xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 9df71d7673b5c98e1032d01be83724a45b42fafc)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Verifier.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/DebugCounter.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/ValueMapper.h"
41 
42 #include <cmath>
43 #include <optional>
44 #include <string>
45 
46 using namespace llvm;
47 using namespace PatternMatch;
48 
49 #define DEBUG_TYPE "constraint-elimination"
50 
51 STATISTIC(NumCondsRemoved, "Number of instructions removed");
52 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
53               "Controls which conditions are eliminated");
54 
55 static cl::opt<unsigned>
56     MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
57             cl::desc("Maximum number of rows to keep in constraint system"));
58 
59 static cl::opt<bool> DumpReproducers(
60     "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
61     cl::desc("Dump IR to reproduce successful transformations."));
62 
63 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
64 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
65 
66 // A helper to multiply 2 signed integers where overflowing is allowed.
67 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
68   int64_t Result;
69   MulOverflow(A, B, Result);
70   return Result;
71 }
72 
73 // A helper to add 2 signed integers where overflowing is allowed.
74 static int64_t addWithOverflow(int64_t A, int64_t B) {
75   int64_t Result;
76   AddOverflow(A, B, Result);
77   return Result;
78 }
79 
80 static Instruction *getContextInstForUse(Use &U) {
81   Instruction *UserI = cast<Instruction>(U.getUser());
82   if (auto *Phi = dyn_cast<PHINode>(UserI))
83     UserI = Phi->getIncomingBlock(U)->getTerminator();
84   return UserI;
85 }
86 
87 namespace {
88 /// Struct to express a condition of the form %Op0 Pred %Op1.
89 struct ConditionTy {
90   CmpInst::Predicate Pred;
91   Value *Op0;
92   Value *Op1;
93 
94   ConditionTy()
95       : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {}
96   ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
97       : Pred(Pred), Op0(Op0), Op1(Op1) {}
98 };
99 
100 /// Represents either
101 ///  * a condition that holds on entry to a block (=condition fact)
102 ///  * an assume (=assume fact)
103 ///  * a use of a compare instruction to simplify.
104 /// It also tracks the Dominator DFS in and out numbers for each entry.
105 struct FactOrCheck {
106   enum class EntryTy {
107     ConditionFact, /// A condition that holds on entry to a block.
108     InstFact,      /// A fact that holds after Inst executed (e.g. an assume or
109                    /// min/mix intrinsic.
110     InstCheck,     /// An instruction to simplify (e.g. an overflow math
111                    /// intrinsics).
112     UseCheck       /// An use of a compare instruction to simplify.
113   };
114 
115   union {
116     Instruction *Inst;
117     Use *U;
118     ConditionTy Cond;
119   };
120 
121   /// A pre-condition that must hold for the current fact to be added to the
122   /// system.
123   ConditionTy DoesHold;
124 
125   unsigned NumIn;
126   unsigned NumOut;
127   EntryTy Ty;
128 
129   FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst)
130       : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
131         Ty(Ty) {}
132 
133   FactOrCheck(DomTreeNode *DTN, Use *U)
134       : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr),
135         NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
136         Ty(EntryTy::UseCheck) {}
137 
138   FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1,
139               ConditionTy Precond = ConditionTy())
140       : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()),
141         NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {}
142 
143   static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred,
144                                       Value *Op0, Value *Op1,
145                                       ConditionTy Precond = ConditionTy()) {
146     return FactOrCheck(DTN, Pred, Op0, Op1, Precond);
147   }
148 
149   static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) {
150     return FactOrCheck(EntryTy::InstFact, DTN, Inst);
151   }
152 
153   static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
154     return FactOrCheck(DTN, U);
155   }
156 
157   static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
158     return FactOrCheck(EntryTy::InstCheck, DTN, CI);
159   }
160 
161   bool isCheck() const {
162     return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck;
163   }
164 
165   Instruction *getContextInst() const {
166     if (Ty == EntryTy::UseCheck)
167       return getContextInstForUse(*U);
168     return Inst;
169   }
170 
171   Instruction *getInstructionToSimplify() const {
172     assert(isCheck());
173     if (Ty == EntryTy::InstCheck)
174       return Inst;
175     // The use may have been simplified to a constant already.
176     return dyn_cast<Instruction>(*U);
177   }
178 
179   bool isConditionFact() const { return Ty == EntryTy::ConditionFact; }
180 };
181 
182 /// Keep state required to build worklist.
183 struct State {
184   DominatorTree &DT;
185   LoopInfo &LI;
186   ScalarEvolution &SE;
187   SmallVector<FactOrCheck, 64> WorkList;
188 
189   State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE)
190       : DT(DT), LI(LI), SE(SE) {}
191 
192   /// Process block \p BB and add known facts to work-list.
193   void addInfoFor(BasicBlock &BB);
194 
195   /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares
196   /// controlling the loop header.
197   void addInfoForInductions(BasicBlock &BB);
198 
199   /// Returns true if we can add a known condition from BB to its successor
200   /// block Succ.
201   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
202     return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
203   }
204 };
205 
206 class ConstraintInfo;
207 
208 struct StackEntry {
209   unsigned NumIn;
210   unsigned NumOut;
211   bool IsSigned = false;
212   /// Variables that can be removed from the system once the stack entry gets
213   /// removed.
214   SmallVector<Value *, 2> ValuesToRelease;
215 
216   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
217              SmallVector<Value *, 2> ValuesToRelease)
218       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
219         ValuesToRelease(ValuesToRelease) {}
220 };
221 
222 struct ConstraintTy {
223   SmallVector<int64_t, 8> Coefficients;
224   SmallVector<ConditionTy, 2> Preconditions;
225 
226   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
227 
228   bool IsSigned = false;
229 
230   ConstraintTy() = default;
231 
232   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq,
233                bool IsNe)
234       : Coefficients(std::move(Coefficients)), IsSigned(IsSigned), IsEq(IsEq),
235         IsNe(IsNe) {}
236 
237   unsigned size() const { return Coefficients.size(); }
238 
239   unsigned empty() const { return Coefficients.empty(); }
240 
241   /// Returns true if all preconditions for this list of constraints are
242   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
243   bool isValid(const ConstraintInfo &Info) const;
244 
245   bool isEq() const { return IsEq; }
246 
247   bool isNe() const { return IsNe; }
248 
249   /// Check if the current constraint is implied by the given ConstraintSystem.
250   ///
251   /// \return true or false if the constraint is proven to be respectively true,
252   /// or false. When the constraint cannot be proven to be either true or false,
253   /// std::nullopt is returned.
254   std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
255 
256 private:
257   bool IsEq = false;
258   bool IsNe = false;
259 };
260 
261 /// Wrapper encapsulating separate constraint systems and corresponding value
262 /// mappings for both unsigned and signed information. Facts are added to and
263 /// conditions are checked against the corresponding system depending on the
264 /// signed-ness of their predicates. While the information is kept separate
265 /// based on signed-ness, certain conditions can be transferred between the two
266 /// systems.
267 class ConstraintInfo {
268 
269   ConstraintSystem UnsignedCS;
270   ConstraintSystem SignedCS;
271 
272   const DataLayout &DL;
273 
274 public:
275   ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
276       : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {
277     auto &Value2Index = getValue2Index(false);
278     // Add Arg > -1 constraints to unsigned system for all function arguments.
279     for (Value *Arg : FunctionArgs) {
280       ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
281                           false, false, false);
282       VarPos.Coefficients[Value2Index[Arg]] = -1;
283       UnsignedCS.addVariableRow(VarPos.Coefficients);
284     }
285   }
286 
287   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
288     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
289   }
290   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
291     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
292   }
293 
294   ConstraintSystem &getCS(bool Signed) {
295     return Signed ? SignedCS : UnsignedCS;
296   }
297   const ConstraintSystem &getCS(bool Signed) const {
298     return Signed ? SignedCS : UnsignedCS;
299   }
300 
301   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
302   void popLastNVariables(bool Signed, unsigned N) {
303     getCS(Signed).popLastNVariables(N);
304   }
305 
306   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
307 
308   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
309                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
310 
311   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
312   /// constraints, using indices from the corresponding constraint system.
313   /// New variables that need to be added to the system are collected in
314   /// \p NewVariables.
315   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
316                              SmallVectorImpl<Value *> &NewVariables) const;
317 
318   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
319   /// constraints using getConstraint. Returns an empty constraint if the result
320   /// cannot be used to query the existing constraint system, e.g. because it
321   /// would require adding new variables. Also tries to convert signed
322   /// predicates to unsigned ones if possible to allow using the unsigned system
323   /// which increases the effectiveness of the signed <-> unsigned transfer
324   /// logic.
325   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
326                                        Value *Op1) const;
327 
328   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
329   /// system if \p Pred is signed/unsigned.
330   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
331                              unsigned NumIn, unsigned NumOut,
332                              SmallVectorImpl<StackEntry> &DFSInStack);
333 };
334 
335 /// Represents a (Coefficient * Variable) entry after IR decomposition.
336 struct DecompEntry {
337   int64_t Coefficient;
338   Value *Variable;
339   /// True if the variable is known positive in the current constraint.
340   bool IsKnownNonNegative;
341 
342   DecompEntry(int64_t Coefficient, Value *Variable,
343               bool IsKnownNonNegative = false)
344       : Coefficient(Coefficient), Variable(Variable),
345         IsKnownNonNegative(IsKnownNonNegative) {}
346 };
347 
348 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
349 struct Decomposition {
350   int64_t Offset = 0;
351   SmallVector<DecompEntry, 3> Vars;
352 
353   Decomposition(int64_t Offset) : Offset(Offset) {}
354   Decomposition(Value *V, bool IsKnownNonNegative = false) {
355     Vars.emplace_back(1, V, IsKnownNonNegative);
356   }
357   Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
358       : Offset(Offset), Vars(Vars) {}
359 
360   void add(int64_t OtherOffset) {
361     Offset = addWithOverflow(Offset, OtherOffset);
362   }
363 
364   void add(const Decomposition &Other) {
365     add(Other.Offset);
366     append_range(Vars, Other.Vars);
367   }
368 
369   void sub(const Decomposition &Other) {
370     Decomposition Tmp = Other;
371     Tmp.mul(-1);
372     add(Tmp.Offset);
373     append_range(Vars, Tmp.Vars);
374   }
375 
376   void mul(int64_t Factor) {
377     Offset = multiplyWithOverflow(Offset, Factor);
378     for (auto &Var : Vars)
379       Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
380   }
381 };
382 
383 // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr.
384 struct OffsetResult {
385   Value *BasePtr;
386   APInt ConstantOffset;
387   MapVector<Value *, APInt> VariableOffsets;
388   bool AllInbounds;
389 
390   OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {}
391 
392   OffsetResult(GEPOperator &GEP, const DataLayout &DL)
393       : BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) {
394     ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0);
395   }
396 };
397 } // namespace
398 
399 // Try to collect variable and constant offsets for \p GEP, partly traversing
400 // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting
401 // the offset fails.
402 static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) {
403   OffsetResult Result(GEP, DL);
404   unsigned BitWidth = Result.ConstantOffset.getBitWidth();
405   if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets,
406                          Result.ConstantOffset))
407     return {};
408 
409   // If we have a nested GEP, check if we can combine the constant offset of the
410   // inner GEP with the outer GEP.
411   if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) {
412     MapVector<Value *, APInt> VariableOffsets2;
413     APInt ConstantOffset2(BitWidth, 0);
414     bool CanCollectInner = InnerGEP->collectOffset(
415         DL, BitWidth, VariableOffsets2, ConstantOffset2);
416     // TODO: Support cases with more than 1 variable offset.
417     if (!CanCollectInner || Result.VariableOffsets.size() > 1 ||
418         VariableOffsets2.size() > 1 ||
419         (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) {
420       // More than 1 variable index, use outer result.
421       return Result;
422     }
423     Result.BasePtr = InnerGEP->getPointerOperand();
424     Result.ConstantOffset += ConstantOffset2;
425     if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1)
426       Result.VariableOffsets = VariableOffsets2;
427     Result.AllInbounds &= InnerGEP->isInBounds();
428   }
429   return Result;
430 }
431 
432 static Decomposition decompose(Value *V,
433                                SmallVectorImpl<ConditionTy> &Preconditions,
434                                bool IsSigned, const DataLayout &DL);
435 
436 static bool canUseSExt(ConstantInt *CI) {
437   const APInt &Val = CI->getValue();
438   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
439 }
440 
441 static Decomposition decomposeGEP(GEPOperator &GEP,
442                                   SmallVectorImpl<ConditionTy> &Preconditions,
443                                   bool IsSigned, const DataLayout &DL) {
444   // Do not reason about pointers where the index size is larger than 64 bits,
445   // as the coefficients used to encode constraints are 64 bit integers.
446   if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
447     return &GEP;
448 
449   assert(!IsSigned && "The logic below only supports decomposition for "
450                       "unsigned predicates at the moment.");
451   const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] =
452       collectOffsets(GEP, DL);
453   if (!BasePtr || !AllInbounds)
454     return &GEP;
455 
456   Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr));
457   for (auto [Index, Scale] : VariableOffsets) {
458     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
459     IdxResult.mul(Scale.getSExtValue());
460     Result.add(IdxResult);
461 
462     // If Op0 is signed non-negative, the GEP is increasing monotonically and
463     // can be de-composed.
464     if (!isKnownNonNegative(Index, DL))
465       Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
466                                  ConstantInt::get(Index->getType(), 0));
467   }
468   return Result;
469 }
470 
471 // Decomposes \p V into a constant offset + list of pairs { Coefficient,
472 // Variable } where Coefficient * Variable. The sum of the constant offset and
473 // pairs equals \p V.
474 static Decomposition decompose(Value *V,
475                                SmallVectorImpl<ConditionTy> &Preconditions,
476                                bool IsSigned, const DataLayout &DL) {
477 
478   auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
479                                                       bool IsSignedB) {
480     auto ResA = decompose(A, Preconditions, IsSigned, DL);
481     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
482     ResA.add(ResB);
483     return ResA;
484   };
485 
486   Type *Ty = V->getType()->getScalarType();
487   if (Ty->isPointerTy() && !IsSigned) {
488     if (auto *GEP = dyn_cast<GEPOperator>(V))
489       return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
490     if (isa<ConstantPointerNull>(V))
491       return int64_t(0);
492 
493     return V;
494   }
495 
496   // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so
497   // coefficient add/mul may wrap, while the operation in the full bit width
498   // would not.
499   if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64)
500     return V;
501 
502   bool IsKnownNonNegative = false;
503 
504   // Decompose \p V used with a signed predicate.
505   if (IsSigned) {
506     if (auto *CI = dyn_cast<ConstantInt>(V)) {
507       if (canUseSExt(CI))
508         return CI->getSExtValue();
509     }
510     Value *Op0;
511     Value *Op1;
512 
513     if (match(V, m_SExt(m_Value(Op0))))
514       V = Op0;
515     else if (match(V, m_NNegZExt(m_Value(Op0)))) {
516       V = Op0;
517       IsKnownNonNegative = true;
518     }
519 
520     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
521       return MergeResults(Op0, Op1, IsSigned);
522 
523     ConstantInt *CI;
524     if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) {
525       auto Result = decompose(Op0, Preconditions, IsSigned, DL);
526       Result.mul(CI->getSExtValue());
527       return Result;
528     }
529 
530     // (shl nsw x, shift) is (mul nsw x, (1<<shift)), with the exception of
531     // shift == bw-1.
532     if (match(V, m_NSWShl(m_Value(Op0), m_ConstantInt(CI)))) {
533       uint64_t Shift = CI->getValue().getLimitedValue();
534       if (Shift < Ty->getIntegerBitWidth() - 1) {
535         assert(Shift < 64 && "Would overflow");
536         auto Result = decompose(Op0, Preconditions, IsSigned, DL);
537         Result.mul(int64_t(1) << Shift);
538         return Result;
539       }
540     }
541 
542     return {V, IsKnownNonNegative};
543   }
544 
545   if (auto *CI = dyn_cast<ConstantInt>(V)) {
546     if (CI->uge(MaxConstraintValue))
547       return V;
548     return int64_t(CI->getZExtValue());
549   }
550 
551   Value *Op0;
552   if (match(V, m_ZExt(m_Value(Op0)))) {
553     IsKnownNonNegative = true;
554     V = Op0;
555   }
556 
557   if (match(V, m_SExt(m_Value(Op0)))) {
558     V = Op0;
559     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
560                                ConstantInt::get(Op0->getType(), 0));
561   }
562 
563   Value *Op1;
564   ConstantInt *CI;
565   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
566     return MergeResults(Op0, Op1, IsSigned);
567   }
568   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
569     if (!isKnownNonNegative(Op0, DL))
570       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
571                                  ConstantInt::get(Op0->getType(), 0));
572     if (!isKnownNonNegative(Op1, DL))
573       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
574                                  ConstantInt::get(Op1->getType(), 0));
575 
576     return MergeResults(Op0, Op1, IsSigned);
577   }
578 
579   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
580       canUseSExt(CI)) {
581     Preconditions.emplace_back(
582         CmpInst::ICMP_UGE, Op0,
583         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
584     return MergeResults(Op0, CI, true);
585   }
586 
587   // Decompose or as an add if there are no common bits between the operands.
588   if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI))))
589     return MergeResults(Op0, CI, IsSigned);
590 
591   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
592     if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
593       return {V, IsKnownNonNegative};
594     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
595     Result.mul(int64_t{1} << CI->getSExtValue());
596     return Result;
597   }
598 
599   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
600       (!CI->isNegative())) {
601     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
602     Result.mul(CI->getSExtValue());
603     return Result;
604   }
605 
606   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) {
607     auto ResA = decompose(Op0, Preconditions, IsSigned, DL);
608     auto ResB = decompose(Op1, Preconditions, IsSigned, DL);
609     ResA.sub(ResB);
610     return ResA;
611   }
612 
613   return {V, IsKnownNonNegative};
614 }
615 
616 ConstraintTy
617 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
618                               SmallVectorImpl<Value *> &NewVariables) const {
619   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
620   bool IsEq = false;
621   bool IsNe = false;
622 
623   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
624   switch (Pred) {
625   case CmpInst::ICMP_UGT:
626   case CmpInst::ICMP_UGE:
627   case CmpInst::ICMP_SGT:
628   case CmpInst::ICMP_SGE: {
629     Pred = CmpInst::getSwappedPredicate(Pred);
630     std::swap(Op0, Op1);
631     break;
632   }
633   case CmpInst::ICMP_EQ:
634     if (match(Op1, m_Zero())) {
635       Pred = CmpInst::ICMP_ULE;
636     } else {
637       IsEq = true;
638       Pred = CmpInst::ICMP_ULE;
639     }
640     break;
641   case CmpInst::ICMP_NE:
642     if (match(Op1, m_Zero())) {
643       Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
644       std::swap(Op0, Op1);
645     } else {
646       IsNe = true;
647       Pred = CmpInst::ICMP_ULE;
648     }
649     break;
650   default:
651     break;
652   }
653 
654   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
655       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
656     return {};
657 
658   SmallVector<ConditionTy, 4> Preconditions;
659   bool IsSigned = CmpInst::isSigned(Pred);
660   auto &Value2Index = getValue2Index(IsSigned);
661   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
662                         Preconditions, IsSigned, DL);
663   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
664                         Preconditions, IsSigned, DL);
665   int64_t Offset1 = ADec.Offset;
666   int64_t Offset2 = BDec.Offset;
667   Offset1 *= -1;
668 
669   auto &VariablesA = ADec.Vars;
670   auto &VariablesB = BDec.Vars;
671 
672   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
673   // new entry to NewVariables.
674   SmallDenseMap<Value *, unsigned> NewIndexMap;
675   auto GetOrAddIndex = [&Value2Index, &NewVariables,
676                         &NewIndexMap](Value *V) -> unsigned {
677     auto V2I = Value2Index.find(V);
678     if (V2I != Value2Index.end())
679       return V2I->second;
680     auto Insert =
681         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
682     if (Insert.second)
683       NewVariables.push_back(V);
684     return Insert.first->second;
685   };
686 
687   // Make sure all variables have entries in Value2Index or NewVariables.
688   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
689     GetOrAddIndex(KV.Variable);
690 
691   // Build result constraint, by first adding all coefficients from A and then
692   // subtracting all coefficients from B.
693   ConstraintTy Res(
694       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
695       IsSigned, IsEq, IsNe);
696   // Collect variables that are known to be positive in all uses in the
697   // constraint.
698   SmallDenseMap<Value *, bool> KnownNonNegativeVariables;
699   auto &R = Res.Coefficients;
700   for (const auto &KV : VariablesA) {
701     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
702     auto I =
703         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
704     I.first->second &= KV.IsKnownNonNegative;
705   }
706 
707   for (const auto &KV : VariablesB) {
708     if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient,
709                     R[GetOrAddIndex(KV.Variable)]))
710       return {};
711     auto I =
712         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
713     I.first->second &= KV.IsKnownNonNegative;
714   }
715 
716   int64_t OffsetSum;
717   if (AddOverflow(Offset1, Offset2, OffsetSum))
718     return {};
719   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
720     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
721       return {};
722   R[0] = OffsetSum;
723   Res.Preconditions = std::move(Preconditions);
724 
725   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
726   // variables.
727   while (!NewVariables.empty()) {
728     int64_t Last = R.back();
729     if (Last != 0)
730       break;
731     R.pop_back();
732     Value *RemovedV = NewVariables.pop_back_val();
733     NewIndexMap.erase(RemovedV);
734   }
735 
736   // Add extra constraints for variables that are known positive.
737   for (auto &KV : KnownNonNegativeVariables) {
738     if (!KV.second ||
739         (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
740       continue;
741     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
742     C[GetOrAddIndex(KV.first)] = -1;
743     Res.ExtraInfo.push_back(C);
744   }
745   return Res;
746 }
747 
748 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
749                                                      Value *Op0,
750                                                      Value *Op1) const {
751   Constant *NullC = Constant::getNullValue(Op0->getType());
752   // Handle trivially true compares directly to avoid adding V UGE 0 constraints
753   // for all variables in the unsigned system.
754   if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) ||
755       (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) {
756     auto &Value2Index = getValue2Index(false);
757     // Return constraint that's trivially true.
758     return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false,
759                         false, false);
760   }
761 
762   // If both operands are known to be non-negative, change signed predicates to
763   // unsigned ones. This increases the reasoning effectiveness in combination
764   // with the signed <-> unsigned transfer logic.
765   if (CmpInst::isSigned(Pred) &&
766       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
767       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
768     Pred = CmpInst::getUnsignedPredicate(Pred);
769 
770   SmallVector<Value *> NewVariables;
771   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
772   if (!NewVariables.empty())
773     return {};
774   return R;
775 }
776 
777 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
778   return Coefficients.size() > 0 &&
779          all_of(Preconditions, [&Info](const ConditionTy &C) {
780            return Info.doesHold(C.Pred, C.Op0, C.Op1);
781          });
782 }
783 
784 std::optional<bool>
785 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
786   bool IsConditionImplied = CS.isConditionImplied(Coefficients);
787 
788   if (IsEq || IsNe) {
789     auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
790     bool IsNegatedOrEqualImplied =
791         !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
792 
793     // In order to check that `%a == %b` is true (equality), both conditions `%a
794     // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq`
795     // is true), we return true if they both hold, false in the other cases.
796     if (IsConditionImplied && IsNegatedOrEqualImplied)
797       return IsEq;
798 
799     auto Negated = ConstraintSystem::negate(Coefficients);
800     bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
801 
802     auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
803     bool IsStrictLessThanImplied =
804         !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
805 
806     // In order to check that `%a != %b` is true (non-equality), either
807     // condition `%a > %b` or `%a < %b` must hold true. When checking for
808     // non-equality (`IsNe` is true), we return true if one of the two holds,
809     // false in the other cases.
810     if (IsNegatedImplied || IsStrictLessThanImplied)
811       return IsNe;
812 
813     return std::nullopt;
814   }
815 
816   if (IsConditionImplied)
817     return true;
818 
819   auto Negated = ConstraintSystem::negate(Coefficients);
820   auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
821   if (IsNegatedImplied)
822     return false;
823 
824   // Neither the condition nor its negated holds, did not prove anything.
825   return std::nullopt;
826 }
827 
828 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
829                               Value *B) const {
830   auto R = getConstraintForSolving(Pred, A, B);
831   return R.isValid(*this) &&
832          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
833 }
834 
835 void ConstraintInfo::transferToOtherSystem(
836     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
837     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
838   auto IsKnownNonNegative = [this](Value *V) {
839     return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) ||
840            isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1);
841   };
842   // Check if we can combine facts from the signed and unsigned systems to
843   // derive additional facts.
844   if (!A->getType()->isIntegerTy())
845     return;
846   // FIXME: This currently depends on the order we add facts. Ideally we
847   // would first add all known facts and only then try to add additional
848   // facts.
849   switch (Pred) {
850   default:
851     break;
852   case CmpInst::ICMP_ULT:
853   case CmpInst::ICMP_ULE:
854     //  If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B.
855     if (IsKnownNonNegative(B)) {
856       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
857               NumOut, DFSInStack);
858       addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
859               DFSInStack);
860     }
861     break;
862   case CmpInst::ICMP_UGE:
863   case CmpInst::ICMP_UGT:
864     //  If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B.
865     if (IsKnownNonNegative(A)) {
866       addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn,
867               NumOut, DFSInStack);
868       addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
869               DFSInStack);
870     }
871     break;
872   case CmpInst::ICMP_SLT:
873     if (IsKnownNonNegative(A))
874       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
875     break;
876   case CmpInst::ICMP_SGT: {
877     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
878       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
879               NumOut, DFSInStack);
880     if (IsKnownNonNegative(B))
881       addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
882 
883     break;
884   }
885   case CmpInst::ICMP_SGE:
886     if (IsKnownNonNegative(B))
887       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
888     break;
889   }
890 }
891 
892 #ifndef NDEBUG
893 
894 static void dumpConstraint(ArrayRef<int64_t> C,
895                            const DenseMap<Value *, unsigned> &Value2Index) {
896   ConstraintSystem CS(Value2Index);
897   CS.addVariableRowFill(C);
898   CS.dump();
899 }
900 #endif
901 
902 void State::addInfoForInductions(BasicBlock &BB) {
903   auto *L = LI.getLoopFor(&BB);
904   if (!L || L->getHeader() != &BB)
905     return;
906 
907   Value *A;
908   Value *B;
909   CmpInst::Predicate Pred;
910 
911   if (!match(BB.getTerminator(),
912              m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value())))
913     return;
914   PHINode *PN = dyn_cast<PHINode>(A);
915   if (!PN) {
916     Pred = CmpInst::getSwappedPredicate(Pred);
917     std::swap(A, B);
918     PN = dyn_cast<PHINode>(A);
919   }
920 
921   if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 ||
922       !SE.isSCEVable(PN->getType()))
923     return;
924 
925   BasicBlock *InLoopSucc = nullptr;
926   if (Pred == CmpInst::ICMP_NE)
927     InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0);
928   else if (Pred == CmpInst::ICMP_EQ)
929     InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1);
930   else
931     return;
932 
933   if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB)
934     return;
935 
936   auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN));
937   BasicBlock *LoopPred = L->getLoopPredecessor();
938   if (!AR || AR->getLoop() != L || !LoopPred)
939     return;
940 
941   const SCEV *StartSCEV = AR->getStart();
942   Value *StartValue = nullptr;
943   if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) {
944     StartValue = C->getValue();
945   } else {
946     StartValue = PN->getIncomingValueForBlock(LoopPred);
947     assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value");
948   }
949 
950   DomTreeNode *DTN = DT.getNode(InLoopSucc);
951   auto IncUnsigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT);
952   auto IncSigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_SGT);
953   bool MonotonicallyIncreasingUnsigned =
954       IncUnsigned && *IncUnsigned == ScalarEvolution::MonotonicallyIncreasing;
955   bool MonotonicallyIncreasingSigned =
956       IncSigned && *IncSigned == ScalarEvolution::MonotonicallyIncreasing;
957   // If SCEV guarantees that AR does not wrap, PN >= StartValue can be added
958   // unconditionally.
959   if (MonotonicallyIncreasingUnsigned)
960     WorkList.push_back(
961         FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue));
962   if (MonotonicallyIncreasingSigned)
963     WorkList.push_back(
964         FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_SGE, PN, StartValue));
965 
966   APInt StepOffset;
967   if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
968     StepOffset = C->getAPInt();
969   else
970     return;
971 
972   // Make sure the bound B is loop-invariant.
973   if (!L->isLoopInvariant(B))
974     return;
975 
976   // Handle negative steps.
977   if (StepOffset.isNegative()) {
978     // TODO: Extend to allow steps > -1.
979     if (!(-StepOffset).isOne())
980       return;
981 
982     // AR may wrap.
983     // Add StartValue >= PN conditional on B <= StartValue which guarantees that
984     // the loop exits before wrapping with a step of -1.
985     WorkList.push_back(FactOrCheck::getConditionFact(
986         DTN, CmpInst::ICMP_UGE, StartValue, PN,
987         ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
988     WorkList.push_back(FactOrCheck::getConditionFact(
989         DTN, CmpInst::ICMP_SGE, StartValue, PN,
990         ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
991     // Add PN > B conditional on B <= StartValue which guarantees that the loop
992     // exits when reaching B with a step of -1.
993     WorkList.push_back(FactOrCheck::getConditionFact(
994         DTN, CmpInst::ICMP_UGT, PN, B,
995         ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
996     WorkList.push_back(FactOrCheck::getConditionFact(
997         DTN, CmpInst::ICMP_SGT, PN, B,
998         ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
999     return;
1000   }
1001 
1002   // Make sure AR either steps by 1 or that the value we compare against is a
1003   // GEP based on the same start value and all offsets are a multiple of the
1004   // step size, to guarantee that the induction will reach the value.
1005   if (StepOffset.isZero() || StepOffset.isNegative())
1006     return;
1007 
1008   if (!StepOffset.isOne()) {
1009     // Check whether B-Start is known to be a multiple of StepOffset.
1010     const SCEV *BMinusStart = SE.getMinusSCEV(SE.getSCEV(B), StartSCEV);
1011     if (isa<SCEVCouldNotCompute>(BMinusStart) ||
1012         !SE.getConstantMultiple(BMinusStart).urem(StepOffset).isZero())
1013       return;
1014   }
1015 
1016   // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which
1017   // guarantees that the loop exits before wrapping in combination with the
1018   // restrictions on B and the step above.
1019   if (!MonotonicallyIncreasingUnsigned)
1020     WorkList.push_back(FactOrCheck::getConditionFact(
1021         DTN, CmpInst::ICMP_UGE, PN, StartValue,
1022         ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1023   if (!MonotonicallyIncreasingSigned)
1024     WorkList.push_back(FactOrCheck::getConditionFact(
1025         DTN, CmpInst::ICMP_SGE, PN, StartValue,
1026         ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1027 
1028   WorkList.push_back(FactOrCheck::getConditionFact(
1029       DTN, CmpInst::ICMP_ULT, PN, B,
1030       ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1031   WorkList.push_back(FactOrCheck::getConditionFact(
1032       DTN, CmpInst::ICMP_SLT, PN, B,
1033       ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1034 }
1035 
1036 void State::addInfoFor(BasicBlock &BB) {
1037   addInfoForInductions(BB);
1038 
1039   // True as long as long as the current instruction is guaranteed to execute.
1040   bool GuaranteedToExecute = true;
1041   // Queue conditions and assumes.
1042   for (Instruction &I : BB) {
1043     if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
1044       for (Use &U : Cmp->uses()) {
1045         auto *UserI = getContextInstForUse(U);
1046         auto *DTN = DT.getNode(UserI->getParent());
1047         if (!DTN)
1048           continue;
1049         WorkList.push_back(FactOrCheck::getCheck(DTN, &U));
1050       }
1051       continue;
1052     }
1053 
1054     auto *II = dyn_cast<IntrinsicInst>(&I);
1055     Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic;
1056     switch (ID) {
1057     case Intrinsic::assume: {
1058       Value *A, *B;
1059       CmpInst::Predicate Pred;
1060       if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B))))
1061         break;
1062       if (GuaranteedToExecute) {
1063         // The assume is guaranteed to execute when BB is entered, hence Cond
1064         // holds on entry to BB.
1065         WorkList.emplace_back(FactOrCheck::getConditionFact(
1066             DT.getNode(I.getParent()), Pred, A, B));
1067       } else {
1068         WorkList.emplace_back(
1069             FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I));
1070       }
1071       break;
1072     }
1073     // Enqueue ssub_with_overflow for simplification.
1074     case Intrinsic::ssub_with_overflow:
1075       WorkList.push_back(
1076           FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1077       break;
1078     // Enqueue the intrinsics to add extra info.
1079     case Intrinsic::umin:
1080     case Intrinsic::umax:
1081     case Intrinsic::smin:
1082     case Intrinsic::smax:
1083       // TODO: handle llvm.abs as well
1084       WorkList.push_back(
1085           FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1086       // TODO: Check if it is possible to instead only added the min/max facts
1087       // when simplifying uses of the min/max intrinsics.
1088       if (!isGuaranteedNotToBePoison(&I))
1089         break;
1090       [[fallthrough]];
1091     case Intrinsic::abs:
1092       WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I));
1093       break;
1094     }
1095 
1096     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
1097   }
1098 
1099   if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) {
1100     for (auto &Case : Switch->cases()) {
1101       BasicBlock *Succ = Case.getCaseSuccessor();
1102       Value *V = Case.getCaseValue();
1103       if (!canAddSuccessor(BB, Succ))
1104         continue;
1105       WorkList.emplace_back(FactOrCheck::getConditionFact(
1106           DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V));
1107     }
1108     return;
1109   }
1110 
1111   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
1112   if (!Br || !Br->isConditional())
1113     return;
1114 
1115   Value *Cond = Br->getCondition();
1116 
1117   // If the condition is a chain of ORs/AND and the successor only has the
1118   // current block as predecessor, queue conditions for the successor.
1119   Value *Op0, *Op1;
1120   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
1121       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1122     bool IsOr = match(Cond, m_LogicalOr());
1123     bool IsAnd = match(Cond, m_LogicalAnd());
1124     // If there's a select that matches both AND and OR, we need to commit to
1125     // one of the options. Arbitrarily pick OR.
1126     if (IsOr && IsAnd)
1127       IsAnd = false;
1128 
1129     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
1130     if (canAddSuccessor(BB, Successor)) {
1131       SmallVector<Value *> CondWorkList;
1132       SmallPtrSet<Value *, 8> SeenCond;
1133       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
1134         if (SeenCond.insert(V).second)
1135           CondWorkList.push_back(V);
1136       };
1137       QueueValue(Op1);
1138       QueueValue(Op0);
1139       while (!CondWorkList.empty()) {
1140         Value *Cur = CondWorkList.pop_back_val();
1141         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
1142           WorkList.emplace_back(FactOrCheck::getConditionFact(
1143               DT.getNode(Successor),
1144               IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate())
1145                    : Cmp->getPredicate(),
1146               Cmp->getOperand(0), Cmp->getOperand(1)));
1147           continue;
1148         }
1149         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
1150           QueueValue(Op1);
1151           QueueValue(Op0);
1152           continue;
1153         }
1154         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1155           QueueValue(Op1);
1156           QueueValue(Op0);
1157           continue;
1158         }
1159       }
1160     }
1161     return;
1162   }
1163 
1164   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
1165   if (!CmpI)
1166     return;
1167   if (canAddSuccessor(BB, Br->getSuccessor(0)))
1168     WorkList.emplace_back(FactOrCheck::getConditionFact(
1169         DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(),
1170         CmpI->getOperand(0), CmpI->getOperand(1)));
1171   if (canAddSuccessor(BB, Br->getSuccessor(1)))
1172     WorkList.emplace_back(FactOrCheck::getConditionFact(
1173         DT.getNode(Br->getSuccessor(1)),
1174         CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0),
1175         CmpI->getOperand(1)));
1176 }
1177 
1178 #ifndef NDEBUG
1179 static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred,
1180                              Value *LHS, Value *RHS) {
1181   OS << "icmp " << Pred << ' ';
1182   LHS->printAsOperand(OS, /*PrintType=*/true);
1183   OS << ", ";
1184   RHS->printAsOperand(OS, /*PrintType=*/false);
1185 }
1186 #endif
1187 
1188 namespace {
1189 /// Helper to keep track of a condition and if it should be treated as negated
1190 /// for reproducer construction.
1191 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a
1192 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack.
1193 struct ReproducerEntry {
1194   ICmpInst::Predicate Pred;
1195   Value *LHS;
1196   Value *RHS;
1197 
1198   ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS)
1199       : Pred(Pred), LHS(LHS), RHS(RHS) {}
1200 };
1201 } // namespace
1202 
1203 /// Helper function to generate a reproducer function for simplifying \p Cond.
1204 /// The reproducer function contains a series of @llvm.assume calls, one for
1205 /// each condition in \p Stack. For each condition, the operand instruction are
1206 /// cloned until we reach operands that have an entry in \p Value2Index. Those
1207 /// will then be added as function arguments. \p DT is used to order cloned
1208 /// instructions. The reproducer function will get added to \p M, if it is
1209 /// non-null. Otherwise no reproducer function is generated.
1210 static void generateReproducer(CmpInst *Cond, Module *M,
1211                                ArrayRef<ReproducerEntry> Stack,
1212                                ConstraintInfo &Info, DominatorTree &DT) {
1213   if (!M)
1214     return;
1215 
1216   LLVMContext &Ctx = Cond->getContext();
1217 
1218   LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
1219 
1220   ValueToValueMapTy Old2New;
1221   SmallVector<Value *> Args;
1222   SmallPtrSet<Value *, 8> Seen;
1223   // Traverse Cond and its operands recursively until we reach a value that's in
1224   // Value2Index or not an instruction, or not a operation that
1225   // ConstraintElimination can decompose. Such values will be considered as
1226   // external inputs to the reproducer, they are collected and added as function
1227   // arguments later.
1228   auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1229     auto &Value2Index = Info.getValue2Index(IsSigned);
1230     SmallVector<Value *, 4> WorkList(Ops);
1231     while (!WorkList.empty()) {
1232       Value *V = WorkList.pop_back_val();
1233       if (!Seen.insert(V).second)
1234         continue;
1235       if (Old2New.find(V) != Old2New.end())
1236         continue;
1237       if (isa<Constant>(V))
1238         continue;
1239 
1240       auto *I = dyn_cast<Instruction>(V);
1241       if (Value2Index.contains(V) || !I ||
1242           !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) {
1243         Old2New[V] = V;
1244         Args.push_back(V);
1245         LLVM_DEBUG(dbgs() << "  found external input " << *V << "\n");
1246       } else {
1247         append_range(WorkList, I->operands());
1248       }
1249     }
1250   };
1251 
1252   for (auto &Entry : Stack)
1253     if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE)
1254       CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred));
1255   CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate()));
1256 
1257   SmallVector<Type *> ParamTys;
1258   for (auto *P : Args)
1259     ParamTys.push_back(P->getType());
1260 
1261   FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
1262                                         /*isVarArg=*/false);
1263   Function *F = Function::Create(FTy, Function::ExternalLinkage,
1264                                  Cond->getModule()->getName() +
1265                                      Cond->getFunction()->getName() + "repro",
1266                                  M);
1267   // Add arguments to the reproducer function for each external value collected.
1268   for (unsigned I = 0; I < Args.size(); ++I) {
1269     F->getArg(I)->setName(Args[I]->getName());
1270     Old2New[Args[I]] = F->getArg(I);
1271   }
1272 
1273   BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
1274   IRBuilder<> Builder(Entry);
1275   Builder.CreateRet(Builder.getTrue());
1276   Builder.SetInsertPoint(Entry->getTerminator());
1277 
1278   // Clone instructions in \p Ops and their operands recursively until reaching
1279   // an value in Value2Index (external input to the reproducer). Update Old2New
1280   // mapping for the original and cloned instructions. Sort instructions to
1281   // clone by dominance, then insert the cloned instructions in the function.
1282   auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1283     SmallVector<Value *, 4> WorkList(Ops);
1284     SmallVector<Instruction *> ToClone;
1285     auto &Value2Index = Info.getValue2Index(IsSigned);
1286     while (!WorkList.empty()) {
1287       Value *V = WorkList.pop_back_val();
1288       if (Old2New.find(V) != Old2New.end())
1289         continue;
1290 
1291       auto *I = dyn_cast<Instruction>(V);
1292       if (!Value2Index.contains(V) && I) {
1293         Old2New[V] = nullptr;
1294         ToClone.push_back(I);
1295         append_range(WorkList, I->operands());
1296       }
1297     }
1298 
1299     sort(ToClone,
1300          [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
1301     for (Instruction *I : ToClone) {
1302       Instruction *Cloned = I->clone();
1303       Old2New[I] = Cloned;
1304       Old2New[I]->setName(I->getName());
1305       Cloned->insertBefore(&*Builder.GetInsertPoint());
1306       Cloned->dropUnknownNonDebugMetadata();
1307       Cloned->setDebugLoc({});
1308     }
1309   };
1310 
1311   // Materialize the assumptions for the reproducer using the entries in Stack.
1312   // That is, first clone the operands of the condition recursively until we
1313   // reach an external input to the reproducer and add them to the reproducer
1314   // function. Then add an ICmp for the condition (with the inverse predicate if
1315   // the entry is negated) and an assert using the ICmp.
1316   for (auto &Entry : Stack) {
1317     if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE)
1318       continue;
1319 
1320     LLVM_DEBUG(dbgs() << "  Materializing assumption ";
1321                dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS);
1322                dbgs() << "\n");
1323     CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred));
1324 
1325     auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS);
1326     Builder.CreateAssumption(Cmp);
1327   }
1328 
1329   // Finally, clone the condition to reproduce and remap instruction operands in
1330   // the reproducer using Old2New.
1331   CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
1332   Entry->getTerminator()->setOperand(0, Cond);
1333   remapInstructionsInBlocks({Entry}, Old2New);
1334 
1335   assert(!verifyFunction(*F, &dbgs()));
1336 }
1337 
1338 static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A,
1339                                           Value *B, Instruction *CheckInst,
1340                                           ConstraintInfo &Info) {
1341   LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n");
1342 
1343   auto R = Info.getConstraintForSolving(Pred, A, B);
1344   if (R.empty() || !R.isValid(Info)){
1345     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
1346     return std::nullopt;
1347   }
1348 
1349   auto &CSToUse = Info.getCS(R.IsSigned);
1350 
1351   // If there was extra information collected during decomposition, apply
1352   // it now and remove it immediately once we are done with reasoning
1353   // about the constraint.
1354   for (auto &Row : R.ExtraInfo)
1355     CSToUse.addVariableRow(Row);
1356   auto InfoRestorer = make_scope_exit([&]() {
1357     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
1358       CSToUse.popLastConstraint();
1359   });
1360 
1361   if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) {
1362     if (!DebugCounter::shouldExecute(EliminatedCounter))
1363       return std::nullopt;
1364 
1365     LLVM_DEBUG({
1366       dbgs() << "Condition ";
1367       dumpUnpackedICmp(
1368           dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred),
1369           A, B);
1370       dbgs() << " implied by dominating constraints\n";
1371       CSToUse.dump();
1372     });
1373     return ImpliedCondition;
1374   }
1375 
1376   return std::nullopt;
1377 }
1378 
1379 static bool checkAndReplaceCondition(
1380     CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut,
1381     Instruction *ContextInst, Module *ReproducerModule,
1382     ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT,
1383     SmallVectorImpl<Instruction *> &ToRemove) {
1384   auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
1385     generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
1386     Constant *ConstantC = ConstantInt::getBool(
1387         CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
1388     Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut,
1389                                        ContextInst](Use &U) {
1390       auto *UserI = getContextInstForUse(U);
1391       auto *DTN = DT.getNode(UserI->getParent());
1392       if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
1393         return false;
1394       if (UserI->getParent() == ContextInst->getParent() &&
1395           UserI->comesBefore(ContextInst))
1396         return false;
1397 
1398       // Conditions in an assume trivially simplify to true. Skip uses
1399       // in assume calls to not destroy the available information.
1400       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1401       return !II || II->getIntrinsicID() != Intrinsic::assume;
1402     });
1403     NumCondsRemoved++;
1404     if (Cmp->use_empty())
1405       ToRemove.push_back(Cmp);
1406     return true;
1407   };
1408 
1409   if (auto ImpliedCondition =
1410           checkCondition(Cmp->getPredicate(), Cmp->getOperand(0),
1411                          Cmp->getOperand(1), Cmp, Info))
1412     return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
1413   return false;
1414 }
1415 
1416 static bool checkAndReplaceMinMax(MinMaxIntrinsic *MinMax, ConstraintInfo &Info,
1417                                   SmallVectorImpl<Instruction *> &ToRemove) {
1418   auto ReplaceMinMaxWithOperand = [&](MinMaxIntrinsic *MinMax, bool UseLHS) {
1419     // TODO: generate reproducer for min/max.
1420     MinMax->replaceAllUsesWith(MinMax->getOperand(UseLHS ? 0 : 1));
1421     ToRemove.push_back(MinMax);
1422     return true;
1423   };
1424 
1425   ICmpInst::Predicate Pred =
1426       ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1427   if (auto ImpliedCondition = checkCondition(
1428           Pred, MinMax->getOperand(0), MinMax->getOperand(1), MinMax, Info))
1429     return ReplaceMinMaxWithOperand(MinMax, *ImpliedCondition);
1430   if (auto ImpliedCondition = checkCondition(
1431           Pred, MinMax->getOperand(1), MinMax->getOperand(0), MinMax, Info))
1432     return ReplaceMinMaxWithOperand(MinMax, !*ImpliedCondition);
1433   return false;
1434 }
1435 
1436 static void
1437 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
1438                      Module *ReproducerModule,
1439                      SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1440                      SmallVectorImpl<StackEntry> &DFSInStack) {
1441   Info.popLastConstraint(E.IsSigned);
1442   // Remove variables in the system that went out of scope.
1443   auto &Mapping = Info.getValue2Index(E.IsSigned);
1444   for (Value *V : E.ValuesToRelease)
1445     Mapping.erase(V);
1446   Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1447   DFSInStack.pop_back();
1448   if (ReproducerModule)
1449     ReproducerCondStack.pop_back();
1450 }
1451 
1452 /// Check if either the first condition of an AND or OR is implied by the
1453 /// (negated in case of OR) second condition or vice versa.
1454 static bool checkOrAndOpImpliedByOther(
1455     FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule,
1456     SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1457     SmallVectorImpl<StackEntry> &DFSInStack) {
1458 
1459   CmpInst::Predicate Pred;
1460   Value *A, *B;
1461   Instruction *JoinOp = CB.getContextInst();
1462   CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify());
1463   unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0;
1464 
1465   // Don't try to simplify the first condition of a select by the second, as
1466   // this may make the select more poisonous than the original one.
1467   // TODO: check if the first operand may be poison.
1468   if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp))
1469     return false;
1470 
1471   if (!match(JoinOp->getOperand(OtherOpIdx),
1472              m_ICmp(Pred, m_Value(A), m_Value(B))))
1473     return false;
1474 
1475   // For OR, check if the negated condition implies CmpToCheck.
1476   bool IsOr = match(JoinOp, m_LogicalOr());
1477   if (IsOr)
1478     Pred = CmpInst::getInversePredicate(Pred);
1479 
1480   // Optimistically add fact from first condition.
1481   unsigned OldSize = DFSInStack.size();
1482   Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1483   if (OldSize == DFSInStack.size())
1484     return false;
1485 
1486   bool Changed = false;
1487   // Check if the second condition can be simplified now.
1488   if (auto ImpliedCondition =
1489           checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0),
1490                          CmpToCheck->getOperand(1), CmpToCheck, Info)) {
1491     if (IsOr && isa<SelectInst>(JoinOp)) {
1492       JoinOp->setOperand(
1493           OtherOpIdx == 0 ? 2 : 0,
1494           ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1495     } else
1496       JoinOp->setOperand(
1497           1 - OtherOpIdx,
1498           ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1499 
1500     Changed = true;
1501   }
1502 
1503   // Remove entries again.
1504   while (OldSize < DFSInStack.size()) {
1505     StackEntry E = DFSInStack.back();
1506     removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack,
1507                          DFSInStack);
1508   }
1509   return Changed;
1510 }
1511 
1512 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
1513                              unsigned NumIn, unsigned NumOut,
1514                              SmallVectorImpl<StackEntry> &DFSInStack) {
1515   // If the constraint has a pre-condition, skip the constraint if it does not
1516   // hold.
1517   SmallVector<Value *> NewVariables;
1518   auto R = getConstraint(Pred, A, B, NewVariables);
1519 
1520   // TODO: Support non-equality for facts as well.
1521   if (!R.isValid(*this) || R.isNe())
1522     return;
1523 
1524   LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B);
1525              dbgs() << "'\n");
1526   bool Added = false;
1527   auto &CSToUse = getCS(R.IsSigned);
1528   if (R.Coefficients.empty())
1529     return;
1530 
1531   Added |= CSToUse.addVariableRowFill(R.Coefficients);
1532 
1533   // If R has been added to the system, add the new variables and queue it for
1534   // removal once it goes out-of-scope.
1535   if (Added) {
1536     SmallVector<Value *, 2> ValuesToRelease;
1537     auto &Value2Index = getValue2Index(R.IsSigned);
1538     for (Value *V : NewVariables) {
1539       Value2Index.insert({V, Value2Index.size() + 1});
1540       ValuesToRelease.push_back(V);
1541     }
1542 
1543     LLVM_DEBUG({
1544       dbgs() << "  constraint: ";
1545       dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1546       dbgs() << "\n";
1547     });
1548 
1549     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1550                             std::move(ValuesToRelease));
1551 
1552     if (!R.IsSigned) {
1553       for (Value *V : NewVariables) {
1554         ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
1555                             false, false, false);
1556         VarPos.Coefficients[Value2Index[V]] = -1;
1557         CSToUse.addVariableRow(VarPos.Coefficients);
1558         DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1559                                 SmallVector<Value *, 2>());
1560       }
1561     }
1562 
1563     if (R.isEq()) {
1564       // Also add the inverted constraint for equality constraints.
1565       for (auto &Coeff : R.Coefficients)
1566         Coeff *= -1;
1567       CSToUse.addVariableRowFill(R.Coefficients);
1568 
1569       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1570                               SmallVector<Value *, 2>());
1571     }
1572   }
1573 }
1574 
1575 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
1576                                    SmallVectorImpl<Instruction *> &ToRemove) {
1577   bool Changed = false;
1578   IRBuilder<> Builder(II->getParent(), II->getIterator());
1579   Value *Sub = nullptr;
1580   for (User *U : make_early_inc_range(II->users())) {
1581     if (match(U, m_ExtractValue<0>(m_Value()))) {
1582       if (!Sub)
1583         Sub = Builder.CreateSub(A, B);
1584       U->replaceAllUsesWith(Sub);
1585       Changed = true;
1586     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
1587       U->replaceAllUsesWith(Builder.getFalse());
1588       Changed = true;
1589     } else
1590       continue;
1591 
1592     if (U->use_empty()) {
1593       auto *I = cast<Instruction>(U);
1594       ToRemove.push_back(I);
1595       I->setOperand(0, PoisonValue::get(II->getType()));
1596       Changed = true;
1597     }
1598   }
1599 
1600   if (II->use_empty()) {
1601     II->eraseFromParent();
1602     Changed = true;
1603   }
1604   return Changed;
1605 }
1606 
1607 static bool
1608 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
1609                           SmallVectorImpl<Instruction *> &ToRemove) {
1610   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1611                               ConstraintInfo &Info) {
1612     auto R = Info.getConstraintForSolving(Pred, A, B);
1613     if (R.size() < 2 || !R.isValid(Info))
1614       return false;
1615 
1616     auto &CSToUse = Info.getCS(R.IsSigned);
1617     return CSToUse.isConditionImplied(R.Coefficients);
1618   };
1619 
1620   bool Changed = false;
1621   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1622     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1623     // can be simplified to a regular sub.
1624     Value *A = II->getArgOperand(0);
1625     Value *B = II->getArgOperand(1);
1626     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1627         !DoesConditionHold(CmpInst::ICMP_SGE, B,
1628                            ConstantInt::get(A->getType(), 0), Info))
1629       return false;
1630     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
1631   }
1632   return Changed;
1633 }
1634 
1635 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI,
1636                                  ScalarEvolution &SE,
1637                                  OptimizationRemarkEmitter &ORE) {
1638   bool Changed = false;
1639   DT.updateDFSNumbers();
1640   SmallVector<Value *> FunctionArgs;
1641   for (Value &Arg : F.args())
1642     FunctionArgs.push_back(&Arg);
1643   ConstraintInfo Info(F.getDataLayout(), FunctionArgs);
1644   State S(DT, LI, SE);
1645   std::unique_ptr<Module> ReproducerModule(
1646       DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1647 
1648   // First, collect conditions implied by branches and blocks with their
1649   // Dominator DFS in and out numbers.
1650   for (BasicBlock &BB : F) {
1651     if (!DT.getNode(&BB))
1652       continue;
1653     S.addInfoFor(BB);
1654   }
1655 
1656   // Next, sort worklist by dominance, so that dominating conditions to check
1657   // and facts come before conditions and facts dominated by them. If a
1658   // condition to check and a fact have the same numbers, conditional facts come
1659   // first. Assume facts and checks are ordered according to their relative
1660   // order in the containing basic block. Also make sure conditions with
1661   // constant operands come before conditions without constant operands. This
1662   // increases the effectiveness of the current signed <-> unsigned fact
1663   // transfer logic.
1664   stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1665     auto HasNoConstOp = [](const FactOrCheck &B) {
1666       Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0);
1667       Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1);
1668       return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1);
1669     };
1670     // If both entries have the same In numbers, conditional facts come first.
1671     // Otherwise use the relative order in the basic block.
1672     if (A.NumIn == B.NumIn) {
1673       if (A.isConditionFact() && B.isConditionFact()) {
1674         bool NoConstOpA = HasNoConstOp(A);
1675         bool NoConstOpB = HasNoConstOp(B);
1676         return NoConstOpA < NoConstOpB;
1677       }
1678       if (A.isConditionFact())
1679         return true;
1680       if (B.isConditionFact())
1681         return false;
1682       auto *InstA = A.getContextInst();
1683       auto *InstB = B.getContextInst();
1684       return InstA->comesBefore(InstB);
1685     }
1686     return A.NumIn < B.NumIn;
1687   });
1688 
1689   SmallVector<Instruction *> ToRemove;
1690 
1691   // Finally, process ordered worklist and eliminate implied conditions.
1692   SmallVector<StackEntry, 16> DFSInStack;
1693   SmallVector<ReproducerEntry> ReproducerCondStack;
1694   for (FactOrCheck &CB : S.WorkList) {
1695     // First, pop entries from the stack that are out-of-scope for CB. Remove
1696     // the corresponding entry from the constraint system.
1697     while (!DFSInStack.empty()) {
1698       auto &E = DFSInStack.back();
1699       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1700                         << "\n");
1701       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1702       assert(E.NumIn <= CB.NumIn);
1703       if (CB.NumOut <= E.NumOut)
1704         break;
1705       LLVM_DEBUG({
1706         dbgs() << "Removing ";
1707         dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1708                        Info.getValue2Index(E.IsSigned));
1709         dbgs() << "\n";
1710       });
1711       removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
1712                            DFSInStack);
1713     }
1714 
1715     // For a block, check if any CmpInsts become known based on the current set
1716     // of constraints.
1717     if (CB.isCheck()) {
1718       Instruction *Inst = CB.getInstructionToSimplify();
1719       if (!Inst)
1720         continue;
1721       LLVM_DEBUG(dbgs() << "Processing condition to simplify: " << *Inst
1722                         << "\n");
1723       if (auto *II = dyn_cast<WithOverflowInst>(Inst)) {
1724         Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1725       } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) {
1726         bool Simplified = checkAndReplaceCondition(
1727             Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(),
1728             ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove);
1729         if (!Simplified &&
1730             match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) {
1731           Simplified =
1732               checkOrAndOpImpliedByOther(CB, Info, ReproducerModule.get(),
1733                                          ReproducerCondStack, DFSInStack);
1734         }
1735         Changed |= Simplified;
1736       } else if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Inst)) {
1737         Changed |= checkAndReplaceMinMax(MinMax, Info, ToRemove);
1738       }
1739       continue;
1740     }
1741 
1742     auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) {
1743       LLVM_DEBUG(dbgs() << "Processing fact to add to the system: ";
1744                  dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n");
1745       if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1746         LLVM_DEBUG(
1747             dbgs()
1748             << "Skip adding constraint because system has too many rows.\n");
1749         return;
1750       }
1751 
1752       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1753       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1754         ReproducerCondStack.emplace_back(Pred, A, B);
1755 
1756       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1757       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
1758         // Add dummy entries to ReproducerCondStack to keep it in sync with
1759         // DFSInStack.
1760         for (unsigned I = 0,
1761                       E = (DFSInStack.size() - ReproducerCondStack.size());
1762              I < E; ++I) {
1763           ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE,
1764                                            nullptr, nullptr);
1765         }
1766       }
1767     };
1768 
1769     ICmpInst::Predicate Pred;
1770     if (!CB.isConditionFact()) {
1771       Value *X;
1772       if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) {
1773         // If is_int_min_poison is true then we may assume llvm.abs >= 0.
1774         if (cast<ConstantInt>(CB.Inst->getOperand(1))->isOne())
1775           AddFact(CmpInst::ICMP_SGE, CB.Inst,
1776                   ConstantInt::get(CB.Inst->getType(), 0));
1777         AddFact(CmpInst::ICMP_SGE, CB.Inst, X);
1778         continue;
1779       }
1780 
1781       if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) {
1782         Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1783         AddFact(Pred, MinMax, MinMax->getLHS());
1784         AddFact(Pred, MinMax, MinMax->getRHS());
1785         continue;
1786       }
1787     }
1788 
1789     Value *A = nullptr, *B = nullptr;
1790     if (CB.isConditionFact()) {
1791       Pred = CB.Cond.Pred;
1792       A = CB.Cond.Op0;
1793       B = CB.Cond.Op1;
1794       if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE &&
1795           !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) {
1796         LLVM_DEBUG({
1797           dbgs() << "Not adding fact ";
1798           dumpUnpackedICmp(dbgs(), Pred, A, B);
1799           dbgs() << " because precondition ";
1800           dumpUnpackedICmp(dbgs(), CB.DoesHold.Pred, CB.DoesHold.Op0,
1801                            CB.DoesHold.Op1);
1802           dbgs() << " does not hold.\n";
1803         });
1804         continue;
1805       }
1806     } else {
1807       bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>(
1808                                         m_ICmp(Pred, m_Value(A), m_Value(B))));
1809       (void)Matched;
1810       assert(Matched && "Must have an assume intrinsic with a icmp operand");
1811     }
1812     AddFact(Pred, A, B);
1813   }
1814 
1815   if (ReproducerModule && !ReproducerModule->functions().empty()) {
1816     std::string S;
1817     raw_string_ostream StringS(S);
1818     ReproducerModule->print(StringS, nullptr);
1819     StringS.flush();
1820     OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
1821     Rem << ore::NV("module") << S;
1822     ORE.emit(Rem);
1823   }
1824 
1825 #ifndef NDEBUG
1826   unsigned SignedEntries =
1827       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1828   assert(Info.getCS(false).size() - FunctionArgs.size() ==
1829              DFSInStack.size() - SignedEntries &&
1830          "updates to CS and DFSInStack are out of sync");
1831   assert(Info.getCS(true).size() == SignedEntries &&
1832          "updates to CS and DFSInStack are out of sync");
1833 #endif
1834 
1835   for (Instruction *I : ToRemove)
1836     I->eraseFromParent();
1837   return Changed;
1838 }
1839 
1840 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1841                                                  FunctionAnalysisManager &AM) {
1842   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1843   auto &LI = AM.getResult<LoopAnalysis>(F);
1844   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1845   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1846   if (!eliminateConstraints(F, DT, LI, SE, ORE))
1847     return PreservedAnalyses::all();
1848 
1849   PreservedAnalyses PA;
1850   PA.preserve<DominatorTreeAnalysis>();
1851   PA.preserve<LoopAnalysis>();
1852   PA.preserve<ScalarEvolutionAnalysis>();
1853   PA.preserveSet<CFGAnalyses>();
1854   return PA;
1855 }
1856