1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/InitializePasses.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/DebugCounter.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Transforms/Scalar.h" 34 35 #include <cmath> 36 #include <string> 37 38 using namespace llvm; 39 using namespace PatternMatch; 40 41 #define DEBUG_TYPE "constraint-elimination" 42 43 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 44 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 45 "Controls which conditions are eliminated"); 46 47 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 48 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 49 50 namespace { 51 52 class ConstraintInfo; 53 54 struct StackEntry { 55 unsigned NumIn; 56 unsigned NumOut; 57 bool IsSigned = false; 58 /// Variables that can be removed from the system once the stack entry gets 59 /// removed. 60 SmallVector<Value *, 2> ValuesToRelease; 61 62 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 63 SmallVector<Value *, 2> ValuesToRelease) 64 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 65 ValuesToRelease(ValuesToRelease) {} 66 }; 67 68 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 69 struct PreconditionTy { 70 CmpInst::Predicate Pred; 71 Value *Op0; 72 Value *Op1; 73 74 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 75 : Pred(Pred), Op0(Op0), Op1(Op1) {} 76 }; 77 78 struct ConstraintTy { 79 SmallVector<int64_t, 8> Coefficients; 80 SmallVector<PreconditionTy, 2> Preconditions; 81 82 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 83 84 bool IsSigned = false; 85 bool IsEq = false; 86 87 ConstraintTy() = default; 88 89 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 90 : Coefficients(Coefficients), IsSigned(IsSigned) {} 91 92 unsigned size() const { return Coefficients.size(); } 93 94 unsigned empty() const { return Coefficients.empty(); } 95 96 /// Returns true if all preconditions for this list of constraints are 97 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 98 bool isValid(const ConstraintInfo &Info) const; 99 }; 100 101 /// Wrapper encapsulating separate constraint systems and corresponding value 102 /// mappings for both unsigned and signed information. Facts are added to and 103 /// conditions are checked against the corresponding system depending on the 104 /// signed-ness of their predicates. While the information is kept separate 105 /// based on signed-ness, certain conditions can be transferred between the two 106 /// systems. 107 class ConstraintInfo { 108 DenseMap<Value *, unsigned> UnsignedValue2Index; 109 DenseMap<Value *, unsigned> SignedValue2Index; 110 111 ConstraintSystem UnsignedCS; 112 ConstraintSystem SignedCS; 113 114 public: 115 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 116 return Signed ? SignedValue2Index : UnsignedValue2Index; 117 } 118 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 119 return Signed ? SignedValue2Index : UnsignedValue2Index; 120 } 121 122 ConstraintSystem &getCS(bool Signed) { 123 return Signed ? SignedCS : UnsignedCS; 124 } 125 const ConstraintSystem &getCS(bool Signed) const { 126 return Signed ? SignedCS : UnsignedCS; 127 } 128 129 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 130 void popLastNVariables(bool Signed, unsigned N) { 131 getCS(Signed).popLastNVariables(N); 132 } 133 134 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 135 136 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 137 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 138 139 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 140 /// constraints, using indices from the corresponding constraint system. 141 /// New variables that need to be added to the system are collected in 142 /// \p NewVariables. 143 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 144 SmallVectorImpl<Value *> &NewVariables) const; 145 146 /// Turn a condition \p CmpI into a vector of constraints, using indices from 147 /// the corresponding constraint system. New variables that need to be added 148 /// to the system are collected in \p NewVariables. 149 ConstraintTy getConstraint(CmpInst *Cmp, 150 SmallVectorImpl<Value *> &NewVariables) { 151 return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0), 152 Cmp->getOperand(1), NewVariables); 153 } 154 155 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 156 /// system if \p Pred is signed/unsigned. 157 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 158 unsigned NumIn, unsigned NumOut, 159 SmallVectorImpl<StackEntry> &DFSInStack); 160 }; 161 162 /// Represents a (Coefficient * Variable) entry after IR decomposition. 163 struct DecompEntry { 164 int64_t Coefficient; 165 Value *Variable; 166 /// True if the variable is known positive in the current constraint. 167 bool IsKnownPositive; 168 169 DecompEntry(int64_t Coefficient, Value *Variable, 170 bool IsKnownPositive = false) 171 : Coefficient(Coefficient), Variable(Variable), 172 IsKnownPositive(IsKnownPositive) {} 173 }; 174 175 } // namespace 176 177 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable 178 // } where Coefficient * Variable. The sum of the pairs equals \p V. The first 179 // pair is the constant-factor and X must be nullptr. If the expression cannot 180 // be decomposed, returns an empty vector. 181 static SmallVector<DecompEntry, 4> 182 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 183 bool IsSigned) { 184 185 auto CanUseSExt = [](ConstantInt *CI) { 186 const APInt &Val = CI->getValue(); 187 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 188 }; 189 // Decompose \p V used with a signed predicate. 190 if (IsSigned) { 191 if (auto *CI = dyn_cast<ConstantInt>(V)) { 192 if (CanUseSExt(CI)) 193 return {{CI->getSExtValue(), nullptr}}; 194 } 195 196 return {{0, nullptr}, {1, V}}; 197 } 198 199 if (auto *CI = dyn_cast<ConstantInt>(V)) { 200 if (CI->uge(MaxConstraintValue)) 201 return {}; 202 return {{int64_t(CI->getZExtValue()), nullptr}}; 203 } 204 auto *GEP = dyn_cast<GetElementPtrInst>(V); 205 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 206 Value *Op0, *Op1; 207 ConstantInt *CI; 208 209 // If the index is zero-extended, it is guaranteed to be positive. 210 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 211 m_ZExt(m_Value(Op0)))) { 212 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && 213 CanUseSExt(CI)) 214 return {{0, nullptr}, 215 {1, GEP->getPointerOperand()}, 216 {int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op1}}; 217 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) && 218 CanUseSExt(CI)) 219 return {{CI->getSExtValue(), nullptr}, 220 {1, GEP->getPointerOperand()}, 221 {1, Op1}}; 222 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0, true}}; 223 } 224 225 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 226 !CI->isNegative() && CanUseSExt(CI)) 227 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 228 229 SmallVector<DecompEntry, 4> Result; 230 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 231 m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) && 232 CanUseSExt(CI)) 233 Result = {{0, nullptr}, 234 {1, GEP->getPointerOperand()}, 235 {int(std::pow(int64_t(2), CI->getSExtValue())), Op0}}; 236 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 237 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) && 238 CanUseSExt(CI)) 239 Result = {{CI->getSExtValue(), nullptr}, 240 {1, GEP->getPointerOperand()}, 241 {1, Op0}}; 242 else { 243 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 244 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 245 } 246 // If Op0 is signed non-negative, the GEP is increasing monotonically and 247 // can be de-composed. 248 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 249 ConstantInt::get(Op0->getType(), 0)); 250 return Result; 251 } 252 253 Value *Op0; 254 bool IsKnownPositive = false; 255 if (match(V, m_ZExt(m_Value(Op0)))) { 256 IsKnownPositive = true; 257 V = Op0; 258 } 259 260 auto MergeResults = [&Preconditions, IsSigned]( 261 Value *A, Value *B, 262 bool IsSignedB) -> SmallVector<DecompEntry, 4> { 263 auto ResA = decompose(A, Preconditions, IsSigned); 264 auto ResB = decompose(B, Preconditions, IsSignedB); 265 if (ResA.empty() || ResB.empty()) 266 return {}; 267 ResA[0].Coefficient += ResB[0].Coefficient; 268 append_range(ResA, drop_begin(ResB)); 269 return ResA; 270 }; 271 Value *Op1; 272 ConstantInt *CI; 273 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 274 return MergeResults(Op0, Op1, IsSigned); 275 } 276 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 277 CanUseSExt(CI)) { 278 Preconditions.emplace_back( 279 CmpInst::ICMP_UGE, Op0, 280 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 281 return MergeResults(Op0, CI, true); 282 } 283 284 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI)) 285 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 286 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 287 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 288 289 return {{0, nullptr}, {1, V, IsKnownPositive}}; 290 } 291 292 ConstraintTy 293 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 294 SmallVectorImpl<Value *> &NewVariables) const { 295 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 296 bool IsEq = false; 297 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 298 switch (Pred) { 299 case CmpInst::ICMP_UGT: 300 case CmpInst::ICMP_UGE: 301 case CmpInst::ICMP_SGT: 302 case CmpInst::ICMP_SGE: { 303 Pred = CmpInst::getSwappedPredicate(Pred); 304 std::swap(Op0, Op1); 305 break; 306 } 307 case CmpInst::ICMP_EQ: 308 if (match(Op1, m_Zero())) { 309 Pred = CmpInst::ICMP_ULE; 310 } else { 311 IsEq = true; 312 Pred = CmpInst::ICMP_ULE; 313 } 314 break; 315 case CmpInst::ICMP_NE: 316 if (!match(Op1, m_Zero())) 317 return {}; 318 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 319 std::swap(Op0, Op1); 320 break; 321 default: 322 break; 323 } 324 325 // Only ULE and ULT predicates are supported at the moment. 326 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 327 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 328 return {}; 329 330 SmallVector<PreconditionTy, 4> Preconditions; 331 bool IsSigned = CmpInst::isSigned(Pred); 332 auto &Value2Index = getValue2Index(IsSigned); 333 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 334 Preconditions, IsSigned); 335 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 336 Preconditions, IsSigned); 337 // Skip if decomposing either of the values failed. 338 if (ADec.empty() || BDec.empty()) 339 return {}; 340 341 int64_t Offset1 = ADec[0].Coefficient; 342 int64_t Offset2 = BDec[0].Coefficient; 343 Offset1 *= -1; 344 345 // Create iterator ranges that skip the constant-factor. 346 auto VariablesA = llvm::drop_begin(ADec); 347 auto VariablesB = llvm::drop_begin(BDec); 348 349 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 350 // new entry to NewVariables. 351 DenseMap<Value *, unsigned> NewIndexMap; 352 auto GetOrAddIndex = [&Value2Index, &NewVariables, 353 &NewIndexMap](Value *V) -> unsigned { 354 auto V2I = Value2Index.find(V); 355 if (V2I != Value2Index.end()) 356 return V2I->second; 357 auto Insert = 358 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 359 if (Insert.second) 360 NewVariables.push_back(V); 361 return Insert.first->second; 362 }; 363 364 // Make sure all variables have entries in Value2Index or NewVariables. 365 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 366 GetOrAddIndex(KV.Variable); 367 368 // Build result constraint, by first adding all coefficients from A and then 369 // subtracting all coefficients from B. 370 ConstraintTy Res( 371 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 372 IsSigned); 373 // Collect variables that are known to be positive in all uses in the 374 // constraint. 375 DenseMap<Value *, bool> KnownPositiveVariables; 376 Res.IsEq = IsEq; 377 auto &R = Res.Coefficients; 378 for (const auto &KV : VariablesA) { 379 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 380 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 381 I.first->second &= KV.IsKnownPositive; 382 } 383 384 for (const auto &KV : VariablesB) { 385 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 386 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 387 I.first->second &= KV.IsKnownPositive; 388 } 389 390 int64_t OffsetSum; 391 if (AddOverflow(Offset1, Offset2, OffsetSum)) 392 return {}; 393 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 394 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 395 return {}; 396 R[0] = OffsetSum; 397 Res.Preconditions = std::move(Preconditions); 398 399 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 400 // variables. 401 while (!NewVariables.empty()) { 402 int64_t Last = R.back(); 403 if (Last != 0) 404 break; 405 R.pop_back(); 406 Value *RemovedV = NewVariables.pop_back_val(); 407 NewIndexMap.erase(RemovedV); 408 } 409 410 // Add extra constraints for variables that are known positive. 411 for (auto &KV : KnownPositiveVariables) { 412 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 413 NewIndexMap.find(KV.first) == NewIndexMap.end())) 414 continue; 415 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 416 C[GetOrAddIndex(KV.first)] = -1; 417 Res.ExtraInfo.push_back(C); 418 } 419 return Res; 420 } 421 422 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 423 return Coefficients.size() > 0 && 424 all_of(Preconditions, [&Info](const PreconditionTy &C) { 425 return Info.doesHold(C.Pred, C.Op0, C.Op1); 426 }); 427 } 428 429 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 430 Value *B) const { 431 SmallVector<Value *> NewVariables; 432 auto R = getConstraint(Pred, A, B, NewVariables); 433 434 if (!NewVariables.empty()) 435 return false; 436 437 return NewVariables.empty() && R.Preconditions.empty() && !R.IsEq && 438 !R.empty() && getCS(R.IsSigned).isConditionImplied(R.Coefficients); 439 } 440 441 void ConstraintInfo::transferToOtherSystem( 442 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 443 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 444 // Check if we can combine facts from the signed and unsigned systems to 445 // derive additional facts. 446 if (!A->getType()->isIntegerTy()) 447 return; 448 // FIXME: This currently depends on the order we add facts. Ideally we 449 // would first add all known facts and only then try to add additional 450 // facts. 451 switch (Pred) { 452 default: 453 break; 454 case CmpInst::ICMP_ULT: 455 // If B is a signed positive constant, A >=s 0 and A <s B. 456 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 457 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 458 NumOut, DFSInStack); 459 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 460 } 461 break; 462 case CmpInst::ICMP_SLT: 463 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 464 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 465 break; 466 case CmpInst::ICMP_SGT: 467 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 468 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 469 NumOut, DFSInStack); 470 break; 471 case CmpInst::ICMP_SGE: 472 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 473 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 474 } 475 break; 476 } 477 } 478 479 namespace { 480 /// Represents either a condition that holds on entry to a block or a basic 481 /// block, with their respective Dominator DFS in and out numbers. 482 struct ConstraintOrBlock { 483 unsigned NumIn; 484 unsigned NumOut; 485 bool IsBlock; 486 bool Not; 487 union { 488 BasicBlock *BB; 489 CmpInst *Condition; 490 }; 491 492 ConstraintOrBlock(DomTreeNode *DTN) 493 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 494 BB(DTN->getBlock()) {} 495 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 496 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 497 Not(Not), Condition(Condition) {} 498 }; 499 500 /// Keep state required to build worklist. 501 struct State { 502 DominatorTree &DT; 503 SmallVector<ConstraintOrBlock, 64> WorkList; 504 505 State(DominatorTree &DT) : DT(DT) {} 506 507 /// Process block \p BB and add known facts to work-list. 508 void addInfoFor(BasicBlock &BB); 509 510 /// Returns true if we can add a known condition from BB to its successor 511 /// block Succ. Each predecessor of Succ can either be BB or be dominated 512 /// by Succ (e.g. the case when adding a condition from a pre-header to a 513 /// loop header). 514 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 515 if (BB.getSingleSuccessor()) { 516 assert(BB.getSingleSuccessor() == Succ); 517 return DT.properlyDominates(&BB, Succ); 518 } 519 return any_of(successors(&BB), 520 [Succ](const BasicBlock *S) { return S != Succ; }) && 521 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 522 return Pred == &BB || DT.dominates(Succ, Pred); 523 }); 524 } 525 }; 526 527 } // namespace 528 529 #ifndef NDEBUG 530 static void dumpWithNames(const ConstraintSystem &CS, 531 DenseMap<Value *, unsigned> &Value2Index) { 532 SmallVector<std::string> Names(Value2Index.size(), ""); 533 for (auto &KV : Value2Index) { 534 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 535 } 536 CS.dump(Names); 537 } 538 539 static void dumpWithNames(ArrayRef<int64_t> C, 540 DenseMap<Value *, unsigned> &Value2Index) { 541 ConstraintSystem CS; 542 CS.addVariableRowFill(C); 543 dumpWithNames(CS, Value2Index); 544 } 545 #endif 546 547 void State::addInfoFor(BasicBlock &BB) { 548 WorkList.emplace_back(DT.getNode(&BB)); 549 550 // True as long as long as the current instruction is guaranteed to execute. 551 bool GuaranteedToExecute = true; 552 // Scan BB for assume calls. 553 // TODO: also use this scan to queue conditions to simplify, so we can 554 // interleave facts from assumes and conditions to simplify in a single 555 // basic block. And to skip another traversal of each basic block when 556 // simplifying. 557 for (Instruction &I : BB) { 558 Value *Cond; 559 // For now, just handle assumes with a single compare as condition. 560 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 561 isa<ICmpInst>(Cond)) { 562 if (GuaranteedToExecute) { 563 // The assume is guaranteed to execute when BB is entered, hence Cond 564 // holds on entry to BB. 565 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 566 } else { 567 // Otherwise the condition only holds in the successors. 568 for (BasicBlock *Succ : successors(&BB)) { 569 if (!canAddSuccessor(BB, Succ)) 570 continue; 571 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false); 572 } 573 } 574 } 575 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 576 } 577 578 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 579 if (!Br || !Br->isConditional()) 580 return; 581 582 Value *Cond = Br->getCondition(); 583 584 // If the condition is a chain of ORs/AND and the successor only has the 585 // current block as predecessor, queue conditions for the successor. 586 Value *Op0, *Op1; 587 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 588 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 589 bool IsOr = match(Cond, m_LogicalOr()); 590 bool IsAnd = match(Cond, m_LogicalAnd()); 591 // If there's a select that matches both AND and OR, we need to commit to 592 // one of the options. Arbitrarily pick OR. 593 if (IsOr && IsAnd) 594 IsAnd = false; 595 596 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 597 if (canAddSuccessor(BB, Successor)) { 598 SmallVector<Value *> CondWorkList; 599 SmallPtrSet<Value *, 8> SeenCond; 600 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 601 if (SeenCond.insert(V).second) 602 CondWorkList.push_back(V); 603 }; 604 QueueValue(Op1); 605 QueueValue(Op0); 606 while (!CondWorkList.empty()) { 607 Value *Cur = CondWorkList.pop_back_val(); 608 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 609 WorkList.emplace_back(DT.getNode(Successor), Cmp, IsOr); 610 continue; 611 } 612 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 613 QueueValue(Op1); 614 QueueValue(Op0); 615 continue; 616 } 617 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 618 QueueValue(Op1); 619 QueueValue(Op0); 620 continue; 621 } 622 } 623 } 624 return; 625 } 626 627 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 628 if (!CmpI) 629 return; 630 if (canAddSuccessor(BB, Br->getSuccessor(0))) 631 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 632 if (canAddSuccessor(BB, Br->getSuccessor(1))) 633 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 634 } 635 636 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 637 unsigned NumIn, unsigned NumOut, 638 SmallVectorImpl<StackEntry> &DFSInStack) { 639 // If the constraint has a pre-condition, skip the constraint if it does not 640 // hold. 641 SmallVector<Value *> NewVariables; 642 auto R = getConstraint(Pred, A, B, NewVariables); 643 if (!R.isValid(*this)) 644 return; 645 646 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; 647 A->printAsOperand(dbgs(), false); dbgs() << ", "; 648 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 649 bool Added = false; 650 auto &CSToUse = getCS(R.IsSigned); 651 if (R.Coefficients.empty()) 652 return; 653 654 Added |= CSToUse.addVariableRowFill(R.Coefficients); 655 656 // If R has been added to the system, add the new variables and queue it for 657 // removal once it goes out-of-scope. 658 if (Added) { 659 SmallVector<Value *, 2> ValuesToRelease; 660 auto &Value2Index = getValue2Index(R.IsSigned); 661 for (Value *V : NewVariables) { 662 Value2Index.insert({V, Value2Index.size() + 1}); 663 ValuesToRelease.push_back(V); 664 } 665 666 LLVM_DEBUG({ 667 dbgs() << " constraint: "; 668 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 669 dbgs() << "\n"; 670 }); 671 672 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease); 673 674 if (R.IsEq) { 675 // Also add the inverted constraint for equality constraints. 676 for (auto &Coeff : R.Coefficients) 677 Coeff *= -1; 678 CSToUse.addVariableRowFill(R.Coefficients); 679 680 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 681 SmallVector<Value *, 2>()); 682 } 683 } 684 } 685 686 static bool 687 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 688 SmallVectorImpl<Instruction *> &ToRemove) { 689 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 690 ConstraintInfo &Info) { 691 SmallVector<Value *> NewVariables; 692 auto R = Info.getConstraint(Pred, A, B, NewVariables); 693 if (R.size() < 2 || !NewVariables.empty() || !R.isValid(Info)) 694 return false; 695 696 auto &CSToUse = Info.getCS(R.IsSigned); 697 return CSToUse.isConditionImplied(R.Coefficients); 698 }; 699 700 bool Changed = false; 701 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 702 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 703 // can be simplified to a regular sub. 704 Value *A = II->getArgOperand(0); 705 Value *B = II->getArgOperand(1); 706 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 707 !DoesConditionHold(CmpInst::ICMP_SGE, B, 708 ConstantInt::get(A->getType(), 0), Info)) 709 return false; 710 711 IRBuilder<> Builder(II->getParent(), II->getIterator()); 712 Value *Sub = nullptr; 713 for (User *U : make_early_inc_range(II->users())) { 714 if (match(U, m_ExtractValue<0>(m_Value()))) { 715 if (!Sub) 716 Sub = Builder.CreateSub(A, B); 717 U->replaceAllUsesWith(Sub); 718 Changed = true; 719 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 720 U->replaceAllUsesWith(Builder.getFalse()); 721 Changed = true; 722 } else 723 continue; 724 725 if (U->use_empty()) { 726 auto *I = cast<Instruction>(U); 727 ToRemove.push_back(I); 728 I->setOperand(0, PoisonValue::get(II->getType())); 729 Changed = true; 730 } 731 } 732 733 if (II->use_empty()) { 734 II->eraseFromParent(); 735 Changed = true; 736 } 737 } 738 return Changed; 739 } 740 741 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 742 bool Changed = false; 743 DT.updateDFSNumbers(); 744 745 ConstraintInfo Info; 746 State S(DT); 747 748 // First, collect conditions implied by branches and blocks with their 749 // Dominator DFS in and out numbers. 750 for (BasicBlock &BB : F) { 751 if (!DT.getNode(&BB)) 752 continue; 753 S.addInfoFor(BB); 754 } 755 756 // Next, sort worklist by dominance, so that dominating blocks and conditions 757 // come before blocks and conditions dominated by them. If a block and a 758 // condition have the same numbers, the condition comes before the block, as 759 // it holds on entry to the block. Also make sure conditions with constant 760 // operands come before conditions without constant operands. This increases 761 // the effectiveness of the current signed <-> unsigned fact transfer logic. 762 stable_sort( 763 S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 764 auto HasNoConstOp = [](const ConstraintOrBlock &B) { 765 return !B.IsBlock && !isa<ConstantInt>(B.Condition->getOperand(0)) && 766 !isa<ConstantInt>(B.Condition->getOperand(1)); 767 }; 768 bool NoConstOpA = HasNoConstOp(A); 769 bool NoConstOpB = HasNoConstOp(B); 770 return std::tie(A.NumIn, A.IsBlock, NoConstOpA) < 771 std::tie(B.NumIn, B.IsBlock, NoConstOpB); 772 }); 773 774 SmallVector<Instruction *> ToRemove; 775 776 // Finally, process ordered worklist and eliminate implied conditions. 777 SmallVector<StackEntry, 16> DFSInStack; 778 for (ConstraintOrBlock &CB : S.WorkList) { 779 // First, pop entries from the stack that are out-of-scope for CB. Remove 780 // the corresponding entry from the constraint system. 781 while (!DFSInStack.empty()) { 782 auto &E = DFSInStack.back(); 783 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 784 << "\n"); 785 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 786 assert(E.NumIn <= CB.NumIn); 787 if (CB.NumOut <= E.NumOut) 788 break; 789 LLVM_DEBUG({ 790 dbgs() << "Removing "; 791 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 792 Info.getValue2Index(E.IsSigned)); 793 dbgs() << "\n"; 794 }); 795 796 Info.popLastConstraint(E.IsSigned); 797 // Remove variables in the system that went out of scope. 798 auto &Mapping = Info.getValue2Index(E.IsSigned); 799 for (Value *V : E.ValuesToRelease) 800 Mapping.erase(V); 801 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 802 DFSInStack.pop_back(); 803 } 804 805 LLVM_DEBUG({ 806 dbgs() << "Processing "; 807 if (CB.IsBlock) 808 dbgs() << *CB.BB; 809 else 810 dbgs() << *CB.Condition; 811 dbgs() << "\n"; 812 }); 813 814 // For a block, check if any CmpInsts become known based on the current set 815 // of constraints. 816 if (CB.IsBlock) { 817 for (Instruction &I : make_early_inc_range(*CB.BB)) { 818 if (auto *II = dyn_cast<WithOverflowInst>(&I)) { 819 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 820 continue; 821 } 822 auto *Cmp = dyn_cast<ICmpInst>(&I); 823 if (!Cmp) 824 continue; 825 826 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 827 SmallVector<Value *> NewVariables; 828 CmpInst::Predicate Pred = Cmp->getPredicate(); 829 Value *A = Cmp->getOperand(0); 830 Value *B = Cmp->getOperand(1); 831 const DataLayout &DL = Cmp->getModule()->getDataLayout(); 832 833 // If both operands are known to be non-negative, change signed 834 // predicates to unsigned ones. This increases the reasoning 835 // effectiveness in combination with the signed <-> unsigned transfer 836 // logic. 837 if (CmpInst::isSigned(Pred) && 838 isKnownNonNegative(A, DL, 839 /*Depth=*/MaxAnalysisRecursionDepth - 1) && 840 isKnownNonNegative(B, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 841 Pred = CmpInst::getUnsignedPredicate(Pred); 842 843 auto R = Info.getConstraint(Pred, A, B, NewVariables); 844 if (R.IsEq || R.empty() || !NewVariables.empty() || !R.isValid(Info)) 845 continue; 846 847 auto &CSToUse = Info.getCS(R.IsSigned); 848 849 // If there was extra information collected during decomposition, apply 850 // it now and remove it immediately once we are done with reasoning 851 // about the constraint. 852 for (auto &Row : R.ExtraInfo) 853 CSToUse.addVariableRow(Row); 854 auto InfoRestorer = make_scope_exit([&]() { 855 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 856 CSToUse.popLastConstraint(); 857 }); 858 859 if (CSToUse.isConditionImplied(R.Coefficients)) { 860 if (!DebugCounter::shouldExecute(EliminatedCounter)) 861 continue; 862 863 LLVM_DEBUG({ 864 dbgs() << "Condition " << *Cmp 865 << " implied by dominating constraints\n"; 866 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 867 }); 868 Cmp->replaceUsesWithIf( 869 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 870 // Conditions in an assume trivially simplify to true. Skip uses 871 // in assume calls to not destroy the available information. 872 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 873 return !II || II->getIntrinsicID() != Intrinsic::assume; 874 }); 875 NumCondsRemoved++; 876 Changed = true; 877 } 878 if (CSToUse.isConditionImplied( 879 ConstraintSystem::negate(R.Coefficients))) { 880 if (!DebugCounter::shouldExecute(EliminatedCounter)) 881 continue; 882 883 LLVM_DEBUG({ 884 dbgs() << "Condition !" << *Cmp 885 << " implied by dominating constraints\n"; 886 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 887 }); 888 Cmp->replaceAllUsesWith( 889 ConstantInt::getFalse(F.getParent()->getContext())); 890 NumCondsRemoved++; 891 Changed = true; 892 } 893 } 894 continue; 895 } 896 897 ICmpInst::Predicate Pred; 898 Value *A, *B; 899 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 900 // Use the inverse predicate if required. 901 if (CB.Not) 902 Pred = CmpInst::getInversePredicate(Pred); 903 904 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 905 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 906 } 907 } 908 909 #ifndef NDEBUG 910 unsigned SignedEntries = 911 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 912 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 913 "updates to CS and DFSInStack are out of sync"); 914 assert(Info.getCS(true).size() == SignedEntries && 915 "updates to CS and DFSInStack are out of sync"); 916 #endif 917 918 for (Instruction *I : ToRemove) 919 I->eraseFromParent(); 920 return Changed; 921 } 922 923 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 924 FunctionAnalysisManager &AM) { 925 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 926 if (!eliminateConstraints(F, DT)) 927 return PreservedAnalyses::all(); 928 929 PreservedAnalyses PA; 930 PA.preserve<DominatorTreeAnalysis>(); 931 PA.preserveSet<CFGAnalyses>(); 932 return PA; 933 } 934 935 namespace { 936 937 class ConstraintElimination : public FunctionPass { 938 public: 939 static char ID; 940 941 ConstraintElimination() : FunctionPass(ID) { 942 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 943 } 944 945 bool runOnFunction(Function &F) override { 946 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 947 return eliminateConstraints(F, DT); 948 } 949 950 void getAnalysisUsage(AnalysisUsage &AU) const override { 951 AU.setPreservesCFG(); 952 AU.addRequired<DominatorTreeWrapperPass>(); 953 AU.addPreserved<GlobalsAAWrapperPass>(); 954 AU.addPreserved<DominatorTreeWrapperPass>(); 955 } 956 }; 957 958 } // end anonymous namespace 959 960 char ConstraintElimination::ID = 0; 961 962 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 963 "Constraint Elimination", false, false) 964 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 965 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 966 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 967 "Constraint Elimination", false, false) 968 969 FunctionPass *llvm::createConstraintEliminationPass() { 970 return new ConstraintElimination(); 971 } 972