xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision a22578d38c773b3969fc02f80ffd7042dc4ad3e3)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/DebugCounter.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Transforms/Utils/Cloning.h"
41 #include "llvm/Transforms/Utils/ValueMapper.h"
42 
43 #include <cmath>
44 #include <optional>
45 #include <string>
46 
47 using namespace llvm;
48 using namespace PatternMatch;
49 
50 #define DEBUG_TYPE "constraint-elimination"
51 
52 STATISTIC(NumCondsRemoved, "Number of instructions removed");
53 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
54               "Controls which conditions are eliminated");
55 
56 static cl::opt<unsigned>
57     MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
58             cl::desc("Maximum number of rows to keep in constraint system"));
59 
60 static cl::opt<bool> DumpReproducers(
61     "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
62     cl::desc("Dump IR to reproduce successful transformations."));
63 
64 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
65 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
66 
67 // A helper to multiply 2 signed integers where overflowing is allowed.
68 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
69   int64_t Result;
70   MulOverflow(A, B, Result);
71   return Result;
72 }
73 
74 // A helper to add 2 signed integers where overflowing is allowed.
75 static int64_t addWithOverflow(int64_t A, int64_t B) {
76   int64_t Result;
77   AddOverflow(A, B, Result);
78   return Result;
79 }
80 
81 static Instruction *getContextInstForUse(Use &U) {
82   Instruction *UserI = cast<Instruction>(U.getUser());
83   if (auto *Phi = dyn_cast<PHINode>(UserI))
84     UserI = Phi->getIncomingBlock(U)->getTerminator();
85   return UserI;
86 }
87 
88 namespace {
89 /// Struct to express a condition of the form %Op0 Pred %Op1.
90 struct ConditionTy {
91   CmpPredicate Pred;
92   Value *Op0 = nullptr;
93   Value *Op1 = nullptr;
94 
95   ConditionTy() = default;
96   ConditionTy(CmpPredicate Pred, Value *Op0, Value *Op1)
97       : Pred(Pred), Op0(Op0), Op1(Op1) {}
98 };
99 
100 /// Represents either
101 ///  * a condition that holds on entry to a block (=condition fact)
102 ///  * an assume (=assume fact)
103 ///  * a use of a compare instruction to simplify.
104 /// It also tracks the Dominator DFS in and out numbers for each entry.
105 struct FactOrCheck {
106   enum class EntryTy {
107     ConditionFact, /// A condition that holds on entry to a block.
108     InstFact,      /// A fact that holds after Inst executed (e.g. an assume or
109                    /// min/mix intrinsic.
110     InstCheck,     /// An instruction to simplify (e.g. an overflow math
111                    /// intrinsics).
112     UseCheck       /// An use of a compare instruction to simplify.
113   };
114 
115   union {
116     Instruction *Inst;
117     Use *U;
118     ConditionTy Cond;
119   };
120 
121   /// A pre-condition that must hold for the current fact to be added to the
122   /// system.
123   ConditionTy DoesHold;
124 
125   unsigned NumIn;
126   unsigned NumOut;
127   EntryTy Ty;
128 
129   FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst)
130       : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
131         Ty(Ty) {}
132 
133   FactOrCheck(DomTreeNode *DTN, Use *U)
134       : U(U), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
135         Ty(EntryTy::UseCheck) {}
136 
137   FactOrCheck(DomTreeNode *DTN, CmpPredicate Pred, Value *Op0, Value *Op1,
138               ConditionTy Precond = {})
139       : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()),
140         NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {}
141 
142   static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpPredicate Pred,
143                                       Value *Op0, Value *Op1,
144                                       ConditionTy Precond = {}) {
145     return FactOrCheck(DTN, Pred, Op0, Op1, Precond);
146   }
147 
148   static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) {
149     return FactOrCheck(EntryTy::InstFact, DTN, Inst);
150   }
151 
152   static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
153     return FactOrCheck(DTN, U);
154   }
155 
156   static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
157     return FactOrCheck(EntryTy::InstCheck, DTN, CI);
158   }
159 
160   bool isCheck() const {
161     return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck;
162   }
163 
164   Instruction *getContextInst() const {
165     assert(!isConditionFact());
166     if (Ty == EntryTy::UseCheck)
167       return getContextInstForUse(*U);
168     return Inst;
169   }
170 
171   Instruction *getInstructionToSimplify() const {
172     assert(isCheck());
173     if (Ty == EntryTy::InstCheck)
174       return Inst;
175     // The use may have been simplified to a constant already.
176     return dyn_cast<Instruction>(*U);
177   }
178 
179   bool isConditionFact() const { return Ty == EntryTy::ConditionFact; }
180 };
181 
182 /// Keep state required to build worklist.
183 struct State {
184   DominatorTree &DT;
185   LoopInfo &LI;
186   ScalarEvolution &SE;
187   SmallVector<FactOrCheck, 64> WorkList;
188 
189   State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE)
190       : DT(DT), LI(LI), SE(SE) {}
191 
192   /// Process block \p BB and add known facts to work-list.
193   void addInfoFor(BasicBlock &BB);
194 
195   /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares
196   /// controlling the loop header.
197   void addInfoForInductions(BasicBlock &BB);
198 
199   /// Returns true if we can add a known condition from BB to its successor
200   /// block Succ.
201   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
202     return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
203   }
204 };
205 
206 class ConstraintInfo;
207 
208 struct StackEntry {
209   unsigned NumIn;
210   unsigned NumOut;
211   bool IsSigned = false;
212   /// Variables that can be removed from the system once the stack entry gets
213   /// removed.
214   SmallVector<Value *, 2> ValuesToRelease;
215 
216   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
217              SmallVector<Value *, 2> ValuesToRelease)
218       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
219         ValuesToRelease(ValuesToRelease) {}
220 };
221 
222 struct ConstraintTy {
223   SmallVector<int64_t, 8> Coefficients;
224   SmallVector<ConditionTy, 2> Preconditions;
225 
226   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
227 
228   bool IsSigned = false;
229 
230   ConstraintTy() = default;
231 
232   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq,
233                bool IsNe)
234       : Coefficients(std::move(Coefficients)), IsSigned(IsSigned), IsEq(IsEq),
235         IsNe(IsNe) {}
236 
237   unsigned size() const { return Coefficients.size(); }
238 
239   unsigned empty() const { return Coefficients.empty(); }
240 
241   /// Returns true if all preconditions for this list of constraints are
242   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
243   bool isValid(const ConstraintInfo &Info) const;
244 
245   bool isEq() const { return IsEq; }
246 
247   bool isNe() const { return IsNe; }
248 
249   /// Check if the current constraint is implied by the given ConstraintSystem.
250   ///
251   /// \return true or false if the constraint is proven to be respectively true,
252   /// or false. When the constraint cannot be proven to be either true or false,
253   /// std::nullopt is returned.
254   std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
255 
256 private:
257   bool IsEq = false;
258   bool IsNe = false;
259 };
260 
261 /// Wrapper encapsulating separate constraint systems and corresponding value
262 /// mappings for both unsigned and signed information. Facts are added to and
263 /// conditions are checked against the corresponding system depending on the
264 /// signed-ness of their predicates. While the information is kept separate
265 /// based on signed-ness, certain conditions can be transferred between the two
266 /// systems.
267 class ConstraintInfo {
268 
269   ConstraintSystem UnsignedCS;
270   ConstraintSystem SignedCS;
271 
272   const DataLayout &DL;
273 
274 public:
275   ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
276       : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {
277     auto &Value2Index = getValue2Index(false);
278     // Add Arg > -1 constraints to unsigned system for all function arguments.
279     for (Value *Arg : FunctionArgs) {
280       ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
281                           false, false, false);
282       VarPos.Coefficients[Value2Index[Arg]] = -1;
283       UnsignedCS.addVariableRow(VarPos.Coefficients);
284     }
285   }
286 
287   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
288     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
289   }
290   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
291     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
292   }
293 
294   ConstraintSystem &getCS(bool Signed) {
295     return Signed ? SignedCS : UnsignedCS;
296   }
297   const ConstraintSystem &getCS(bool Signed) const {
298     return Signed ? SignedCS : UnsignedCS;
299   }
300 
301   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
302   void popLastNVariables(bool Signed, unsigned N) {
303     getCS(Signed).popLastNVariables(N);
304   }
305 
306   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
307 
308   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
309                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
310 
311   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
312   /// constraints, using indices from the corresponding constraint system.
313   /// New variables that need to be added to the system are collected in
314   /// \p NewVariables.
315   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
316                              SmallVectorImpl<Value *> &NewVariables) const;
317 
318   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
319   /// constraints using getConstraint. Returns an empty constraint if the result
320   /// cannot be used to query the existing constraint system, e.g. because it
321   /// would require adding new variables. Also tries to convert signed
322   /// predicates to unsigned ones if possible to allow using the unsigned system
323   /// which increases the effectiveness of the signed <-> unsigned transfer
324   /// logic.
325   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
326                                        Value *Op1) const;
327 
328   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
329   /// system if \p Pred is signed/unsigned.
330   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
331                              unsigned NumIn, unsigned NumOut,
332                              SmallVectorImpl<StackEntry> &DFSInStack);
333 };
334 
335 /// Represents a (Coefficient * Variable) entry after IR decomposition.
336 struct DecompEntry {
337   int64_t Coefficient;
338   Value *Variable;
339   /// True if the variable is known positive in the current constraint.
340   bool IsKnownNonNegative;
341 
342   DecompEntry(int64_t Coefficient, Value *Variable,
343               bool IsKnownNonNegative = false)
344       : Coefficient(Coefficient), Variable(Variable),
345         IsKnownNonNegative(IsKnownNonNegative) {}
346 };
347 
348 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
349 struct Decomposition {
350   int64_t Offset = 0;
351   SmallVector<DecompEntry, 3> Vars;
352 
353   Decomposition(int64_t Offset) : Offset(Offset) {}
354   Decomposition(Value *V, bool IsKnownNonNegative = false) {
355     Vars.emplace_back(1, V, IsKnownNonNegative);
356   }
357   Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
358       : Offset(Offset), Vars(Vars) {}
359 
360   void add(int64_t OtherOffset) {
361     Offset = addWithOverflow(Offset, OtherOffset);
362   }
363 
364   void add(const Decomposition &Other) {
365     add(Other.Offset);
366     append_range(Vars, Other.Vars);
367   }
368 
369   void sub(const Decomposition &Other) {
370     Decomposition Tmp = Other;
371     Tmp.mul(-1);
372     add(Tmp.Offset);
373     append_range(Vars, Tmp.Vars);
374   }
375 
376   void mul(int64_t Factor) {
377     Offset = multiplyWithOverflow(Offset, Factor);
378     for (auto &Var : Vars)
379       Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
380   }
381 };
382 
383 // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr.
384 struct OffsetResult {
385   Value *BasePtr;
386   APInt ConstantOffset;
387   SmallMapVector<Value *, APInt, 4> VariableOffsets;
388   GEPNoWrapFlags NW;
389 
390   OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {}
391 
392   OffsetResult(GEPOperator &GEP, const DataLayout &DL)
393       : BasePtr(GEP.getPointerOperand()), NW(GEP.getNoWrapFlags()) {
394     ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0);
395   }
396 };
397 } // namespace
398 
399 // Try to collect variable and constant offsets for \p GEP, partly traversing
400 // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting
401 // the offset fails.
402 static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) {
403   OffsetResult Result(GEP, DL);
404   unsigned BitWidth = Result.ConstantOffset.getBitWidth();
405   if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets,
406                          Result.ConstantOffset))
407     return {};
408 
409   // If we have a nested GEP, check if we can combine the constant offset of the
410   // inner GEP with the outer GEP.
411   if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) {
412     SmallMapVector<Value *, APInt, 4> VariableOffsets2;
413     APInt ConstantOffset2(BitWidth, 0);
414     bool CanCollectInner = InnerGEP->collectOffset(
415         DL, BitWidth, VariableOffsets2, ConstantOffset2);
416     // TODO: Support cases with more than 1 variable offset.
417     if (!CanCollectInner || Result.VariableOffsets.size() > 1 ||
418         VariableOffsets2.size() > 1 ||
419         (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) {
420       // More than 1 variable index, use outer result.
421       return Result;
422     }
423     Result.BasePtr = InnerGEP->getPointerOperand();
424     Result.ConstantOffset += ConstantOffset2;
425     if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1)
426       Result.VariableOffsets = VariableOffsets2;
427     Result.NW &= InnerGEP->getNoWrapFlags();
428   }
429   return Result;
430 }
431 
432 static Decomposition decompose(Value *V,
433                                SmallVectorImpl<ConditionTy> &Preconditions,
434                                bool IsSigned, const DataLayout &DL);
435 
436 static bool canUseSExt(ConstantInt *CI) {
437   const APInt &Val = CI->getValue();
438   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
439 }
440 
441 static Decomposition decomposeGEP(GEPOperator &GEP,
442                                   SmallVectorImpl<ConditionTy> &Preconditions,
443                                   bool IsSigned, const DataLayout &DL) {
444   // Do not reason about pointers where the index size is larger than 64 bits,
445   // as the coefficients used to encode constraints are 64 bit integers.
446   if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
447     return &GEP;
448 
449   assert(!IsSigned && "The logic below only supports decomposition for "
450                       "unsigned predicates at the moment.");
451   const auto &[BasePtr, ConstantOffset, VariableOffsets, NW] =
452       collectOffsets(GEP, DL);
453   // We support either plain gep nuw, or gep nusw with non-negative offset,
454   // which implies gep nuw.
455   if (!BasePtr || NW == GEPNoWrapFlags::none())
456     return &GEP;
457 
458   Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr));
459   for (auto [Index, Scale] : VariableOffsets) {
460     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
461     IdxResult.mul(Scale.getSExtValue());
462     Result.add(IdxResult);
463 
464     if (!NW.hasNoUnsignedWrap()) {
465       // Try to prove nuw from nusw and nneg.
466       assert(NW.hasNoUnsignedSignedWrap() && "Must have nusw flag");
467       if (!isKnownNonNegative(Index, DL))
468         Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
469                                    ConstantInt::get(Index->getType(), 0));
470     }
471   }
472   return Result;
473 }
474 
475 // Decomposes \p V into a constant offset + list of pairs { Coefficient,
476 // Variable } where Coefficient * Variable. The sum of the constant offset and
477 // pairs equals \p V.
478 static Decomposition decompose(Value *V,
479                                SmallVectorImpl<ConditionTy> &Preconditions,
480                                bool IsSigned, const DataLayout &DL) {
481 
482   auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
483                                                       bool IsSignedB) {
484     auto ResA = decompose(A, Preconditions, IsSigned, DL);
485     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
486     ResA.add(ResB);
487     return ResA;
488   };
489 
490   Type *Ty = V->getType()->getScalarType();
491   if (Ty->isPointerTy() && !IsSigned) {
492     if (auto *GEP = dyn_cast<GEPOperator>(V))
493       return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
494     if (isa<ConstantPointerNull>(V))
495       return int64_t(0);
496 
497     return V;
498   }
499 
500   // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so
501   // coefficient add/mul may wrap, while the operation in the full bit width
502   // would not.
503   if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64)
504     return V;
505 
506   bool IsKnownNonNegative = false;
507 
508   // Decompose \p V used with a signed predicate.
509   if (IsSigned) {
510     if (auto *CI = dyn_cast<ConstantInt>(V)) {
511       if (canUseSExt(CI))
512         return CI->getSExtValue();
513     }
514     Value *Op0;
515     Value *Op1;
516 
517     if (match(V, m_SExt(m_Value(Op0))))
518       V = Op0;
519     else if (match(V, m_NNegZExt(m_Value(Op0)))) {
520       V = Op0;
521       IsKnownNonNegative = true;
522     } else if (match(V, m_NSWTrunc(m_Value(Op0)))) {
523       if (Op0->getType()->getScalarSizeInBits() <= 64)
524         V = Op0;
525     }
526 
527     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
528       return MergeResults(Op0, Op1, IsSigned);
529 
530     ConstantInt *CI;
531     if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) {
532       auto Result = decompose(Op0, Preconditions, IsSigned, DL);
533       Result.mul(CI->getSExtValue());
534       return Result;
535     }
536 
537     // (shl nsw x, shift) is (mul nsw x, (1<<shift)), with the exception of
538     // shift == bw-1.
539     if (match(V, m_NSWShl(m_Value(Op0), m_ConstantInt(CI)))) {
540       uint64_t Shift = CI->getValue().getLimitedValue();
541       if (Shift < Ty->getIntegerBitWidth() - 1) {
542         assert(Shift < 64 && "Would overflow");
543         auto Result = decompose(Op0, Preconditions, IsSigned, DL);
544         Result.mul(int64_t(1) << Shift);
545         return Result;
546       }
547     }
548 
549     return {V, IsKnownNonNegative};
550   }
551 
552   if (auto *CI = dyn_cast<ConstantInt>(V)) {
553     if (CI->uge(MaxConstraintValue))
554       return V;
555     return int64_t(CI->getZExtValue());
556   }
557 
558   Value *Op0;
559   if (match(V, m_ZExt(m_Value(Op0)))) {
560     IsKnownNonNegative = true;
561     V = Op0;
562   } else if (match(V, m_SExt(m_Value(Op0)))) {
563     V = Op0;
564     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
565                                ConstantInt::get(Op0->getType(), 0));
566   } else if (auto *Trunc = dyn_cast<TruncInst>(V)) {
567     if (Trunc->getSrcTy()->getScalarSizeInBits() <= 64) {
568       if (Trunc->hasNoUnsignedWrap() || Trunc->hasNoSignedWrap()) {
569         V = Trunc->getOperand(0);
570         if (!Trunc->hasNoUnsignedWrap())
571           Preconditions.emplace_back(CmpInst::ICMP_SGE, V,
572                                      ConstantInt::get(V->getType(), 0));
573       }
574     }
575   }
576 
577   Value *Op1;
578   ConstantInt *CI;
579   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
580     return MergeResults(Op0, Op1, IsSigned);
581   }
582   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
583     if (!isKnownNonNegative(Op0, DL))
584       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
585                                  ConstantInt::get(Op0->getType(), 0));
586     if (!isKnownNonNegative(Op1, DL))
587       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
588                                  ConstantInt::get(Op1->getType(), 0));
589 
590     return MergeResults(Op0, Op1, IsSigned);
591   }
592 
593   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
594       canUseSExt(CI)) {
595     Preconditions.emplace_back(
596         CmpInst::ICMP_UGE, Op0,
597         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
598     return MergeResults(Op0, CI, true);
599   }
600 
601   // Decompose or as an add if there are no common bits between the operands.
602   if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI))))
603     return MergeResults(Op0, CI, IsSigned);
604 
605   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
606     if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
607       return {V, IsKnownNonNegative};
608     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
609     Result.mul(int64_t{1} << CI->getSExtValue());
610     return Result;
611   }
612 
613   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
614       (!CI->isNegative())) {
615     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
616     Result.mul(CI->getSExtValue());
617     return Result;
618   }
619 
620   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) {
621     auto ResA = decompose(Op0, Preconditions, IsSigned, DL);
622     auto ResB = decompose(Op1, Preconditions, IsSigned, DL);
623     ResA.sub(ResB);
624     return ResA;
625   }
626 
627   return {V, IsKnownNonNegative};
628 }
629 
630 ConstraintTy
631 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
632                               SmallVectorImpl<Value *> &NewVariables) const {
633   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
634   bool IsEq = false;
635   bool IsNe = false;
636 
637   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
638   switch (Pred) {
639   case CmpInst::ICMP_UGT:
640   case CmpInst::ICMP_UGE:
641   case CmpInst::ICMP_SGT:
642   case CmpInst::ICMP_SGE: {
643     Pred = CmpInst::getSwappedPredicate(Pred);
644     std::swap(Op0, Op1);
645     break;
646   }
647   case CmpInst::ICMP_EQ:
648     if (match(Op1, m_Zero())) {
649       Pred = CmpInst::ICMP_ULE;
650     } else {
651       IsEq = true;
652       Pred = CmpInst::ICMP_ULE;
653     }
654     break;
655   case CmpInst::ICMP_NE:
656     if (match(Op1, m_Zero())) {
657       Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
658       std::swap(Op0, Op1);
659     } else {
660       IsNe = true;
661       Pred = CmpInst::ICMP_ULE;
662     }
663     break;
664   default:
665     break;
666   }
667 
668   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
669       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
670     return {};
671 
672   SmallVector<ConditionTy, 4> Preconditions;
673   bool IsSigned = CmpInst::isSigned(Pred);
674   auto &Value2Index = getValue2Index(IsSigned);
675   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
676                         Preconditions, IsSigned, DL);
677   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
678                         Preconditions, IsSigned, DL);
679   int64_t Offset1 = ADec.Offset;
680   int64_t Offset2 = BDec.Offset;
681   Offset1 *= -1;
682 
683   auto &VariablesA = ADec.Vars;
684   auto &VariablesB = BDec.Vars;
685 
686   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
687   // new entry to NewVariables.
688   SmallDenseMap<Value *, unsigned> NewIndexMap;
689   auto GetOrAddIndex = [&Value2Index, &NewVariables,
690                         &NewIndexMap](Value *V) -> unsigned {
691     auto V2I = Value2Index.find(V);
692     if (V2I != Value2Index.end())
693       return V2I->second;
694     auto Insert =
695         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
696     if (Insert.second)
697       NewVariables.push_back(V);
698     return Insert.first->second;
699   };
700 
701   // Make sure all variables have entries in Value2Index or NewVariables.
702   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
703     GetOrAddIndex(KV.Variable);
704 
705   // Build result constraint, by first adding all coefficients from A and then
706   // subtracting all coefficients from B.
707   ConstraintTy Res(
708       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
709       IsSigned, IsEq, IsNe);
710   // Collect variables that are known to be positive in all uses in the
711   // constraint.
712   SmallDenseMap<Value *, bool> KnownNonNegativeVariables;
713   auto &R = Res.Coefficients;
714   for (const auto &KV : VariablesA) {
715     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
716     auto I =
717         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
718     I.first->second &= KV.IsKnownNonNegative;
719   }
720 
721   for (const auto &KV : VariablesB) {
722     if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient,
723                     R[GetOrAddIndex(KV.Variable)]))
724       return {};
725     auto I =
726         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
727     I.first->second &= KV.IsKnownNonNegative;
728   }
729 
730   int64_t OffsetSum;
731   if (AddOverflow(Offset1, Offset2, OffsetSum))
732     return {};
733   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
734     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
735       return {};
736   R[0] = OffsetSum;
737   Res.Preconditions = std::move(Preconditions);
738 
739   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
740   // variables.
741   while (!NewVariables.empty()) {
742     int64_t Last = R.back();
743     if (Last != 0)
744       break;
745     R.pop_back();
746     Value *RemovedV = NewVariables.pop_back_val();
747     NewIndexMap.erase(RemovedV);
748   }
749 
750   // Add extra constraints for variables that are known positive.
751   for (auto &KV : KnownNonNegativeVariables) {
752     if (!KV.second ||
753         (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
754       continue;
755     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
756     C[GetOrAddIndex(KV.first)] = -1;
757     Res.ExtraInfo.push_back(C);
758   }
759   return Res;
760 }
761 
762 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
763                                                      Value *Op0,
764                                                      Value *Op1) const {
765   Constant *NullC = Constant::getNullValue(Op0->getType());
766   // Handle trivially true compares directly to avoid adding V UGE 0 constraints
767   // for all variables in the unsigned system.
768   if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) ||
769       (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) {
770     auto &Value2Index = getValue2Index(false);
771     // Return constraint that's trivially true.
772     return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false,
773                         false, false);
774   }
775 
776   // If both operands are known to be non-negative, change signed predicates to
777   // unsigned ones. This increases the reasoning effectiveness in combination
778   // with the signed <-> unsigned transfer logic.
779   if (CmpInst::isSigned(Pred) &&
780       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
781       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
782     Pred = ICmpInst::getUnsignedPredicate(Pred);
783 
784   SmallVector<Value *> NewVariables;
785   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
786   if (!NewVariables.empty())
787     return {};
788   return R;
789 }
790 
791 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
792   return Coefficients.size() > 0 &&
793          all_of(Preconditions, [&Info](const ConditionTy &C) {
794            return Info.doesHold(C.Pred, C.Op0, C.Op1);
795          });
796 }
797 
798 std::optional<bool>
799 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
800   bool IsConditionImplied = CS.isConditionImplied(Coefficients);
801 
802   if (IsEq || IsNe) {
803     auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
804     bool IsNegatedOrEqualImplied =
805         !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
806 
807     // In order to check that `%a == %b` is true (equality), both conditions `%a
808     // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq`
809     // is true), we return true if they both hold, false in the other cases.
810     if (IsConditionImplied && IsNegatedOrEqualImplied)
811       return IsEq;
812 
813     auto Negated = ConstraintSystem::negate(Coefficients);
814     bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
815 
816     auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
817     bool IsStrictLessThanImplied =
818         !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
819 
820     // In order to check that `%a != %b` is true (non-equality), either
821     // condition `%a > %b` or `%a < %b` must hold true. When checking for
822     // non-equality (`IsNe` is true), we return true if one of the two holds,
823     // false in the other cases.
824     if (IsNegatedImplied || IsStrictLessThanImplied)
825       return IsNe;
826 
827     return std::nullopt;
828   }
829 
830   if (IsConditionImplied)
831     return true;
832 
833   auto Negated = ConstraintSystem::negate(Coefficients);
834   auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
835   if (IsNegatedImplied)
836     return false;
837 
838   // Neither the condition nor its negated holds, did not prove anything.
839   return std::nullopt;
840 }
841 
842 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
843                               Value *B) const {
844   auto R = getConstraintForSolving(Pred, A, B);
845   return R.isValid(*this) &&
846          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
847 }
848 
849 void ConstraintInfo::transferToOtherSystem(
850     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
851     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
852   auto IsKnownNonNegative = [this](Value *V) {
853     return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) ||
854            isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1);
855   };
856   // Check if we can combine facts from the signed and unsigned systems to
857   // derive additional facts.
858   if (!A->getType()->isIntegerTy())
859     return;
860   // FIXME: This currently depends on the order we add facts. Ideally we
861   // would first add all known facts and only then try to add additional
862   // facts.
863   switch (Pred) {
864   default:
865     break;
866   case CmpInst::ICMP_ULT:
867   case CmpInst::ICMP_ULE:
868     //  If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B.
869     if (IsKnownNonNegative(B)) {
870       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
871               NumOut, DFSInStack);
872       addFact(ICmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
873               DFSInStack);
874     }
875     break;
876   case CmpInst::ICMP_UGE:
877   case CmpInst::ICMP_UGT:
878     //  If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B.
879     if (IsKnownNonNegative(A)) {
880       addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn,
881               NumOut, DFSInStack);
882       addFact(ICmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
883               DFSInStack);
884     }
885     break;
886   case CmpInst::ICMP_SLT:
887     if (IsKnownNonNegative(A))
888       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
889     break;
890   case CmpInst::ICMP_SGT: {
891     if (doesHold(CmpInst::ICMP_SGE, B, Constant::getAllOnesValue(B->getType())))
892       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
893               NumOut, DFSInStack);
894     if (IsKnownNonNegative(B))
895       addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
896 
897     break;
898   }
899   case CmpInst::ICMP_SGE:
900     if (IsKnownNonNegative(B))
901       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
902     break;
903   }
904 }
905 
906 #ifndef NDEBUG
907 
908 static void dumpConstraint(ArrayRef<int64_t> C,
909                            const DenseMap<Value *, unsigned> &Value2Index) {
910   ConstraintSystem CS(Value2Index);
911   CS.addVariableRowFill(C);
912   CS.dump();
913 }
914 #endif
915 
916 void State::addInfoForInductions(BasicBlock &BB) {
917   auto *L = LI.getLoopFor(&BB);
918   if (!L || L->getHeader() != &BB)
919     return;
920 
921   Value *A;
922   Value *B;
923   CmpPredicate Pred;
924 
925   if (!match(BB.getTerminator(),
926              m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value())))
927     return;
928   PHINode *PN = dyn_cast<PHINode>(A);
929   if (!PN) {
930     Pred = CmpInst::getSwappedPredicate(Pred);
931     std::swap(A, B);
932     PN = dyn_cast<PHINode>(A);
933   }
934 
935   if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 ||
936       !SE.isSCEVable(PN->getType()))
937     return;
938 
939   BasicBlock *InLoopSucc = nullptr;
940   if (Pred == CmpInst::ICMP_NE)
941     InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0);
942   else if (Pred == CmpInst::ICMP_EQ)
943     InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1);
944   else
945     return;
946 
947   if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB)
948     return;
949 
950   auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN));
951   BasicBlock *LoopPred = L->getLoopPredecessor();
952   if (!AR || AR->getLoop() != L || !LoopPred)
953     return;
954 
955   const SCEV *StartSCEV = AR->getStart();
956   Value *StartValue = nullptr;
957   if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) {
958     StartValue = C->getValue();
959   } else {
960     StartValue = PN->getIncomingValueForBlock(LoopPred);
961     assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value");
962   }
963 
964   DomTreeNode *DTN = DT.getNode(InLoopSucc);
965   auto IncUnsigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT);
966   auto IncSigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_SGT);
967   bool MonotonicallyIncreasingUnsigned =
968       IncUnsigned && *IncUnsigned == ScalarEvolution::MonotonicallyIncreasing;
969   bool MonotonicallyIncreasingSigned =
970       IncSigned && *IncSigned == ScalarEvolution::MonotonicallyIncreasing;
971   // If SCEV guarantees that AR does not wrap, PN >= StartValue can be added
972   // unconditionally.
973   if (MonotonicallyIncreasingUnsigned)
974     WorkList.push_back(
975         FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue));
976   if (MonotonicallyIncreasingSigned)
977     WorkList.push_back(
978         FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_SGE, PN, StartValue));
979 
980   APInt StepOffset;
981   if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
982     StepOffset = C->getAPInt();
983   else
984     return;
985 
986   // Make sure the bound B is loop-invariant.
987   if (!L->isLoopInvariant(B))
988     return;
989 
990   // Handle negative steps.
991   if (StepOffset.isNegative()) {
992     // TODO: Extend to allow steps > -1.
993     if (!(-StepOffset).isOne())
994       return;
995 
996     // AR may wrap.
997     // Add StartValue >= PN conditional on B <= StartValue which guarantees that
998     // the loop exits before wrapping with a step of -1.
999     WorkList.push_back(FactOrCheck::getConditionFact(
1000         DTN, CmpInst::ICMP_UGE, StartValue, PN,
1001         ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
1002     WorkList.push_back(FactOrCheck::getConditionFact(
1003         DTN, CmpInst::ICMP_SGE, StartValue, PN,
1004         ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
1005     // Add PN > B conditional on B <= StartValue which guarantees that the loop
1006     // exits when reaching B with a step of -1.
1007     WorkList.push_back(FactOrCheck::getConditionFact(
1008         DTN, CmpInst::ICMP_UGT, PN, B,
1009         ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
1010     WorkList.push_back(FactOrCheck::getConditionFact(
1011         DTN, CmpInst::ICMP_SGT, PN, B,
1012         ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
1013     return;
1014   }
1015 
1016   // Make sure AR either steps by 1 or that the value we compare against is a
1017   // GEP based on the same start value and all offsets are a multiple of the
1018   // step size, to guarantee that the induction will reach the value.
1019   if (StepOffset.isZero() || StepOffset.isNegative())
1020     return;
1021 
1022   if (!StepOffset.isOne()) {
1023     // Check whether B-Start is known to be a multiple of StepOffset.
1024     const SCEV *BMinusStart = SE.getMinusSCEV(SE.getSCEV(B), StartSCEV);
1025     if (isa<SCEVCouldNotCompute>(BMinusStart) ||
1026         !SE.getConstantMultiple(BMinusStart).urem(StepOffset).isZero())
1027       return;
1028   }
1029 
1030   // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which
1031   // guarantees that the loop exits before wrapping in combination with the
1032   // restrictions on B and the step above.
1033   if (!MonotonicallyIncreasingUnsigned)
1034     WorkList.push_back(FactOrCheck::getConditionFact(
1035         DTN, CmpInst::ICMP_UGE, PN, StartValue,
1036         ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1037   if (!MonotonicallyIncreasingSigned)
1038     WorkList.push_back(FactOrCheck::getConditionFact(
1039         DTN, CmpInst::ICMP_SGE, PN, StartValue,
1040         ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1041 
1042   WorkList.push_back(FactOrCheck::getConditionFact(
1043       DTN, CmpInst::ICMP_ULT, PN, B,
1044       ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1045   WorkList.push_back(FactOrCheck::getConditionFact(
1046       DTN, CmpInst::ICMP_SLT, PN, B,
1047       ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1048 
1049   // Try to add condition from header to the dedicated exit blocks. When exiting
1050   // either with EQ or NE in the header, we know that the induction value must
1051   // be u<= B, as other exits may only exit earlier.
1052   assert(!StepOffset.isNegative() && "induction must be increasing");
1053   assert((Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) &&
1054          "unsupported predicate");
1055   ConditionTy Precond = {CmpInst::ICMP_ULE, StartValue, B};
1056   SmallVector<BasicBlock *> ExitBBs;
1057   L->getExitBlocks(ExitBBs);
1058   for (BasicBlock *EB : ExitBBs) {
1059     // Bail out on non-dedicated exits.
1060     if (DT.dominates(&BB, EB)) {
1061       WorkList.emplace_back(FactOrCheck::getConditionFact(
1062           DT.getNode(EB), CmpInst::ICMP_ULE, A, B, Precond));
1063     }
1064   }
1065 }
1066 
1067 void State::addInfoFor(BasicBlock &BB) {
1068   addInfoForInductions(BB);
1069 
1070   // True as long as long as the current instruction is guaranteed to execute.
1071   bool GuaranteedToExecute = true;
1072   // Queue conditions and assumes.
1073   for (Instruction &I : BB) {
1074     if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
1075       for (Use &U : Cmp->uses()) {
1076         auto *UserI = getContextInstForUse(U);
1077         auto *DTN = DT.getNode(UserI->getParent());
1078         if (!DTN)
1079           continue;
1080         WorkList.push_back(FactOrCheck::getCheck(DTN, &U));
1081       }
1082       continue;
1083     }
1084 
1085     auto *II = dyn_cast<IntrinsicInst>(&I);
1086     Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic;
1087     switch (ID) {
1088     case Intrinsic::assume: {
1089       Value *A, *B;
1090       CmpPredicate Pred;
1091       if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B))))
1092         break;
1093       if (GuaranteedToExecute) {
1094         // The assume is guaranteed to execute when BB is entered, hence Cond
1095         // holds on entry to BB.
1096         WorkList.emplace_back(FactOrCheck::getConditionFact(
1097             DT.getNode(I.getParent()), Pred, A, B));
1098       } else {
1099         WorkList.emplace_back(
1100             FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I));
1101       }
1102       break;
1103     }
1104     // Enqueue ssub_with_overflow for simplification.
1105     case Intrinsic::ssub_with_overflow:
1106     case Intrinsic::ucmp:
1107     case Intrinsic::scmp:
1108       WorkList.push_back(
1109           FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1110       break;
1111     // Enqueue the intrinsics to add extra info.
1112     case Intrinsic::umin:
1113     case Intrinsic::umax:
1114     case Intrinsic::smin:
1115     case Intrinsic::smax:
1116       // TODO: handle llvm.abs as well
1117       WorkList.push_back(
1118           FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1119       // TODO: Check if it is possible to instead only added the min/max facts
1120       // when simplifying uses of the min/max intrinsics.
1121       if (!isGuaranteedNotToBePoison(&I))
1122         break;
1123       [[fallthrough]];
1124     case Intrinsic::abs:
1125       WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I));
1126       break;
1127     }
1128 
1129     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
1130   }
1131 
1132   if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) {
1133     for (auto &Case : Switch->cases()) {
1134       BasicBlock *Succ = Case.getCaseSuccessor();
1135       Value *V = Case.getCaseValue();
1136       if (!canAddSuccessor(BB, Succ))
1137         continue;
1138       WorkList.emplace_back(FactOrCheck::getConditionFact(
1139           DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V));
1140     }
1141     return;
1142   }
1143 
1144   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
1145   if (!Br || !Br->isConditional())
1146     return;
1147 
1148   Value *Cond = Br->getCondition();
1149 
1150   // If the condition is a chain of ORs/AND and the successor only has the
1151   // current block as predecessor, queue conditions for the successor.
1152   Value *Op0, *Op1;
1153   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
1154       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1155     bool IsOr = match(Cond, m_LogicalOr());
1156     bool IsAnd = match(Cond, m_LogicalAnd());
1157     // If there's a select that matches both AND and OR, we need to commit to
1158     // one of the options. Arbitrarily pick OR.
1159     if (IsOr && IsAnd)
1160       IsAnd = false;
1161 
1162     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
1163     if (canAddSuccessor(BB, Successor)) {
1164       SmallVector<Value *> CondWorkList;
1165       SmallPtrSet<Value *, 8> SeenCond;
1166       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
1167         if (SeenCond.insert(V).second)
1168           CondWorkList.push_back(V);
1169       };
1170       QueueValue(Op1);
1171       QueueValue(Op0);
1172       while (!CondWorkList.empty()) {
1173         Value *Cur = CondWorkList.pop_back_val();
1174         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
1175           WorkList.emplace_back(FactOrCheck::getConditionFact(
1176               DT.getNode(Successor),
1177               IsOr ? Cmp->getInverseCmpPredicate() : Cmp->getCmpPredicate(),
1178               Cmp->getOperand(0), Cmp->getOperand(1)));
1179           continue;
1180         }
1181         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
1182           QueueValue(Op1);
1183           QueueValue(Op0);
1184           continue;
1185         }
1186         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1187           QueueValue(Op1);
1188           QueueValue(Op0);
1189           continue;
1190         }
1191       }
1192     }
1193     return;
1194   }
1195 
1196   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
1197   if (!CmpI)
1198     return;
1199   if (canAddSuccessor(BB, Br->getSuccessor(0)))
1200     WorkList.emplace_back(FactOrCheck::getConditionFact(
1201         DT.getNode(Br->getSuccessor(0)), CmpI->getCmpPredicate(),
1202         CmpI->getOperand(0), CmpI->getOperand(1)));
1203   if (canAddSuccessor(BB, Br->getSuccessor(1)))
1204     WorkList.emplace_back(FactOrCheck::getConditionFact(
1205         DT.getNode(Br->getSuccessor(1)), CmpI->getInverseCmpPredicate(),
1206         CmpI->getOperand(0), CmpI->getOperand(1)));
1207 }
1208 
1209 #ifndef NDEBUG
1210 static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred,
1211                              Value *LHS, Value *RHS) {
1212   OS << "icmp " << Pred << ' ';
1213   LHS->printAsOperand(OS, /*PrintType=*/true);
1214   OS << ", ";
1215   RHS->printAsOperand(OS, /*PrintType=*/false);
1216 }
1217 #endif
1218 
1219 namespace {
1220 /// Helper to keep track of a condition and if it should be treated as negated
1221 /// for reproducer construction.
1222 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a
1223 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack.
1224 struct ReproducerEntry {
1225   ICmpInst::Predicate Pred;
1226   Value *LHS;
1227   Value *RHS;
1228 
1229   ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS)
1230       : Pred(Pred), LHS(LHS), RHS(RHS) {}
1231 };
1232 } // namespace
1233 
1234 /// Helper function to generate a reproducer function for simplifying \p Cond.
1235 /// The reproducer function contains a series of @llvm.assume calls, one for
1236 /// each condition in \p Stack. For each condition, the operand instruction are
1237 /// cloned until we reach operands that have an entry in \p Value2Index. Those
1238 /// will then be added as function arguments. \p DT is used to order cloned
1239 /// instructions. The reproducer function will get added to \p M, if it is
1240 /// non-null. Otherwise no reproducer function is generated.
1241 static void generateReproducer(CmpInst *Cond, Module *M,
1242                                ArrayRef<ReproducerEntry> Stack,
1243                                ConstraintInfo &Info, DominatorTree &DT) {
1244   if (!M)
1245     return;
1246 
1247   LLVMContext &Ctx = Cond->getContext();
1248 
1249   LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
1250 
1251   ValueToValueMapTy Old2New;
1252   SmallVector<Value *> Args;
1253   SmallPtrSet<Value *, 8> Seen;
1254   // Traverse Cond and its operands recursively until we reach a value that's in
1255   // Value2Index or not an instruction, or not a operation that
1256   // ConstraintElimination can decompose. Such values will be considered as
1257   // external inputs to the reproducer, they are collected and added as function
1258   // arguments later.
1259   auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1260     auto &Value2Index = Info.getValue2Index(IsSigned);
1261     SmallVector<Value *, 4> WorkList(Ops);
1262     while (!WorkList.empty()) {
1263       Value *V = WorkList.pop_back_val();
1264       if (!Seen.insert(V).second)
1265         continue;
1266       if (Old2New.find(V) != Old2New.end())
1267         continue;
1268       if (isa<Constant>(V))
1269         continue;
1270 
1271       auto *I = dyn_cast<Instruction>(V);
1272       if (Value2Index.contains(V) || !I ||
1273           !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) {
1274         Old2New[V] = V;
1275         Args.push_back(V);
1276         LLVM_DEBUG(dbgs() << "  found external input " << *V << "\n");
1277       } else {
1278         append_range(WorkList, I->operands());
1279       }
1280     }
1281   };
1282 
1283   for (auto &Entry : Stack)
1284     if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE)
1285       CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred));
1286   CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate()));
1287 
1288   SmallVector<Type *> ParamTys;
1289   for (auto *P : Args)
1290     ParamTys.push_back(P->getType());
1291 
1292   FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
1293                                         /*isVarArg=*/false);
1294   Function *F = Function::Create(FTy, Function::ExternalLinkage,
1295                                  Cond->getModule()->getName() +
1296                                      Cond->getFunction()->getName() + "repro",
1297                                  M);
1298   // Add arguments to the reproducer function for each external value collected.
1299   for (unsigned I = 0; I < Args.size(); ++I) {
1300     F->getArg(I)->setName(Args[I]->getName());
1301     Old2New[Args[I]] = F->getArg(I);
1302   }
1303 
1304   BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
1305   IRBuilder<> Builder(Entry);
1306   Builder.CreateRet(Builder.getTrue());
1307   Builder.SetInsertPoint(Entry->getTerminator());
1308 
1309   // Clone instructions in \p Ops and their operands recursively until reaching
1310   // an value in Value2Index (external input to the reproducer). Update Old2New
1311   // mapping for the original and cloned instructions. Sort instructions to
1312   // clone by dominance, then insert the cloned instructions in the function.
1313   auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1314     SmallVector<Value *, 4> WorkList(Ops);
1315     SmallVector<Instruction *> ToClone;
1316     auto &Value2Index = Info.getValue2Index(IsSigned);
1317     while (!WorkList.empty()) {
1318       Value *V = WorkList.pop_back_val();
1319       if (Old2New.find(V) != Old2New.end())
1320         continue;
1321 
1322       auto *I = dyn_cast<Instruction>(V);
1323       if (!Value2Index.contains(V) && I) {
1324         Old2New[V] = nullptr;
1325         ToClone.push_back(I);
1326         append_range(WorkList, I->operands());
1327       }
1328     }
1329 
1330     sort(ToClone,
1331          [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
1332     for (Instruction *I : ToClone) {
1333       Instruction *Cloned = I->clone();
1334       Old2New[I] = Cloned;
1335       Old2New[I]->setName(I->getName());
1336       Cloned->insertBefore(&*Builder.GetInsertPoint());
1337       Cloned->dropUnknownNonDebugMetadata();
1338       Cloned->setDebugLoc({});
1339     }
1340   };
1341 
1342   // Materialize the assumptions for the reproducer using the entries in Stack.
1343   // That is, first clone the operands of the condition recursively until we
1344   // reach an external input to the reproducer and add them to the reproducer
1345   // function. Then add an ICmp for the condition (with the inverse predicate if
1346   // the entry is negated) and an assert using the ICmp.
1347   for (auto &Entry : Stack) {
1348     if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE)
1349       continue;
1350 
1351     LLVM_DEBUG(dbgs() << "  Materializing assumption ";
1352                dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS);
1353                dbgs() << "\n");
1354     CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred));
1355 
1356     auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS);
1357     Builder.CreateAssumption(Cmp);
1358   }
1359 
1360   // Finally, clone the condition to reproduce and remap instruction operands in
1361   // the reproducer using Old2New.
1362   CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
1363   Entry->getTerminator()->setOperand(0, Cond);
1364   remapInstructionsInBlocks({Entry}, Old2New);
1365 
1366   assert(!verifyFunction(*F, &dbgs()));
1367 }
1368 
1369 static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A,
1370                                           Value *B, Instruction *CheckInst,
1371                                           ConstraintInfo &Info) {
1372   LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n");
1373 
1374   auto R = Info.getConstraintForSolving(Pred, A, B);
1375   if (R.empty() || !R.isValid(Info)){
1376     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
1377     return std::nullopt;
1378   }
1379 
1380   auto &CSToUse = Info.getCS(R.IsSigned);
1381 
1382   // If there was extra information collected during decomposition, apply
1383   // it now and remove it immediately once we are done with reasoning
1384   // about the constraint.
1385   for (auto &Row : R.ExtraInfo)
1386     CSToUse.addVariableRow(Row);
1387   auto InfoRestorer = make_scope_exit([&]() {
1388     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
1389       CSToUse.popLastConstraint();
1390   });
1391 
1392   if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) {
1393     if (!DebugCounter::shouldExecute(EliminatedCounter))
1394       return std::nullopt;
1395 
1396     LLVM_DEBUG({
1397       dbgs() << "Condition ";
1398       dumpUnpackedICmp(
1399           dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred),
1400           A, B);
1401       dbgs() << " implied by dominating constraints\n";
1402       CSToUse.dump();
1403     });
1404     return ImpliedCondition;
1405   }
1406 
1407   return std::nullopt;
1408 }
1409 
1410 static bool checkAndReplaceCondition(
1411     CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut,
1412     Instruction *ContextInst, Module *ReproducerModule,
1413     ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT,
1414     SmallVectorImpl<Instruction *> &ToRemove) {
1415   auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
1416     generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
1417     Constant *ConstantC = ConstantInt::getBool(
1418         CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
1419     Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut,
1420                                        ContextInst](Use &U) {
1421       auto *UserI = getContextInstForUse(U);
1422       auto *DTN = DT.getNode(UserI->getParent());
1423       if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
1424         return false;
1425       if (UserI->getParent() == ContextInst->getParent() &&
1426           UserI->comesBefore(ContextInst))
1427         return false;
1428 
1429       // Conditions in an assume trivially simplify to true. Skip uses
1430       // in assume calls to not destroy the available information.
1431       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1432       return !II || II->getIntrinsicID() != Intrinsic::assume;
1433     });
1434     NumCondsRemoved++;
1435     if (Cmp->use_empty())
1436       ToRemove.push_back(Cmp);
1437     return true;
1438   };
1439 
1440   if (auto ImpliedCondition =
1441           checkCondition(Cmp->getPredicate(), Cmp->getOperand(0),
1442                          Cmp->getOperand(1), Cmp, Info))
1443     return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
1444   return false;
1445 }
1446 
1447 static bool checkAndReplaceMinMax(MinMaxIntrinsic *MinMax, ConstraintInfo &Info,
1448                                   SmallVectorImpl<Instruction *> &ToRemove) {
1449   auto ReplaceMinMaxWithOperand = [&](MinMaxIntrinsic *MinMax, bool UseLHS) {
1450     // TODO: generate reproducer for min/max.
1451     MinMax->replaceAllUsesWith(MinMax->getOperand(UseLHS ? 0 : 1));
1452     ToRemove.push_back(MinMax);
1453     return true;
1454   };
1455 
1456   ICmpInst::Predicate Pred =
1457       ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1458   if (auto ImpliedCondition = checkCondition(
1459           Pred, MinMax->getOperand(0), MinMax->getOperand(1), MinMax, Info))
1460     return ReplaceMinMaxWithOperand(MinMax, *ImpliedCondition);
1461   if (auto ImpliedCondition = checkCondition(
1462           Pred, MinMax->getOperand(1), MinMax->getOperand(0), MinMax, Info))
1463     return ReplaceMinMaxWithOperand(MinMax, !*ImpliedCondition);
1464   return false;
1465 }
1466 
1467 static bool checkAndReplaceCmp(CmpIntrinsic *I, ConstraintInfo &Info,
1468                                SmallVectorImpl<Instruction *> &ToRemove) {
1469   Value *LHS = I->getOperand(0);
1470   Value *RHS = I->getOperand(1);
1471   if (checkCondition(I->getGTPredicate(), LHS, RHS, I, Info).value_or(false)) {
1472     I->replaceAllUsesWith(ConstantInt::get(I->getType(), 1));
1473     ToRemove.push_back(I);
1474     return true;
1475   }
1476   if (checkCondition(I->getLTPredicate(), LHS, RHS, I, Info).value_or(false)) {
1477     I->replaceAllUsesWith(ConstantInt::getSigned(I->getType(), -1));
1478     ToRemove.push_back(I);
1479     return true;
1480   }
1481   if (checkCondition(ICmpInst::ICMP_EQ, LHS, RHS, I, Info).value_or(false)) {
1482     I->replaceAllUsesWith(ConstantInt::get(I->getType(), 0));
1483     ToRemove.push_back(I);
1484     return true;
1485   }
1486   return false;
1487 }
1488 
1489 static void
1490 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
1491                      Module *ReproducerModule,
1492                      SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1493                      SmallVectorImpl<StackEntry> &DFSInStack) {
1494   Info.popLastConstraint(E.IsSigned);
1495   // Remove variables in the system that went out of scope.
1496   auto &Mapping = Info.getValue2Index(E.IsSigned);
1497   for (Value *V : E.ValuesToRelease)
1498     Mapping.erase(V);
1499   Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1500   DFSInStack.pop_back();
1501   if (ReproducerModule)
1502     ReproducerCondStack.pop_back();
1503 }
1504 
1505 /// Check if either the first condition of an AND or OR is implied by the
1506 /// (negated in case of OR) second condition or vice versa.
1507 static bool checkOrAndOpImpliedByOther(
1508     FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule,
1509     SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1510     SmallVectorImpl<StackEntry> &DFSInStack) {
1511   Instruction *JoinOp = CB.getContextInst();
1512   CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify());
1513   unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0;
1514 
1515   // Don't try to simplify the first condition of a select by the second, as
1516   // this may make the select more poisonous than the original one.
1517   // TODO: check if the first operand may be poison.
1518   if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp))
1519     return false;
1520 
1521   unsigned OldSize = DFSInStack.size();
1522   auto InfoRestorer = make_scope_exit([&]() {
1523     // Remove entries again.
1524     while (OldSize < DFSInStack.size()) {
1525       StackEntry E = DFSInStack.back();
1526       removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack,
1527                            DFSInStack);
1528     }
1529   });
1530   bool IsOr = match(JoinOp, m_LogicalOr());
1531   SmallVector<Value *, 4> Worklist({JoinOp->getOperand(OtherOpIdx)});
1532   // Do a traversal of the AND/OR tree to add facts from leaf compares.
1533   while (!Worklist.empty()) {
1534     Value *Val = Worklist.pop_back_val();
1535     Value *LHS, *RHS;
1536     CmpPredicate Pred;
1537     if (match(Val, m_ICmp(Pred, m_Value(LHS), m_Value(RHS)))) {
1538       // For OR, check if the negated condition implies CmpToCheck.
1539       if (IsOr)
1540         Pred = CmpInst::getInversePredicate(Pred);
1541       // Optimistically add fact from the other compares in the AND/OR.
1542       Info.addFact(Pred, LHS, RHS, CB.NumIn, CB.NumOut, DFSInStack);
1543       continue;
1544     }
1545     if (IsOr ? match(Val, m_LogicalOr(m_Value(LHS), m_Value(RHS)))
1546              : match(Val, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) {
1547       Worklist.push_back(LHS);
1548       Worklist.push_back(RHS);
1549     }
1550   }
1551   if (OldSize == DFSInStack.size())
1552     return false;
1553 
1554   // Check if the second condition can be simplified now.
1555   if (auto ImpliedCondition =
1556           checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0),
1557                          CmpToCheck->getOperand(1), CmpToCheck, Info)) {
1558     if (IsOr && isa<SelectInst>(JoinOp)) {
1559       JoinOp->setOperand(
1560           OtherOpIdx == 0 ? 2 : 0,
1561           ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1562     } else
1563       JoinOp->setOperand(
1564           1 - OtherOpIdx,
1565           ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1566 
1567     return true;
1568   }
1569 
1570   return false;
1571 }
1572 
1573 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
1574                              unsigned NumIn, unsigned NumOut,
1575                              SmallVectorImpl<StackEntry> &DFSInStack) {
1576   // If the constraint has a pre-condition, skip the constraint if it does not
1577   // hold.
1578   SmallVector<Value *> NewVariables;
1579   auto R = getConstraint(Pred, A, B, NewVariables);
1580 
1581   // TODO: Support non-equality for facts as well.
1582   if (!R.isValid(*this) || R.isNe())
1583     return;
1584 
1585   LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B);
1586              dbgs() << "'\n");
1587   bool Added = false;
1588   auto &CSToUse = getCS(R.IsSigned);
1589   if (R.Coefficients.empty())
1590     return;
1591 
1592   Added |= CSToUse.addVariableRowFill(R.Coefficients);
1593 
1594   // If R has been added to the system, add the new variables and queue it for
1595   // removal once it goes out-of-scope.
1596   if (Added) {
1597     SmallVector<Value *, 2> ValuesToRelease;
1598     auto &Value2Index = getValue2Index(R.IsSigned);
1599     for (Value *V : NewVariables) {
1600       Value2Index.insert({V, Value2Index.size() + 1});
1601       ValuesToRelease.push_back(V);
1602     }
1603 
1604     LLVM_DEBUG({
1605       dbgs() << "  constraint: ";
1606       dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1607       dbgs() << "\n";
1608     });
1609 
1610     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1611                             std::move(ValuesToRelease));
1612 
1613     if (!R.IsSigned) {
1614       for (Value *V : NewVariables) {
1615         ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
1616                             false, false, false);
1617         VarPos.Coefficients[Value2Index[V]] = -1;
1618         CSToUse.addVariableRow(VarPos.Coefficients);
1619         DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1620                                 SmallVector<Value *, 2>());
1621       }
1622     }
1623 
1624     if (R.isEq()) {
1625       // Also add the inverted constraint for equality constraints.
1626       for (auto &Coeff : R.Coefficients)
1627         Coeff *= -1;
1628       CSToUse.addVariableRowFill(R.Coefficients);
1629 
1630       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1631                               SmallVector<Value *, 2>());
1632     }
1633   }
1634 }
1635 
1636 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
1637                                    SmallVectorImpl<Instruction *> &ToRemove) {
1638   bool Changed = false;
1639   IRBuilder<> Builder(II->getParent(), II->getIterator());
1640   Value *Sub = nullptr;
1641   for (User *U : make_early_inc_range(II->users())) {
1642     if (match(U, m_ExtractValue<0>(m_Value()))) {
1643       if (!Sub)
1644         Sub = Builder.CreateSub(A, B);
1645       U->replaceAllUsesWith(Sub);
1646       Changed = true;
1647     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
1648       U->replaceAllUsesWith(Builder.getFalse());
1649       Changed = true;
1650     } else
1651       continue;
1652 
1653     if (U->use_empty()) {
1654       auto *I = cast<Instruction>(U);
1655       ToRemove.push_back(I);
1656       I->setOperand(0, PoisonValue::get(II->getType()));
1657       Changed = true;
1658     }
1659   }
1660 
1661   if (II->use_empty()) {
1662     II->eraseFromParent();
1663     Changed = true;
1664   }
1665   return Changed;
1666 }
1667 
1668 static bool
1669 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
1670                           SmallVectorImpl<Instruction *> &ToRemove) {
1671   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1672                               ConstraintInfo &Info) {
1673     auto R = Info.getConstraintForSolving(Pred, A, B);
1674     if (R.size() < 2 || !R.isValid(Info))
1675       return false;
1676 
1677     auto &CSToUse = Info.getCS(R.IsSigned);
1678     return CSToUse.isConditionImplied(R.Coefficients);
1679   };
1680 
1681   bool Changed = false;
1682   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1683     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1684     // can be simplified to a regular sub.
1685     Value *A = II->getArgOperand(0);
1686     Value *B = II->getArgOperand(1);
1687     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1688         !DoesConditionHold(CmpInst::ICMP_SGE, B,
1689                            ConstantInt::get(A->getType(), 0), Info))
1690       return false;
1691     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
1692   }
1693   return Changed;
1694 }
1695 
1696 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI,
1697                                  ScalarEvolution &SE,
1698                                  OptimizationRemarkEmitter &ORE) {
1699   bool Changed = false;
1700   DT.updateDFSNumbers();
1701   SmallVector<Value *> FunctionArgs;
1702   for (Value &Arg : F.args())
1703     FunctionArgs.push_back(&Arg);
1704   ConstraintInfo Info(F.getDataLayout(), FunctionArgs);
1705   State S(DT, LI, SE);
1706   std::unique_ptr<Module> ReproducerModule(
1707       DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1708 
1709   // First, collect conditions implied by branches and blocks with their
1710   // Dominator DFS in and out numbers.
1711   for (BasicBlock &BB : F) {
1712     if (!DT.getNode(&BB))
1713       continue;
1714     S.addInfoFor(BB);
1715   }
1716 
1717   // Next, sort worklist by dominance, so that dominating conditions to check
1718   // and facts come before conditions and facts dominated by them. If a
1719   // condition to check and a fact have the same numbers, conditional facts come
1720   // first. Assume facts and checks are ordered according to their relative
1721   // order in the containing basic block. Also make sure conditions with
1722   // constant operands come before conditions without constant operands. This
1723   // increases the effectiveness of the current signed <-> unsigned fact
1724   // transfer logic.
1725   stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1726     auto HasNoConstOp = [](const FactOrCheck &B) {
1727       Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0);
1728       Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1);
1729       return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1);
1730     };
1731     // If both entries have the same In numbers, conditional facts come first.
1732     // Otherwise use the relative order in the basic block.
1733     if (A.NumIn == B.NumIn) {
1734       if (A.isConditionFact() && B.isConditionFact()) {
1735         bool NoConstOpA = HasNoConstOp(A);
1736         bool NoConstOpB = HasNoConstOp(B);
1737         return NoConstOpA < NoConstOpB;
1738       }
1739       if (A.isConditionFact())
1740         return true;
1741       if (B.isConditionFact())
1742         return false;
1743       auto *InstA = A.getContextInst();
1744       auto *InstB = B.getContextInst();
1745       return InstA->comesBefore(InstB);
1746     }
1747     return A.NumIn < B.NumIn;
1748   });
1749 
1750   SmallVector<Instruction *> ToRemove;
1751 
1752   // Finally, process ordered worklist and eliminate implied conditions.
1753   SmallVector<StackEntry, 16> DFSInStack;
1754   SmallVector<ReproducerEntry> ReproducerCondStack;
1755   for (FactOrCheck &CB : S.WorkList) {
1756     // First, pop entries from the stack that are out-of-scope for CB. Remove
1757     // the corresponding entry from the constraint system.
1758     while (!DFSInStack.empty()) {
1759       auto &E = DFSInStack.back();
1760       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1761                         << "\n");
1762       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1763       assert(E.NumIn <= CB.NumIn);
1764       if (CB.NumOut <= E.NumOut)
1765         break;
1766       LLVM_DEBUG({
1767         dbgs() << "Removing ";
1768         dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1769                        Info.getValue2Index(E.IsSigned));
1770         dbgs() << "\n";
1771       });
1772       removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
1773                            DFSInStack);
1774     }
1775 
1776     // For a block, check if any CmpInsts become known based on the current set
1777     // of constraints.
1778     if (CB.isCheck()) {
1779       Instruction *Inst = CB.getInstructionToSimplify();
1780       if (!Inst)
1781         continue;
1782       LLVM_DEBUG(dbgs() << "Processing condition to simplify: " << *Inst
1783                         << "\n");
1784       if (auto *II = dyn_cast<WithOverflowInst>(Inst)) {
1785         Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1786       } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) {
1787         bool Simplified = checkAndReplaceCondition(
1788             Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(),
1789             ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove);
1790         if (!Simplified &&
1791             match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) {
1792           Simplified =
1793               checkOrAndOpImpliedByOther(CB, Info, ReproducerModule.get(),
1794                                          ReproducerCondStack, DFSInStack);
1795         }
1796         Changed |= Simplified;
1797       } else if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Inst)) {
1798         Changed |= checkAndReplaceMinMax(MinMax, Info, ToRemove);
1799       } else if (auto *CmpIntr = dyn_cast<CmpIntrinsic>(Inst)) {
1800         Changed |= checkAndReplaceCmp(CmpIntr, Info, ToRemove);
1801       }
1802       continue;
1803     }
1804 
1805     auto AddFact = [&](CmpPredicate Pred, Value *A, Value *B) {
1806       LLVM_DEBUG(dbgs() << "Processing fact to add to the system: ";
1807                  dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n");
1808       if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1809         LLVM_DEBUG(
1810             dbgs()
1811             << "Skip adding constraint because system has too many rows.\n");
1812         return;
1813       }
1814 
1815       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1816       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1817         ReproducerCondStack.emplace_back(Pred, A, B);
1818 
1819       if (ICmpInst::isRelational(Pred)) {
1820         // If samesign is present on the ICmp, simply flip the sign of the
1821         // predicate, transferring the information from the signed system to the
1822         // unsigned system, and viceversa.
1823         if (Pred.hasSameSign())
1824           Info.addFact(ICmpInst::getFlippedSignednessPredicate(Pred), A, B,
1825                        CB.NumIn, CB.NumOut, DFSInStack);
1826         else
1827           Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut,
1828                                      DFSInStack);
1829       }
1830 
1831       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
1832         // Add dummy entries to ReproducerCondStack to keep it in sync with
1833         // DFSInStack.
1834         for (unsigned I = 0,
1835                       E = (DFSInStack.size() - ReproducerCondStack.size());
1836              I < E; ++I) {
1837           ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE,
1838                                            nullptr, nullptr);
1839         }
1840       }
1841     };
1842 
1843     CmpPredicate Pred;
1844     if (!CB.isConditionFact()) {
1845       Value *X;
1846       if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) {
1847         // If is_int_min_poison is true then we may assume llvm.abs >= 0.
1848         if (cast<ConstantInt>(CB.Inst->getOperand(1))->isOne())
1849           AddFact(CmpInst::ICMP_SGE, CB.Inst,
1850                   ConstantInt::get(CB.Inst->getType(), 0));
1851         AddFact(CmpInst::ICMP_SGE, CB.Inst, X);
1852         continue;
1853       }
1854 
1855       if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) {
1856         Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1857         AddFact(Pred, MinMax, MinMax->getLHS());
1858         AddFact(Pred, MinMax, MinMax->getRHS());
1859         continue;
1860       }
1861     }
1862 
1863     Value *A = nullptr, *B = nullptr;
1864     if (CB.isConditionFact()) {
1865       Pred = CB.Cond.Pred;
1866       A = CB.Cond.Op0;
1867       B = CB.Cond.Op1;
1868       if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE &&
1869           !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) {
1870         LLVM_DEBUG({
1871           dbgs() << "Not adding fact ";
1872           dumpUnpackedICmp(dbgs(), Pred, A, B);
1873           dbgs() << " because precondition ";
1874           dumpUnpackedICmp(dbgs(), CB.DoesHold.Pred, CB.DoesHold.Op0,
1875                            CB.DoesHold.Op1);
1876           dbgs() << " does not hold.\n";
1877         });
1878         continue;
1879       }
1880     } else {
1881       bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>(
1882                                         m_ICmp(Pred, m_Value(A), m_Value(B))));
1883       (void)Matched;
1884       assert(Matched && "Must have an assume intrinsic with a icmp operand");
1885     }
1886     AddFact(Pred, A, B);
1887   }
1888 
1889   if (ReproducerModule && !ReproducerModule->functions().empty()) {
1890     std::string S;
1891     raw_string_ostream StringS(S);
1892     ReproducerModule->print(StringS, nullptr);
1893     OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
1894     Rem << ore::NV("module") << S;
1895     ORE.emit(Rem);
1896   }
1897 
1898 #ifndef NDEBUG
1899   unsigned SignedEntries =
1900       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1901   assert(Info.getCS(false).size() - FunctionArgs.size() ==
1902              DFSInStack.size() - SignedEntries &&
1903          "updates to CS and DFSInStack are out of sync");
1904   assert(Info.getCS(true).size() == SignedEntries &&
1905          "updates to CS and DFSInStack are out of sync");
1906 #endif
1907 
1908   for (Instruction *I : ToRemove)
1909     I->eraseFromParent();
1910   return Changed;
1911 }
1912 
1913 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1914                                                  FunctionAnalysisManager &AM) {
1915   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1916   auto &LI = AM.getResult<LoopAnalysis>(F);
1917   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1918   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1919   if (!eliminateConstraints(F, DT, LI, SE, ORE))
1920     return PreservedAnalyses::all();
1921 
1922   PreservedAnalyses PA;
1923   PA.preserve<DominatorTreeAnalysis>();
1924   PA.preserve<LoopAnalysis>();
1925   PA.preserve<ScalarEvolutionAnalysis>();
1926   PA.preserveSet<CFGAnalyses>();
1927   return PA;
1928 }
1929