) { 312 if (auto *CI = dyn_cast<ConstantInt>(V)) { 313 if (canUseSExt(CI)) 314 return CI->getSExtValue(); 315 } 316 Value *Op0; 317 Value *Op1; 318 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 319 return MergeResults(Op0, Op1, IsSigned); 320 321 return V; 322 } 323 324 if (auto *CI = dyn_cast<ConstantInt>(V)) { 325 if (CI->uge(MaxConstraintValue)) 326 return V; 327 return int64_t(CI->getZExtValue()); 328 } 329 330 if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) 331 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 332 333 Value *Op0; 334 bool IsKnownNonNegative = false; 335 if (match(V, m_ZExt(m_Value(Op0)))) { 336 IsKnownNonNegative = true; 337 V = Op0; 338 } 339 340 Value *Op1; 341 ConstantInt *CI; 342 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 343 return MergeResults(Op0, Op1, IsSigned); 344 } 345 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 346 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 347 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 348 ConstantInt::get(Op0->getType(), 0)); 349 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 350 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 351 ConstantInt::get(Op1->getType(), 0)); 352 353 return MergeResults(Op0, Op1, IsSigned); 354 } 355 356 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 357 canUseSExt(CI)) { 358 Preconditions.emplace_back( 359 CmpInst::ICMP_UGE, Op0, 360 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 361 return MergeResults(Op0, CI, true); 362 } 363 364 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 365 int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue())); 366 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 367 Result.mul(Mult); 368 return Result; 369 } 370 371 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 372 (!CI->isNegative())) { 373 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 374 Result.mul(CI->getSExtValue()); 375 return Result; 376 } 377 378 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 379 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 380 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 381 return {0, {{1, Op0}, {-1, Op1}}}; 382 383 return {V, IsKnownNonNegative}; 384 } 385 386 ConstraintTy 387 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 388 SmallVectorImpl<Value *> &NewVariables) const { 389 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 390 bool IsEq = false; 391 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 392 switch (Pred) { 393 case CmpInst::ICMP_UGT: 394 case CmpInst::ICMP_UGE: 395 case CmpInst::ICMP_SGT: 396 case CmpInst::ICMP_SGE: { 397 Pred = CmpInst::getSwappedPredicate(Pred); 398 std::swap(Op0, Op1); 399 break; 400 } 401 case CmpInst::ICMP_EQ: 402 if (match(Op1, m_Zero())) { 403 Pred = CmpInst::ICMP_ULE; 404 } else { 405 IsEq = true; 406 Pred = CmpInst::ICMP_ULE; 407 } 408 break; 409 case CmpInst::ICMP_NE: 410 if (!match(Op1, m_Zero())) 411 return {}; 412 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 413 std::swap(Op0, Op1); 414 break; 415 default: 416 break; 417 } 418 419 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 420 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 421 return {}; 422 423 SmallVector<PreconditionTy, 4> Preconditions; 424 bool IsSigned = CmpInst::isSigned(Pred); 425 auto &Value2Index = getValue2Index(IsSigned); 426 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 427 Preconditions, IsSigned, DL); 428 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 429 Preconditions, IsSigned, DL); 430 int64_t Offset1 = ADec.Offset; 431 int64_t Offset2 = BDec.Offset; 432 Offset1 *= -1; 433 434 auto &VariablesA = ADec.Vars; 435 auto &VariablesB = BDec.Vars; 436 437 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 438 // new entry to NewVariables. 439 DenseMap<Value *, unsigned> NewIndexMap; 440 auto GetOrAddIndex = [&Value2Index, &NewVariables, 441 &NewIndexMap](Value *V) -> unsigned { 442 auto V2I = Value2Index.find(V); 443 if (V2I != Value2Index.end()) 444 return V2I->second; 445 auto Insert = 446 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 447 if (Insert.second) 448 NewVariables.push_back(V); 449 return Insert.first->second; 450 }; 451 452 // Make sure all variables have entries in Value2Index or NewVariables. 453 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 454 GetOrAddIndex(KV.Variable); 455 456 // Build result constraint, by first adding all coefficients from A and then 457 // subtracting all coefficients from B. 458 ConstraintTy Res( 459 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 460 IsSigned); 461 // Collect variables that are known to be positive in all uses in the 462 // constraint. 463 DenseMap<Value *, bool> KnownNonNegativeVariables; 464 Res.IsEq = IsEq; 465 auto &R = Res.Coefficients; 466 for (const auto &KV : VariablesA) { 467 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 468 auto I = 469 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 470 I.first->second &= KV.IsKnownNonNegative; 471 } 472 473 for (const auto &KV : VariablesB) { 474 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 475 auto I = 476 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 477 I.first->second &= KV.IsKnownNonNegative; 478 } 479 480 int64_t OffsetSum; 481 if (AddOverflow(Offset1, Offset2, OffsetSum)) 482 return {}; 483 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 484 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 485 return {}; 486 R[0] = OffsetSum; 487 Res.Preconditions = std::move(Preconditions); 488 489 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 490 // variables. 491 while (!NewVariables.empty()) { 492 int64_t Last = R.back(); 493 if (Last != 0) 494 break; 495 R.pop_back(); 496 Value *RemovedV = NewVariables.pop_back_val(); 497 NewIndexMap.erase(RemovedV); 498 } 499 500 // Add extra constraints for variables that are known positive. 501 for (auto &KV : KnownNonNegativeVariables) { 502 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 503 NewIndexMap.find(KV.first) == NewIndexMap.end())) 504 continue; 505 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 506 C[GetOrAddIndex(KV.first)] = -1; 507 Res.ExtraInfo.push_back(C); 508 } 509 return Res; 510 } 511 512 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 513 Value *Op0, 514 Value *Op1) const { 515 // If both operands are known to be non-negative, change signed predicates to 516 // unsigned ones. This increases the reasoning effectiveness in combination 517 // with the signed <-> unsigned transfer logic. 518 if (CmpInst::isSigned(Pred) && 519 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 520 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 521 Pred = CmpInst::getUnsignedPredicate(Pred); 522 523 SmallVector<Value *> NewVariables; 524 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 525 if (R.IsEq || !NewVariables.empty()) 526 return {}; 527 return R; 528 } 529 530 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 531 return Coefficients.size() > 0 && 532 all_of(Preconditions, [&Info](const PreconditionTy &C) { 533 return Info.doesHold(C.Pred, C.Op0, C.Op1); 534 }); 535 } 536 537 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 538 Value *B) const { 539 auto R = getConstraintForSolving(Pred, A, B); 540 return R.Preconditions.empty() && !R.empty() && 541 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 542 } 543 544 void ConstraintInfo::transferToOtherSystem( 545 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 546 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 547 // Check if we can combine facts from the signed and unsigned systems to 548 // derive additional facts. 549 if (!A->getType()->isIntegerTy()) 550 return; 551 // FIXME: This currently depends on the order we add facts. Ideally we 552 // would first add all known facts and only then try to add additional 553 // facts. 554 switch (Pred) { 555 default: 556 break; 557 case CmpInst::ICMP_ULT: 558 // If B is a signed positive constant, A >=s 0 and A <s B. 559 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 560 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 561 NumOut, DFSInStack); 562 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 563 } 564 break; 565 case CmpInst::ICMP_SLT: 566 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 567 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 568 break; 569 case CmpInst::ICMP_SGT: 570 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 571 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 572 NumOut, DFSInStack); 573 break; 574 case CmpInst::ICMP_SGE: 575 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 576 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 577 } 578 break; 579 } 580 } 581 582 namespace { 583 /// Represents either 584 /// * a condition that holds on entry to a block (=conditional fact) 585 /// * an assume (=assume fact) 586 /// * an instruction to simplify. 587 /// It also tracks the Dominator DFS in and out numbers for each entry. 588 struct FactOrCheck { 589 Instruction *Inst; 590 unsigned NumIn; 591 unsigned NumOut; 592 bool IsCheck; 593 bool Not; 594 595 FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool IsCheck, bool Not) 596 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 597 IsCheck(IsCheck), Not(Not) {} 598 599 static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst, 600 bool Not = false) { 601 return FactOrCheck(DTN, Inst, false, Not); 602 } 603 604 static FactOrCheck getCheck(DomTreeNode *DTN, Instruction *Inst) { 605 return FactOrCheck(DTN, Inst, true, false); 606 } 607 608 bool isAssumeFact() const { 609 if (!IsCheck && isa<IntrinsicInst>(Inst)) { 610 assert(match(Inst, m_Intrinsic<Intrinsic::assume>())); 611 return true; 612 } 613 return false; 614 } 615 616 bool isConditionFact() const { return !IsCheck && isa<CmpInst>(Inst); } 617 }; 618 619 /// Keep state required to build worklist. 620 struct State { 621 DominatorTree &DT; 622 SmallVector<FactOrCheck, 64> WorkList; 623 624 State(DominatorTree &DT) : DT(DT) {} 625 626 /// Process block \p BB and add known facts to work-list. 627 void addInfoFor(BasicBlock &BB); 628 629 /// Returns true if we can add a known condition from BB to its successor 630 /// block Succ. 631 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 632 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 633 } 634 }; 635 636 } // namespace 637 638 #ifndef NDEBUG 639 static void dumpWithNames(const ConstraintSystem &CS, 640 DenseMap<Value *, unsigned> &Value2Index) { 641 SmallVector<std::string> Names(Value2Index.size(), ""); 642 for (auto &KV : Value2Index) { 643 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 644 } 645 CS.dump(Names); 646 } 647 648 static void dumpWithNames(ArrayRef<int64_t> C, 649 DenseMap<Value *, unsigned> &Value2Index) { 650 ConstraintSystem CS; 651 CS.addVariableRowFill(C); 652 dumpWithNames(CS, Value2Index); 653 } 654 #endif 655 656 void State::addInfoFor(BasicBlock &BB) { 657 // True as long as long as the current instruction is guaranteed to execute. 658 bool GuaranteedToExecute = true; 659 // Queue conditions and assumes. 660 for (Instruction &I : BB) { 661 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 662 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), Cmp)); 663 continue; 664 } 665 666 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 667 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), &I)); 668 continue; 669 } 670 671 Value *Cond; 672 // For now, just handle assumes with a single compare as condition. 673 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 674 isa<ICmpInst>(Cond)) { 675 if (GuaranteedToExecute) { 676 // The assume is guaranteed to execute when BB is entered, hence Cond 677 // holds on entry to BB. 678 WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()), 679 cast<Instruction>(Cond))); 680 } else { 681 WorkList.emplace_back( 682 FactOrCheck::getFact(DT.getNode(I.getParent()), &I)); 683 } 684 } 685 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 686 } 687 688 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 689 if (!Br || !Br->isConditional()) 690 return; 691 692 Value *Cond = Br->getCondition(); 693 694 // If the condition is a chain of ORs/AND and the successor only has the 695 // current block as predecessor, queue conditions for the successor. 696 Value *Op0, *Op1; 697 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 698 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 699 bool IsOr = match(Cond, m_LogicalOr()); 700 bool IsAnd = match(Cond, m_LogicalAnd()); 701 // If there's a select that matches both AND and OR, we need to commit to 702 // one of the options. Arbitrarily pick OR. 703 if (IsOr && IsAnd) 704 IsAnd = false; 705 706 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 707 if (canAddSuccessor(BB, Successor)) { 708 SmallVector<Value *> CondWorkList; 709 SmallPtrSet<Value *, 8> SeenCond; 710 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 711 if (SeenCond.insert(V).second) 712 CondWorkList.push_back(V); 713 }; 714 QueueValue(Op1); 715 QueueValue(Op0); 716 while (!CondWorkList.empty()) { 717 Value *Cur = CondWorkList.pop_back_val(); 718 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 719 WorkList.emplace_back( 720 FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr)); 721 continue; 722 } 723 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 724 QueueValue(Op1); 725 QueueValue(Op0); 726 continue; 727 } 728 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 729 QueueValue(Op1); 730 QueueValue(Op0); 731 continue; 732 } 733 } 734 } 735 return; 736 } 737 738 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 739 if (!CmpI) 740 return; 741 if (canAddSuccessor(BB, Br->getSuccessor(0))) 742 WorkList.emplace_back( 743 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI)); 744 if (canAddSuccessor(BB, Br->getSuccessor(1))) 745 WorkList.emplace_back( 746 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true)); 747 } 748 749 static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) { 750 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 751 752 CmpInst::Predicate Pred = Cmp->getPredicate(); 753 Value *A = Cmp->getOperand(0); 754 Value *B = Cmp->getOperand(1); 755 756 auto R = Info.getConstraintForSolving(Pred, A, B); 757 if (R.empty() || !R.isValid(Info)){ 758 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 759 return false; 760 } 761 762 auto &CSToUse = Info.getCS(R.IsSigned); 763 764 // If there was extra information collected during decomposition, apply 765 // it now and remove it immediately once we are done with reasoning 766 // about the constraint. 767 for (auto &Row : R.ExtraInfo) 768 CSToUse.addVariableRow(Row); 769 auto InfoRestorer = make_scope_exit([&]() { 770 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 771 CSToUse.popLastConstraint(); 772 }); 773 774 bool Changed = false; 775 if (CSToUse.isConditionImplied(R.Coefficients)) { 776 if (!DebugCounter::shouldExecute(EliminatedCounter)) 777 return false; 778 779 LLVM_DEBUG({ 780 dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n"; 781 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 782 }); 783 Constant *TrueC = 784 ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType())); 785 Cmp->replaceUsesWithIf(TrueC, [](Use &U) { 786 // Conditions in an assume trivially simplify to true. Skip uses 787 // in assume calls to not destroy the available information. 788 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 789 return !II || II->getIntrinsicID() != Intrinsic::assume; 790 }); 791 NumCondsRemoved++; 792 Changed = true; 793 } 794 if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) { 795 if (!DebugCounter::shouldExecute(EliminatedCounter)) 796 return false; 797 798 LLVM_DEBUG({ 799 dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n"; 800 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 801 }); 802 Constant *FalseC = 803 ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType())); 804 Cmp->replaceAllUsesWith(FalseC); 805 NumCondsRemoved++; 806 Changed = true; 807 } 808 return Changed; 809 } 810 811 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 812 unsigned NumIn, unsigned NumOut, 813 SmallVectorImpl<StackEntry> &DFSInStack) { 814 // If the constraint has a pre-condition, skip the constraint if it does not 815 // hold. 816 SmallVector<Value *> NewVariables; 817 auto R = getConstraint(Pred, A, B, NewVariables); 818 if (!R.isValid(*this)) 819 return; 820 821 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; 822 A->printAsOperand(dbgs(), false); dbgs() << ", "; 823 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 824 bool Added = false; 825 auto &CSToUse = getCS(R.IsSigned); 826 if (R.Coefficients.empty()) 827 return; 828 829 Added |= CSToUse.addVariableRowFill(R.Coefficients); 830 831 // If R has been added to the system, add the new variables and queue it for 832 // removal once it goes out-of-scope. 833 if (Added) { 834 SmallVector<Value *, 2> ValuesToRelease; 835 auto &Value2Index = getValue2Index(R.IsSigned); 836 for (Value *V : NewVariables) { 837 Value2Index.insert({V, Value2Index.size() + 1}); 838 ValuesToRelease.push_back(V); 839 } 840 841 LLVM_DEBUG({ 842 dbgs() << " constraint: "; 843 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 844 dbgs() << "\n"; 845 }); 846 847 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 848 std::move(ValuesToRelease)); 849 850 if (R.IsEq) { 851 // Also add the inverted constraint for equality constraints. 852 for (auto &Coeff : R.Coefficients) 853 Coeff *= -1; 854 CSToUse.addVariableRowFill(R.Coefficients); 855 856 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 857 SmallVector<Value *, 2>()); 858 } 859 } 860 } 861 862 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 863 SmallVectorImpl<Instruction *> &ToRemove) { 864 bool Changed = false; 865 IRBuilder<> Builder(II->getParent(), II->getIterator()); 866 Value *Sub = nullptr; 867 for (User *U : make_early_inc_range(II->users())) { 868 if (match(U, m_ExtractValue<0>(m_Value()))) { 869 if (!Sub) 870 Sub = Builder.CreateSub(A, B); 871 U->replaceAllUsesWith(Sub); 872 Changed = true; 873 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 874 U->replaceAllUsesWith(Builder.getFalse()); 875 Changed = true; 876 } else 877 continue; 878 879 if (U->use_empty()) { 880 auto *I = cast<Instruction>(U); 881 ToRemove.push_back(I); 882 I->setOperand(0, PoisonValue::get(II->getType())); 883 Changed = true; 884 } 885 } 886 887 if (II->use_empty()) { 888 II->eraseFromParent(); 889 Changed = true; 890 } 891 return Changed; 892 } 893 894 static bool 895 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 896 SmallVectorImpl<Instruction *> &ToRemove) { 897 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 898 ConstraintInfo &Info) { 899 auto R = Info.getConstraintForSolving(Pred, A, B); 900 if (R.size() < 2 || !R.isValid(Info)) 901 return false; 902 903 auto &CSToUse = Info.getCS(R.IsSigned); 904 return CSToUse.isConditionImplied(R.Coefficients); 905 }; 906 907 bool Changed = false; 908 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 909 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 910 // can be simplified to a regular sub. 911 Value *A = II->getArgOperand(0); 912 Value *B = II->getArgOperand(1); 913 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 914 !DoesConditionHold(CmpInst::ICMP_SGE, B, 915 ConstantInt::get(A->getType(), 0), Info)) 916 return false; 917 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 918 } 919 return Changed; 920 } 921 922 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 923 bool Changed = false; 924 DT.updateDFSNumbers(); 925 926 ConstraintInfo Info(F.getParent()->getDataLayout()); 927 State S(DT); 928 929 // First, collect conditions implied by branches and blocks with their 930 // Dominator DFS in and out numbers. 931 for (BasicBlock &BB : F) { 932 if (!DT.getNode(&BB)) 933 continue; 934 S.addInfoFor(BB); 935 } 936 937 // Next, sort worklist by dominance, so that dominating conditions to check 938 // and facts come before conditions and facts dominated by them. If a 939 // condition to check and a fact have the same numbers, conditional facts come 940 // first. Assume facts and checks are ordered according to their relative 941 // order in the containing basic block. Also make sure conditions with 942 // constant operands come before conditions without constant operands. This 943 // increases the effectiveness of the current signed <-> unsigned fact 944 // transfer logic. 945 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 946 auto HasNoConstOp = [](const FactOrCheck &B) { 947 return !isa<ConstantInt>(B.Inst->getOperand(0)) && 948 !isa<ConstantInt>(B.Inst->getOperand(1)); 949 }; 950 // If both entries have the same In numbers, conditional facts come first. 951 // Otherwise use the relative order in the basic block. 952 if (A.NumIn == B.NumIn) { 953 if (A.isConditionFact() && B.isConditionFact()) { 954 bool NoConstOpA = HasNoConstOp(A); 955 bool NoConstOpB = HasNoConstOp(B); 956 return NoConstOpA < NoConstOpB; 957 } 958 if (A.isConditionFact()) 959 return true; 960 if (B.isConditionFact()) 961 return false; 962 return A.Inst->comesBefore(B.Inst); 963 } 964 return A.NumIn < B.NumIn; 965 }); 966 967 SmallVector<Instruction *> ToRemove; 968 969 // Finally, process ordered worklist and eliminate implied conditions. 970 SmallVector<StackEntry, 16> DFSInStack; 971 for (FactOrCheck &CB : S.WorkList) { 972 // First, pop entries from the stack that are out-of-scope for CB. Remove 973 // the corresponding entry from the constraint system. 974 while (!DFSInStack.empty()) { 975 auto &E = DFSInStack.back(); 976 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 977 << "\n"); 978 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 979 assert(E.NumIn <= CB.NumIn); 980 if (CB.NumOut <= E.NumOut) 981 break; 982 LLVM_DEBUG({ 983 dbgs() << "Removing "; 984 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 985 Info.getValue2Index(E.IsSigned)); 986 dbgs() << "\n"; 987 }); 988 989 Info.popLastConstraint(E.IsSigned); 990 // Remove variables in the system that went out of scope. 991 auto &Mapping = Info.getValue2Index(E.IsSigned); 992 for (Value *V : E.ValuesToRelease) 993 Mapping.erase(V); 994 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 995 DFSInStack.pop_back(); 996 } 997 998 LLVM_DEBUG({ 999 dbgs() << "Processing "; 1000 if (CB.IsCheck) 1001 dbgs() << "condition to simplify: " << *CB.Inst; 1002 else 1003 dbgs() << "fact to add to the system: " << *CB.Inst; 1004 dbgs() << "\n"; 1005 }); 1006 1007 // For a block, check if any CmpInsts become known based on the current set 1008 // of constraints. 1009 if (CB.IsCheck) { 1010 if (auto *II = dyn_cast<WithOverflowInst>(CB.Inst)) { 1011 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1012 } else if (auto *Cmp = dyn_cast<ICmpInst>(CB.Inst)) { 1013 Changed |= checkAndReplaceCondition(Cmp, Info); 1014 } 1015 continue; 1016 } 1017 1018 ICmpInst::Predicate Pred; 1019 Value *A, *B; 1020 Value *Cmp = CB.Inst; 1021 match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp))); 1022 if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 1023 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1024 LLVM_DEBUG( 1025 dbgs() 1026 << "Skip adding constraint because system has too many rows.\n"); 1027 continue; 1028 } 1029 1030 // Use the inverse predicate if required. 1031 if (CB.Not) 1032 Pred = CmpInst::getInversePredicate(Pred); 1033 1034 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1035 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1036 } 1037 } 1038 1039 #ifndef NDEBUG 1040 unsigned SignedEntries = 1041 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1042 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1043 "updates to CS and DFSInStack are out of sync"); 1044 assert(Info.getCS(true).size() == SignedEntries && 1045 "updates to CS and DFSInStack are out of sync"); 1046 #endif 1047 1048 for (Instruction *I : ToRemove) 1049 I->eraseFromParent(); 1050 return Changed; 1051 } 1052 1053 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1054 FunctionAnalysisManager &AM) { 1055 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1056 if (!eliminateConstraints(F, DT)) 1057 return PreservedAnalyses::all(); 1058 1059 PreservedAnalyses PA; 1060 PA.preserve<DominatorTreeAnalysis>(); 1061 PA.preserveSet<CFGAnalyses>(); 1062 return PA; 1063 } 1064