1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/DebugCounter.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Transforms/Scalar.h" 35 36 #include <cmath> 37 #include <string> 38 39 using namespace llvm; 40 using namespace PatternMatch; 41 42 #define DEBUG_TYPE "constraint-elimination" 43 44 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 45 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 46 "Controls which conditions are eliminated"); 47 48 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 49 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 50 51 // A helper to multiply 2 signed integers where overflowing is allowed. 52 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 53 int64_t Result; 54 MulOverflow(A, B, Result); 55 return Result; 56 } 57 58 // A helper to add 2 signed integers where overflowing is allowed. 59 static int64_t addWithOverflow(int64_t A, int64_t B) { 60 int64_t Result; 61 AddOverflow(A, B, Result); 62 return Result; 63 } 64 65 namespace { 66 67 class ConstraintInfo; 68 69 struct StackEntry { 70 unsigned NumIn; 71 unsigned NumOut; 72 bool IsSigned = false; 73 /// Variables that can be removed from the system once the stack entry gets 74 /// removed. 75 SmallVector<Value *, 2> ValuesToRelease; 76 77 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 78 SmallVector<Value *, 2> ValuesToRelease) 79 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 80 ValuesToRelease(ValuesToRelease) {} 81 }; 82 83 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 84 struct PreconditionTy { 85 CmpInst::Predicate Pred; 86 Value *Op0; 87 Value *Op1; 88 89 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 90 : Pred(Pred), Op0(Op0), Op1(Op1) {} 91 }; 92 93 struct ConstraintTy { 94 SmallVector<int64_t, 8> Coefficients; 95 SmallVector<PreconditionTy, 2> Preconditions; 96 97 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 98 99 bool IsSigned = false; 100 bool IsEq = false; 101 102 ConstraintTy() = default; 103 104 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 105 : Coefficients(Coefficients), IsSigned(IsSigned) {} 106 107 unsigned size() const { return Coefficients.size(); } 108 109 unsigned empty() const { return Coefficients.empty(); } 110 111 /// Returns true if all preconditions for this list of constraints are 112 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 113 bool isValid(const ConstraintInfo &Info) const; 114 }; 115 116 /// Wrapper encapsulating separate constraint systems and corresponding value 117 /// mappings for both unsigned and signed information. Facts are added to and 118 /// conditions are checked against the corresponding system depending on the 119 /// signed-ness of their predicates. While the information is kept separate 120 /// based on signed-ness, certain conditions can be transferred between the two 121 /// systems. 122 class ConstraintInfo { 123 DenseMap<Value *, unsigned> UnsignedValue2Index; 124 DenseMap<Value *, unsigned> SignedValue2Index; 125 126 ConstraintSystem UnsignedCS; 127 ConstraintSystem SignedCS; 128 129 const DataLayout &DL; 130 131 public: 132 ConstraintInfo(const DataLayout &DL) : DL(DL) {} 133 134 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 135 return Signed ? SignedValue2Index : UnsignedValue2Index; 136 } 137 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 138 return Signed ? SignedValue2Index : UnsignedValue2Index; 139 } 140 141 ConstraintSystem &getCS(bool Signed) { 142 return Signed ? SignedCS : UnsignedCS; 143 } 144 const ConstraintSystem &getCS(bool Signed) const { 145 return Signed ? SignedCS : UnsignedCS; 146 } 147 148 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 149 void popLastNVariables(bool Signed, unsigned N) { 150 getCS(Signed).popLastNVariables(N); 151 } 152 153 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 154 155 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 156 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 157 158 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 159 /// constraints, using indices from the corresponding constraint system. 160 /// New variables that need to be added to the system are collected in 161 /// \p NewVariables. 162 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 163 SmallVectorImpl<Value *> &NewVariables) const; 164 165 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 166 /// constraints using getConstraint. Returns an empty constraint if the result 167 /// cannot be used to query the existing constraint system, e.g. because it 168 /// would require adding new variables. Also tries to convert signed 169 /// predicates to unsigned ones if possible to allow using the unsigned system 170 /// which increases the effectiveness of the signed <-> unsigned transfer 171 /// logic. 172 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 173 Value *Op1) const; 174 175 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 176 /// system if \p Pred is signed/unsigned. 177 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 178 unsigned NumIn, unsigned NumOut, 179 SmallVectorImpl<StackEntry> &DFSInStack); 180 }; 181 182 /// Represents a (Coefficient * Variable) entry after IR decomposition. 183 struct DecompEntry { 184 int64_t Coefficient; 185 Value *Variable; 186 /// True if the variable is known positive in the current constraint. 187 bool IsKnownPositive; 188 189 DecompEntry(int64_t Coefficient, Value *Variable, 190 bool IsKnownPositive = false) 191 : Coefficient(Coefficient), Variable(Variable), 192 IsKnownPositive(IsKnownPositive) {} 193 }; 194 195 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 196 struct Decomposition { 197 int64_t Offset = 0; 198 SmallVector<DecompEntry, 3> Vars; 199 200 Decomposition(int64_t Offset) : Offset(Offset) {} 201 Decomposition(Value *V, bool IsKnownPositive = false) { 202 Vars.emplace_back(1, V, IsKnownPositive); 203 } 204 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 205 : Offset(Offset), Vars(Vars) {} 206 207 void add(int64_t OtherOffset) { 208 Offset = addWithOverflow(Offset, OtherOffset); 209 } 210 211 void add(const Decomposition &Other) { 212 add(Other.Offset); 213 append_range(Vars, Other.Vars); 214 } 215 216 void mul(int64_t Factor) { 217 Offset = multiplyWithOverflow(Offset, Factor); 218 for (auto &Var : Vars) 219 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 220 } 221 }; 222 223 } // namespace 224 225 static Decomposition decompose(Value *V, 226 SmallVectorImpl<PreconditionTy> &Preconditions, 227 bool IsSigned, const DataLayout &DL); 228 229 static bool canUseSExt(ConstantInt *CI) { 230 const APInt &Val = CI->getValue(); 231 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 232 } 233 234 static Decomposition 235 decomposeGEP(GetElementPtrInst &GEP, 236 SmallVectorImpl<PreconditionTy> &Preconditions, bool IsSigned, 237 const DataLayout &DL) { 238 // Do not reason about pointers where the index size is larger than 64 bits, 239 // as the coefficients used to encode constraints are 64 bit integers. 240 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 241 return &GEP; 242 243 if (!GEP.isInBounds()) 244 return &GEP; 245 246 Type *PtrTy = GEP.getType()->getScalarType(); 247 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 248 MapVector<Value *, APInt> VariableOffsets; 249 APInt ConstantOffset(BitWidth, 0); 250 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 251 return &GEP; 252 253 // Handle the (gep (gep ....), C) case by incrementing the constant 254 // coefficient of the inner GEP, if C is a constant. 255 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand()); 256 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 257 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 258 Result.add(ConstantOffset.getSExtValue()); 259 260 if (ConstantOffset.isNegative()) { 261 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 262 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 263 if (ConstantOffsetI % Scale != 0) 264 return &GEP; 265 // Add pre-condition ensuring the GEP is increasing monotonically and 266 // can be de-composed. 267 // Both sides are normalized by being divided by Scale. 268 Preconditions.emplace_back( 269 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 270 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 271 -1 * (ConstantOffsetI / Scale))); 272 } 273 return Result; 274 } 275 276 Decomposition Result(ConstantOffset.getSExtValue(), 277 DecompEntry(1, GEP.getPointerOperand())); 278 for (auto [Index, Scale] : VariableOffsets) { 279 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 280 IdxResult.mul(Scale.getSExtValue()); 281 Result.add(IdxResult); 282 283 // If Op0 is signed non-negative, the GEP is increasing monotonically and 284 // can be de-composed. 285 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 286 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 287 ConstantInt::get(Index->getType(), 0)); 288 } 289 return Result; 290 } 291 292 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 293 // Variable } where Coefficient * Variable. The sum of the constant offset and 294 // pairs equals \p V. 295 static Decomposition decompose(Value *V, 296 SmallVectorImpl<PreconditionTy> &Preconditions, 297 bool IsSigned, const DataLayout &DL) { 298 299 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 300 bool IsSignedB) { 301 auto ResA = decompose(A, Preconditions, IsSigned, DL); 302 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 303 ResA.add(ResB); 304 return ResA; 305 }; 306 307 // Decompose \p V used with a signed predicate. 308 if (IsSigned) { 309 if (auto *CI = dyn_cast<ConstantInt>(V)) { 310 if (canUseSExt(CI)) 311 return CI->getSExtValue(); 312 } 313 Value *Op0; 314 Value *Op1; 315 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 316 return MergeResults(Op0, Op1, IsSigned); 317 318 return V; 319 } 320 321 if (auto *CI = dyn_cast<ConstantInt>(V)) { 322 if (CI->uge(MaxConstraintValue)) 323 return V; 324 return int64_t(CI->getZExtValue()); 325 } 326 327 if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) 328 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 329 330 Value *Op0; 331 bool IsKnownPositive = false; 332 if (match(V, m_ZExt(m_Value(Op0)))) { 333 IsKnownPositive = true; 334 V = Op0; 335 } 336 337 Value *Op1; 338 ConstantInt *CI; 339 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 340 return MergeResults(Op0, Op1, IsSigned); 341 } 342 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 343 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 344 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 345 ConstantInt::get(Op0->getType(), 0)); 346 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 347 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 348 ConstantInt::get(Op1->getType(), 0)); 349 350 return MergeResults(Op0, Op1, IsSigned); 351 } 352 353 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 354 canUseSExt(CI)) { 355 Preconditions.emplace_back( 356 CmpInst::ICMP_UGE, Op0, 357 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 358 return MergeResults(Op0, CI, true); 359 } 360 361 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 362 int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue())); 363 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 364 Result.mul(Mult); 365 return Result; 366 } 367 368 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 369 (!CI->isNegative())) { 370 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 371 Result.mul(CI->getSExtValue()); 372 return Result; 373 } 374 375 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 376 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 377 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 378 return {0, {{1, Op0}, {-1, Op1}}}; 379 380 return {V, IsKnownPositive}; 381 } 382 383 ConstraintTy 384 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 385 SmallVectorImpl<Value *> &NewVariables) const { 386 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 387 bool IsEq = false; 388 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 389 switch (Pred) { 390 case CmpInst::ICMP_UGT: 391 case CmpInst::ICMP_UGE: 392 case CmpInst::ICMP_SGT: 393 case CmpInst::ICMP_SGE: { 394 Pred = CmpInst::getSwappedPredicate(Pred); 395 std::swap(Op0, Op1); 396 break; 397 } 398 case CmpInst::ICMP_EQ: 399 if (match(Op1, m_Zero())) { 400 Pred = CmpInst::ICMP_ULE; 401 } else { 402 IsEq = true; 403 Pred = CmpInst::ICMP_ULE; 404 } 405 break; 406 case CmpInst::ICMP_NE: 407 if (!match(Op1, m_Zero())) 408 return {}; 409 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 410 std::swap(Op0, Op1); 411 break; 412 default: 413 break; 414 } 415 416 // Only ULE and ULT predicates are supported at the moment. 417 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 418 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 419 return {}; 420 421 SmallVector<PreconditionTy, 4> Preconditions; 422 bool IsSigned = CmpInst::isSigned(Pred); 423 auto &Value2Index = getValue2Index(IsSigned); 424 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 425 Preconditions, IsSigned, DL); 426 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 427 Preconditions, IsSigned, DL); 428 int64_t Offset1 = ADec.Offset; 429 int64_t Offset2 = BDec.Offset; 430 Offset1 *= -1; 431 432 auto &VariablesA = ADec.Vars; 433 auto &VariablesB = BDec.Vars; 434 435 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 436 // new entry to NewVariables. 437 DenseMap<Value *, unsigned> NewIndexMap; 438 auto GetOrAddIndex = [&Value2Index, &NewVariables, 439 &NewIndexMap](Value *V) -> unsigned { 440 auto V2I = Value2Index.find(V); 441 if (V2I != Value2Index.end()) 442 return V2I->second; 443 auto Insert = 444 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 445 if (Insert.second) 446 NewVariables.push_back(V); 447 return Insert.first->second; 448 }; 449 450 // Make sure all variables have entries in Value2Index or NewVariables. 451 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 452 GetOrAddIndex(KV.Variable); 453 454 // Build result constraint, by first adding all coefficients from A and then 455 // subtracting all coefficients from B. 456 ConstraintTy Res( 457 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 458 IsSigned); 459 // Collect variables that are known to be positive in all uses in the 460 // constraint. 461 DenseMap<Value *, bool> KnownPositiveVariables; 462 Res.IsEq = IsEq; 463 auto &R = Res.Coefficients; 464 for (const auto &KV : VariablesA) { 465 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 466 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 467 I.first->second &= KV.IsKnownPositive; 468 } 469 470 for (const auto &KV : VariablesB) { 471 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 472 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 473 I.first->second &= KV.IsKnownPositive; 474 } 475 476 int64_t OffsetSum; 477 if (AddOverflow(Offset1, Offset2, OffsetSum)) 478 return {}; 479 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 480 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 481 return {}; 482 R[0] = OffsetSum; 483 Res.Preconditions = std::move(Preconditions); 484 485 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 486 // variables. 487 while (!NewVariables.empty()) { 488 int64_t Last = R.back(); 489 if (Last != 0) 490 break; 491 R.pop_back(); 492 Value *RemovedV = NewVariables.pop_back_val(); 493 NewIndexMap.erase(RemovedV); 494 } 495 496 // Add extra constraints for variables that are known positive. 497 for (auto &KV : KnownPositiveVariables) { 498 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 499 NewIndexMap.find(KV.first) == NewIndexMap.end())) 500 continue; 501 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 502 C[GetOrAddIndex(KV.first)] = -1; 503 Res.ExtraInfo.push_back(C); 504 } 505 return Res; 506 } 507 508 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 509 Value *Op0, 510 Value *Op1) const { 511 // If both operands are known to be non-negative, change signed predicates to 512 // unsigned ones. This increases the reasoning effectiveness in combination 513 // with the signed <-> unsigned transfer logic. 514 if (CmpInst::isSigned(Pred) && 515 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 516 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 517 Pred = CmpInst::getUnsignedPredicate(Pred); 518 519 SmallVector<Value *> NewVariables; 520 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 521 if (R.IsEq || !NewVariables.empty()) 522 return {}; 523 return R; 524 } 525 526 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 527 return Coefficients.size() > 0 && 528 all_of(Preconditions, [&Info](const PreconditionTy &C) { 529 return Info.doesHold(C.Pred, C.Op0, C.Op1); 530 }); 531 } 532 533 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 534 Value *B) const { 535 auto R = getConstraintForSolving(Pred, A, B); 536 return R.Preconditions.empty() && !R.empty() && 537 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 538 } 539 540 void ConstraintInfo::transferToOtherSystem( 541 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 542 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 543 // Check if we can combine facts from the signed and unsigned systems to 544 // derive additional facts. 545 if (!A->getType()->isIntegerTy()) 546 return; 547 // FIXME: This currently depends on the order we add facts. Ideally we 548 // would first add all known facts and only then try to add additional 549 // facts. 550 switch (Pred) { 551 default: 552 break; 553 case CmpInst::ICMP_ULT: 554 // If B is a signed positive constant, A >=s 0 and A <s B. 555 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 556 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 557 NumOut, DFSInStack); 558 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 559 } 560 break; 561 case CmpInst::ICMP_SLT: 562 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 563 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 564 break; 565 case CmpInst::ICMP_SGT: 566 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 567 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 568 NumOut, DFSInStack); 569 break; 570 case CmpInst::ICMP_SGE: 571 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 572 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 573 } 574 break; 575 } 576 } 577 578 namespace { 579 /// Represents either 580 /// * a condition that holds on entry to a block (=conditional fact) 581 /// * an assume (=assume fact) 582 /// * an instruction to simplify. 583 /// It also tracks the Dominator DFS in and out numbers for each entry. 584 struct FactOrCheck { 585 Instruction *Inst; 586 unsigned NumIn; 587 unsigned NumOut; 588 bool IsCheck; 589 bool Not; 590 591 FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool IsCheck, bool Not) 592 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 593 IsCheck(IsCheck), Not(Not) {} 594 595 static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst, 596 bool Not = false) { 597 return FactOrCheck(DTN, Inst, false, Not); 598 } 599 600 static FactOrCheck getCheck(DomTreeNode *DTN, Instruction *Inst) { 601 return FactOrCheck(DTN, Inst, true, false); 602 } 603 604 bool isAssumeFact() const { 605 if (!IsCheck && isa<IntrinsicInst>(Inst)) { 606 assert(match(Inst, m_Intrinsic<Intrinsic::assume>())); 607 return true; 608 } 609 return false; 610 } 611 612 bool isConditionFact() const { return !IsCheck && isa<CmpInst>(Inst); } 613 }; 614 615 /// Keep state required to build worklist. 616 struct State { 617 DominatorTree &DT; 618 SmallVector<FactOrCheck, 64> WorkList; 619 620 State(DominatorTree &DT) : DT(DT) {} 621 622 /// Process block \p BB and add known facts to work-list. 623 void addInfoFor(BasicBlock &BB); 624 625 /// Returns true if we can add a known condition from BB to its successor 626 /// block Succ. Each predecessor of Succ can either be BB or be dominated 627 /// by Succ (e.g. the case when adding a condition from a pre-header to a 628 /// loop header). 629 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 630 if (BB.getSingleSuccessor()) { 631 assert(BB.getSingleSuccessor() == Succ); 632 return DT.properlyDominates(&BB, Succ); 633 } 634 return any_of(successors(&BB), 635 [Succ](const BasicBlock *S) { return S != Succ; }) && 636 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 637 return Pred == &BB || DT.dominates(Succ, Pred); 638 }); 639 } 640 }; 641 642 } // namespace 643 644 #ifndef NDEBUG 645 static void dumpWithNames(const ConstraintSystem &CS, 646 DenseMap<Value *, unsigned> &Value2Index) { 647 SmallVector<std::string> Names(Value2Index.size(), ""); 648 for (auto &KV : Value2Index) { 649 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 650 } 651 CS.dump(Names); 652 } 653 654 static void dumpWithNames(ArrayRef<int64_t> C, 655 DenseMap<Value *, unsigned> &Value2Index) { 656 ConstraintSystem CS; 657 CS.addVariableRowFill(C); 658 dumpWithNames(CS, Value2Index); 659 } 660 #endif 661 662 void State::addInfoFor(BasicBlock &BB) { 663 // True as long as long as the current instruction is guaranteed to execute. 664 bool GuaranteedToExecute = true; 665 // Queue conditions and assumes. 666 for (Instruction &I : BB) { 667 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 668 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), Cmp)); 669 continue; 670 } 671 672 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 673 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), &I)); 674 continue; 675 } 676 677 Value *Cond; 678 // For now, just handle assumes with a single compare as condition. 679 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 680 isa<ICmpInst>(Cond)) { 681 if (GuaranteedToExecute) { 682 // The assume is guaranteed to execute when BB is entered, hence Cond 683 // holds on entry to BB. 684 WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()), 685 cast<Instruction>(Cond))); 686 } else { 687 WorkList.emplace_back( 688 FactOrCheck::getFact(DT.getNode(I.getParent()), &I)); 689 } 690 } 691 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 692 } 693 694 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 695 if (!Br || !Br->isConditional()) 696 return; 697 698 Value *Cond = Br->getCondition(); 699 700 // If the condition is a chain of ORs/AND and the successor only has the 701 // current block as predecessor, queue conditions for the successor. 702 Value *Op0, *Op1; 703 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 704 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 705 bool IsOr = match(Cond, m_LogicalOr()); 706 bool IsAnd = match(Cond, m_LogicalAnd()); 707 // If there's a select that matches both AND and OR, we need to commit to 708 // one of the options. Arbitrarily pick OR. 709 if (IsOr && IsAnd) 710 IsAnd = false; 711 712 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 713 if (canAddSuccessor(BB, Successor)) { 714 SmallVector<Value *> CondWorkList; 715 SmallPtrSet<Value *, 8> SeenCond; 716 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 717 if (SeenCond.insert(V).second) 718 CondWorkList.push_back(V); 719 }; 720 QueueValue(Op1); 721 QueueValue(Op0); 722 while (!CondWorkList.empty()) { 723 Value *Cur = CondWorkList.pop_back_val(); 724 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 725 WorkList.emplace_back( 726 FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr)); 727 continue; 728 } 729 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 730 QueueValue(Op1); 731 QueueValue(Op0); 732 continue; 733 } 734 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 735 QueueValue(Op1); 736 QueueValue(Op0); 737 continue; 738 } 739 } 740 } 741 return; 742 } 743 744 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 745 if (!CmpI) 746 return; 747 if (canAddSuccessor(BB, Br->getSuccessor(0))) 748 WorkList.emplace_back( 749 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI)); 750 if (canAddSuccessor(BB, Br->getSuccessor(1))) 751 WorkList.emplace_back( 752 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true)); 753 } 754 755 static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) { 756 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 757 758 CmpInst::Predicate Pred = Cmp->getPredicate(); 759 Value *A = Cmp->getOperand(0); 760 Value *B = Cmp->getOperand(1); 761 762 auto R = Info.getConstraintForSolving(Pred, A, B); 763 if (R.empty() || !R.isValid(Info)){ 764 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 765 return false; 766 } 767 768 auto &CSToUse = Info.getCS(R.IsSigned); 769 770 // If there was extra information collected during decomposition, apply 771 // it now and remove it immediately once we are done with reasoning 772 // about the constraint. 773 for (auto &Row : R.ExtraInfo) 774 CSToUse.addVariableRow(Row); 775 auto InfoRestorer = make_scope_exit([&]() { 776 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 777 CSToUse.popLastConstraint(); 778 }); 779 780 bool Changed = false; 781 if (CSToUse.isConditionImplied(R.Coefficients)) { 782 if (!DebugCounter::shouldExecute(EliminatedCounter)) 783 return false; 784 785 LLVM_DEBUG({ 786 dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n"; 787 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 788 }); 789 Constant *TrueC = 790 ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType())); 791 Cmp->replaceUsesWithIf(TrueC, [](Use &U) { 792 // Conditions in an assume trivially simplify to true. Skip uses 793 // in assume calls to not destroy the available information. 794 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 795 return !II || II->getIntrinsicID() != Intrinsic::assume; 796 }); 797 NumCondsRemoved++; 798 Changed = true; 799 } 800 if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) { 801 if (!DebugCounter::shouldExecute(EliminatedCounter)) 802 return false; 803 804 LLVM_DEBUG({ 805 dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n"; 806 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 807 }); 808 Constant *FalseC = 809 ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType())); 810 Cmp->replaceAllUsesWith(FalseC); 811 NumCondsRemoved++; 812 Changed = true; 813 } 814 return Changed; 815 } 816 817 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 818 unsigned NumIn, unsigned NumOut, 819 SmallVectorImpl<StackEntry> &DFSInStack) { 820 // If the constraint has a pre-condition, skip the constraint if it does not 821 // hold. 822 SmallVector<Value *> NewVariables; 823 auto R = getConstraint(Pred, A, B, NewVariables); 824 if (!R.isValid(*this)) 825 return; 826 827 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; 828 A->printAsOperand(dbgs(), false); dbgs() << ", "; 829 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 830 bool Added = false; 831 auto &CSToUse = getCS(R.IsSigned); 832 if (R.Coefficients.empty()) 833 return; 834 835 Added |= CSToUse.addVariableRowFill(R.Coefficients); 836 837 // If R has been added to the system, add the new variables and queue it for 838 // removal once it goes out-of-scope. 839 if (Added) { 840 SmallVector<Value *, 2> ValuesToRelease; 841 auto &Value2Index = getValue2Index(R.IsSigned); 842 for (Value *V : NewVariables) { 843 Value2Index.insert({V, Value2Index.size() + 1}); 844 ValuesToRelease.push_back(V); 845 } 846 847 LLVM_DEBUG({ 848 dbgs() << " constraint: "; 849 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 850 dbgs() << "\n"; 851 }); 852 853 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease); 854 855 if (R.IsEq) { 856 // Also add the inverted constraint for equality constraints. 857 for (auto &Coeff : R.Coefficients) 858 Coeff *= -1; 859 CSToUse.addVariableRowFill(R.Coefficients); 860 861 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 862 SmallVector<Value *, 2>()); 863 } 864 } 865 } 866 867 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 868 SmallVectorImpl<Instruction *> &ToRemove) { 869 bool Changed = false; 870 IRBuilder<> Builder(II->getParent(), II->getIterator()); 871 Value *Sub = nullptr; 872 for (User *U : make_early_inc_range(II->users())) { 873 if (match(U, m_ExtractValue<0>(m_Value()))) { 874 if (!Sub) 875 Sub = Builder.CreateSub(A, B); 876 U->replaceAllUsesWith(Sub); 877 Changed = true; 878 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 879 U->replaceAllUsesWith(Builder.getFalse()); 880 Changed = true; 881 } else 882 continue; 883 884 if (U->use_empty()) { 885 auto *I = cast<Instruction>(U); 886 ToRemove.push_back(I); 887 I->setOperand(0, PoisonValue::get(II->getType())); 888 Changed = true; 889 } 890 } 891 892 if (II->use_empty()) { 893 II->eraseFromParent(); 894 Changed = true; 895 } 896 return Changed; 897 } 898 899 static bool 900 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 901 SmallVectorImpl<Instruction *> &ToRemove) { 902 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 903 ConstraintInfo &Info) { 904 auto R = Info.getConstraintForSolving(Pred, A, B); 905 if (R.size() < 2 || !R.isValid(Info)) 906 return false; 907 908 auto &CSToUse = Info.getCS(R.IsSigned); 909 return CSToUse.isConditionImplied(R.Coefficients); 910 }; 911 912 bool Changed = false; 913 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 914 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 915 // can be simplified to a regular sub. 916 Value *A = II->getArgOperand(0); 917 Value *B = II->getArgOperand(1); 918 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 919 !DoesConditionHold(CmpInst::ICMP_SGE, B, 920 ConstantInt::get(A->getType(), 0), Info)) 921 return false; 922 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 923 } 924 return Changed; 925 } 926 927 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 928 bool Changed = false; 929 DT.updateDFSNumbers(); 930 931 ConstraintInfo Info(F.getParent()->getDataLayout()); 932 State S(DT); 933 934 // First, collect conditions implied by branches and blocks with their 935 // Dominator DFS in and out numbers. 936 for (BasicBlock &BB : F) { 937 if (!DT.getNode(&BB)) 938 continue; 939 S.addInfoFor(BB); 940 } 941 942 // Next, sort worklist by dominance, so that dominating conditions to check 943 // and facts come before conditions and facts dominated by them. If a 944 // condition to check and a fact have the same numbers, conditional facts come 945 // first. Assume facts and checks are ordered according to their relative 946 // order in the containing basic block. Also make sure conditions with 947 // constant operands come before conditions without constant operands. This 948 // increases the effectiveness of the current signed <-> unsigned fact 949 // transfer logic. 950 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 951 auto HasNoConstOp = [](const FactOrCheck &B) { 952 return !isa<ConstantInt>(B.Inst->getOperand(0)) && 953 !isa<ConstantInt>(B.Inst->getOperand(1)); 954 }; 955 // If both entries have the same In numbers, conditional facts come first. 956 // Otherwise use the relative order in the basic block. 957 if (A.NumIn == B.NumIn) { 958 if (A.isConditionFact() && B.isConditionFact()) { 959 bool NoConstOpA = HasNoConstOp(A); 960 bool NoConstOpB = HasNoConstOp(B); 961 return NoConstOpA < NoConstOpB; 962 } 963 if (A.isConditionFact()) 964 return true; 965 if (B.isConditionFact()) 966 return false; 967 return A.Inst->comesBefore(B.Inst); 968 } 969 return A.NumIn < B.NumIn; 970 }); 971 972 SmallVector<Instruction *> ToRemove; 973 974 // Finally, process ordered worklist and eliminate implied conditions. 975 SmallVector<StackEntry, 16> DFSInStack; 976 for (FactOrCheck &CB : S.WorkList) { 977 // First, pop entries from the stack that are out-of-scope for CB. Remove 978 // the corresponding entry from the constraint system. 979 while (!DFSInStack.empty()) { 980 auto &E = DFSInStack.back(); 981 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 982 << "\n"); 983 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 984 assert(E.NumIn <= CB.NumIn); 985 if (CB.NumOut <= E.NumOut) 986 break; 987 LLVM_DEBUG({ 988 dbgs() << "Removing "; 989 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 990 Info.getValue2Index(E.IsSigned)); 991 dbgs() << "\n"; 992 }); 993 994 Info.popLastConstraint(E.IsSigned); 995 // Remove variables in the system that went out of scope. 996 auto &Mapping = Info.getValue2Index(E.IsSigned); 997 for (Value *V : E.ValuesToRelease) 998 Mapping.erase(V); 999 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1000 DFSInStack.pop_back(); 1001 } 1002 1003 LLVM_DEBUG({ 1004 dbgs() << "Processing "; 1005 if (CB.IsCheck) 1006 dbgs() << "condition to simplify: " << *CB.Inst; 1007 else 1008 dbgs() << "fact to add to the system: " << *CB.Inst; 1009 dbgs() << "\n"; 1010 }); 1011 1012 // For a block, check if any CmpInsts become known based on the current set 1013 // of constraints. 1014 if (CB.IsCheck) { 1015 if (auto *II = dyn_cast<WithOverflowInst>(CB.Inst)) { 1016 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1017 } else if (auto *Cmp = dyn_cast<ICmpInst>(CB.Inst)) { 1018 Changed |= checkAndReplaceCondition(Cmp, Info); 1019 } 1020 continue; 1021 } 1022 1023 ICmpInst::Predicate Pred; 1024 Value *A, *B; 1025 Value *Cmp = CB.Inst; 1026 match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp))); 1027 if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 1028 // Use the inverse predicate if required. 1029 if (CB.Not) 1030 Pred = CmpInst::getInversePredicate(Pred); 1031 1032 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1033 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1034 } 1035 } 1036 1037 #ifndef NDEBUG 1038 unsigned SignedEntries = 1039 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1040 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1041 "updates to CS and DFSInStack are out of sync"); 1042 assert(Info.getCS(true).size() == SignedEntries && 1043 "updates to CS and DFSInStack are out of sync"); 1044 #endif 1045 1046 for (Instruction *I : ToRemove) 1047 I->eraseFromParent(); 1048 return Changed; 1049 } 1050 1051 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1052 FunctionAnalysisManager &AM) { 1053 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1054 if (!eliminateConstraints(F, DT)) 1055 return PreservedAnalyses::all(); 1056 1057 PreservedAnalyses PA; 1058 PA.preserve<DominatorTreeAnalysis>(); 1059 PA.preserveSet<CFGAnalyses>(); 1060 return PA; 1061 } 1062 1063 namespace { 1064 1065 class ConstraintElimination : public FunctionPass { 1066 public: 1067 static char ID; 1068 1069 ConstraintElimination() : FunctionPass(ID) { 1070 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 1071 } 1072 1073 bool runOnFunction(Function &F) override { 1074 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1075 return eliminateConstraints(F, DT); 1076 } 1077 1078 void getAnalysisUsage(AnalysisUsage &AU) const override { 1079 AU.setPreservesCFG(); 1080 AU.addRequired<DominatorTreeWrapperPass>(); 1081 AU.addPreserved<GlobalsAAWrapperPass>(); 1082 AU.addPreserved<DominatorTreeWrapperPass>(); 1083 } 1084 }; 1085 1086 } // end anonymous namespace 1087 1088 char ConstraintElimination::ID = 0; 1089 1090 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 1091 "Constraint Elimination", false, false) 1092 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1093 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 1094 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 1095 "Constraint Elimination", false, false) 1096 1097 FunctionPass *llvm::createConstraintEliminationPass() { 1098 return new ConstraintElimination(); 1099 } 1100