1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DebugCounter.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Scalar.h" 33 34 #include <cmath> 35 #include <string> 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 #define DEBUG_TYPE "constraint-elimination" 41 42 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 43 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 44 "Controls which conditions are eliminated"); 45 46 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 47 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 48 49 namespace { 50 51 class ConstraintInfo; 52 53 struct StackEntry { 54 unsigned NumIn; 55 unsigned NumOut; 56 bool IsSigned = false; 57 /// Variables that can be removed from the system once the stack entry gets 58 /// removed. 59 SmallVector<Value *, 2> ValuesToRelease; 60 61 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 62 SmallVector<Value *, 2> ValuesToRelease) 63 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 64 ValuesToRelease(ValuesToRelease) {} 65 }; 66 67 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 68 struct PreconditionTy { 69 CmpInst::Predicate Pred; 70 Value *Op0; 71 Value *Op1; 72 73 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 74 : Pred(Pred), Op0(Op0), Op1(Op1) {} 75 }; 76 77 struct ConstraintTy { 78 SmallVector<int64_t, 8> Coefficients; 79 SmallVector<PreconditionTy, 2> Preconditions; 80 81 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 82 83 bool IsSigned = false; 84 bool IsEq = false; 85 86 ConstraintTy() = default; 87 88 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 89 : Coefficients(Coefficients), IsSigned(IsSigned) {} 90 91 unsigned size() const { return Coefficients.size(); } 92 93 unsigned empty() const { return Coefficients.empty(); } 94 95 /// Returns true if all preconditions for this list of constraints are 96 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 97 bool isValid(const ConstraintInfo &Info) const; 98 }; 99 100 /// Wrapper encapsulating separate constraint systems and corresponding value 101 /// mappings for both unsigned and signed information. Facts are added to and 102 /// conditions are checked against the corresponding system depending on the 103 /// signed-ness of their predicates. While the information is kept separate 104 /// based on signed-ness, certain conditions can be transferred between the two 105 /// systems. 106 class ConstraintInfo { 107 DenseMap<Value *, unsigned> UnsignedValue2Index; 108 DenseMap<Value *, unsigned> SignedValue2Index; 109 110 ConstraintSystem UnsignedCS; 111 ConstraintSystem SignedCS; 112 113 public: 114 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 115 return Signed ? SignedValue2Index : UnsignedValue2Index; 116 } 117 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 118 return Signed ? SignedValue2Index : UnsignedValue2Index; 119 } 120 121 ConstraintSystem &getCS(bool Signed) { 122 return Signed ? SignedCS : UnsignedCS; 123 } 124 const ConstraintSystem &getCS(bool Signed) const { 125 return Signed ? SignedCS : UnsignedCS; 126 } 127 128 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 129 void popLastNVariables(bool Signed, unsigned N) { 130 getCS(Signed).popLastNVariables(N); 131 } 132 133 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 134 135 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 136 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 137 138 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 139 /// constraints, using indices from the corresponding constraint system. 140 /// New variables that need to be added to the system are collected in 141 /// \p NewVariables. 142 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 143 SmallVectorImpl<Value *> &NewVariables) const; 144 145 /// Turn a condition \p CmpI into a vector of constraints, using indices from 146 /// the corresponding constraint system. New variables that need to be added 147 /// to the system are collected in \p NewVariables. 148 ConstraintTy getConstraint(CmpInst *Cmp, 149 SmallVectorImpl<Value *> &NewVariables) { 150 return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0), 151 Cmp->getOperand(1), NewVariables); 152 } 153 154 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 155 /// system if \p Pred is signed/unsigned. 156 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 157 unsigned NumIn, unsigned NumOut, 158 SmallVectorImpl<StackEntry> &DFSInStack); 159 }; 160 161 /// Represents a (Coefficient * Variable) entry after IR decomposition. 162 struct DecompEntry { 163 int64_t Coefficient; 164 Value *Variable; 165 /// True if the variable is known positive in the current constraint. 166 bool IsKnownPositive; 167 168 DecompEntry(int64_t Coefficient, Value *Variable, 169 bool IsKnownPositive = false) 170 : Coefficient(Coefficient), Variable(Variable), 171 IsKnownPositive(IsKnownPositive) {} 172 }; 173 174 } // namespace 175 176 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable 177 // } where Coefficient * Variable. The sum of the pairs equals \p V. The first 178 // pair is the constant-factor and X must be nullptr. If the expression cannot 179 // be decomposed, returns an empty vector. 180 static SmallVector<DecompEntry, 4> 181 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 182 bool IsSigned) { 183 184 auto CanUseSExt = [](ConstantInt *CI) { 185 const APInt &Val = CI->getValue(); 186 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 187 }; 188 // Decompose \p V used with a signed predicate. 189 if (IsSigned) { 190 if (auto *CI = dyn_cast<ConstantInt>(V)) { 191 if (CanUseSExt(CI)) 192 return {{CI->getSExtValue(), nullptr}}; 193 } 194 195 return {{0, nullptr}, {1, V}}; 196 } 197 198 if (auto *CI = dyn_cast<ConstantInt>(V)) { 199 if (CI->uge(MaxConstraintValue)) 200 return {}; 201 return {{int64_t(CI->getZExtValue()), nullptr}}; 202 } 203 auto *GEP = dyn_cast<GetElementPtrInst>(V); 204 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 205 Value *Op0, *Op1; 206 ConstantInt *CI; 207 208 // If the index is zero-extended, it is guaranteed to be positive. 209 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 210 m_ZExt(m_Value(Op0)))) { 211 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && 212 CanUseSExt(CI)) 213 return {{0, nullptr}, 214 {1, GEP->getPointerOperand()}, 215 {int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op1}}; 216 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) && 217 CanUseSExt(CI)) 218 return {{CI->getSExtValue(), nullptr}, 219 {1, GEP->getPointerOperand()}, 220 {1, Op1}}; 221 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0, true}}; 222 } 223 224 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 225 !CI->isNegative() && CanUseSExt(CI)) 226 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 227 228 SmallVector<DecompEntry, 4> Result; 229 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 230 m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) && 231 CanUseSExt(CI)) 232 Result = {{0, nullptr}, 233 {1, GEP->getPointerOperand()}, 234 {int(std::pow(int64_t(2), CI->getSExtValue())), Op0}}; 235 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 236 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) && 237 CanUseSExt(CI)) 238 Result = {{CI->getSExtValue(), nullptr}, 239 {1, GEP->getPointerOperand()}, 240 {1, Op0}}; 241 else { 242 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 243 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 244 } 245 // If Op0 is signed non-negative, the GEP is increasing monotonically and 246 // can be de-composed. 247 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 248 ConstantInt::get(Op0->getType(), 0)); 249 return Result; 250 } 251 252 Value *Op0; 253 bool IsKnownPositive = false; 254 if (match(V, m_ZExt(m_Value(Op0)))) { 255 IsKnownPositive = true; 256 V = Op0; 257 } 258 259 auto MergeResults = [&Preconditions, IsSigned]( 260 Value *A, Value *B, 261 bool IsSignedB) -> SmallVector<DecompEntry, 4> { 262 auto ResA = decompose(A, Preconditions, IsSigned); 263 auto ResB = decompose(B, Preconditions, IsSignedB); 264 if (ResA.empty() || ResB.empty()) 265 return {}; 266 ResA[0].Coefficient += ResB[0].Coefficient; 267 append_range(ResA, drop_begin(ResB)); 268 return ResA; 269 }; 270 Value *Op1; 271 ConstantInt *CI; 272 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 273 return MergeResults(Op0, Op1, IsSigned); 274 } 275 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 276 CanUseSExt(CI)) { 277 Preconditions.emplace_back( 278 CmpInst::ICMP_UGE, Op0, 279 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 280 return MergeResults(Op0, CI, true); 281 } 282 283 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI)) 284 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 285 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 286 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 287 288 return {{0, nullptr}, {1, V, IsKnownPositive}}; 289 } 290 291 ConstraintTy 292 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 293 SmallVectorImpl<Value *> &NewVariables) const { 294 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 295 bool IsEq = false; 296 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 297 switch (Pred) { 298 case CmpInst::ICMP_UGT: 299 case CmpInst::ICMP_UGE: 300 case CmpInst::ICMP_SGT: 301 case CmpInst::ICMP_SGE: { 302 Pred = CmpInst::getSwappedPredicate(Pred); 303 std::swap(Op0, Op1); 304 break; 305 } 306 case CmpInst::ICMP_EQ: 307 if (match(Op1, m_Zero())) { 308 Pred = CmpInst::ICMP_ULE; 309 } else { 310 IsEq = true; 311 Pred = CmpInst::ICMP_ULE; 312 } 313 break; 314 case CmpInst::ICMP_NE: 315 if (!match(Op1, m_Zero())) 316 return {}; 317 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 318 std::swap(Op0, Op1); 319 break; 320 default: 321 break; 322 } 323 324 // Only ULE and ULT predicates are supported at the moment. 325 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 326 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 327 return {}; 328 329 SmallVector<PreconditionTy, 4> Preconditions; 330 bool IsSigned = CmpInst::isSigned(Pred); 331 auto &Value2Index = getValue2Index(IsSigned); 332 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 333 Preconditions, IsSigned); 334 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 335 Preconditions, IsSigned); 336 // Skip if decomposing either of the values failed. 337 if (ADec.empty() || BDec.empty()) 338 return {}; 339 340 int64_t Offset1 = ADec[0].Coefficient; 341 int64_t Offset2 = BDec[0].Coefficient; 342 Offset1 *= -1; 343 344 // Create iterator ranges that skip the constant-factor. 345 auto VariablesA = llvm::drop_begin(ADec); 346 auto VariablesB = llvm::drop_begin(BDec); 347 348 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 349 // new entry to NewVariables. 350 DenseMap<Value *, unsigned> NewIndexMap; 351 auto GetOrAddIndex = [&Value2Index, &NewVariables, 352 &NewIndexMap](Value *V) -> unsigned { 353 auto V2I = Value2Index.find(V); 354 if (V2I != Value2Index.end()) 355 return V2I->second; 356 auto Insert = 357 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 358 if (Insert.second) 359 NewVariables.push_back(V); 360 return Insert.first->second; 361 }; 362 363 // Make sure all variables have entries in Value2Index or NewVariables. 364 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 365 GetOrAddIndex(KV.Variable); 366 367 // Build result constraint, by first adding all coefficients from A and then 368 // subtracting all coefficients from B. 369 ConstraintTy Res( 370 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 371 IsSigned); 372 // Collect variables that are known to be positive in all uses in the 373 // constraint. 374 DenseMap<Value *, bool> KnownPositiveVariables; 375 Res.IsEq = IsEq; 376 auto &R = Res.Coefficients; 377 for (const auto &KV : VariablesA) { 378 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 379 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 380 I.first->second &= KV.IsKnownPositive; 381 } 382 383 for (const auto &KV : VariablesB) { 384 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 385 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 386 I.first->second &= KV.IsKnownPositive; 387 } 388 389 int64_t OffsetSum; 390 if (AddOverflow(Offset1, Offset2, OffsetSum)) 391 return {}; 392 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 393 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 394 return {}; 395 R[0] = OffsetSum; 396 Res.Preconditions = std::move(Preconditions); 397 398 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 399 // variables. 400 while (!NewVariables.empty()) { 401 int64_t Last = R.back(); 402 if (Last != 0) 403 break; 404 R.pop_back(); 405 Value *RemovedV = NewVariables.pop_back_val(); 406 NewIndexMap.erase(RemovedV); 407 } 408 409 // Add extra constraints for variables that are known positive. 410 for (auto &KV : KnownPositiveVariables) { 411 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 412 NewIndexMap.find(KV.first) == NewIndexMap.end())) 413 continue; 414 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 415 C[GetOrAddIndex(KV.first)] = -1; 416 Res.ExtraInfo.push_back(C); 417 } 418 return Res; 419 } 420 421 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 422 return Coefficients.size() > 0 && 423 all_of(Preconditions, [&Info](const PreconditionTy &C) { 424 return Info.doesHold(C.Pred, C.Op0, C.Op1); 425 }); 426 } 427 428 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 429 Value *B) const { 430 SmallVector<Value *> NewVariables; 431 auto R = getConstraint(Pred, A, B, NewVariables); 432 433 if (!NewVariables.empty()) 434 return false; 435 436 return NewVariables.empty() && R.Preconditions.empty() && !R.IsEq && 437 !R.empty() && 438 getCS(CmpInst::isSigned(Pred)).isConditionImplied(R.Coefficients); 439 } 440 441 void ConstraintInfo::transferToOtherSystem( 442 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 443 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 444 // Check if we can combine facts from the signed and unsigned systems to 445 // derive additional facts. 446 if (!A->getType()->isIntegerTy()) 447 return; 448 // FIXME: This currently depends on the order we add facts. Ideally we 449 // would first add all known facts and only then try to add additional 450 // facts. 451 switch (Pred) { 452 default: 453 break; 454 case CmpInst::ICMP_ULT: 455 // If B is a signed positive constant, A >=s 0 and A <s B. 456 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 457 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 458 NumOut, DFSInStack); 459 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 460 } 461 break; 462 case CmpInst::ICMP_SLT: 463 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 464 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 465 break; 466 case CmpInst::ICMP_SGT: 467 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 468 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 469 NumOut, DFSInStack); 470 break; 471 case CmpInst::ICMP_SGE: 472 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 473 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 474 } 475 break; 476 } 477 } 478 479 namespace { 480 /// Represents either a condition that holds on entry to a block or a basic 481 /// block, with their respective Dominator DFS in and out numbers. 482 struct ConstraintOrBlock { 483 unsigned NumIn; 484 unsigned NumOut; 485 bool IsBlock; 486 bool Not; 487 union { 488 BasicBlock *BB; 489 CmpInst *Condition; 490 }; 491 492 ConstraintOrBlock(DomTreeNode *DTN) 493 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 494 BB(DTN->getBlock()) {} 495 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 496 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 497 Not(Not), Condition(Condition) {} 498 }; 499 500 /// Keep state required to build worklist. 501 struct State { 502 DominatorTree &DT; 503 SmallVector<ConstraintOrBlock, 64> WorkList; 504 505 State(DominatorTree &DT) : DT(DT) {} 506 507 /// Process block \p BB and add known facts to work-list. 508 void addInfoFor(BasicBlock &BB); 509 510 /// Returns true if we can add a known condition from BB to its successor 511 /// block Succ. Each predecessor of Succ can either be BB or be dominated 512 /// by Succ (e.g. the case when adding a condition from a pre-header to a 513 /// loop header). 514 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 515 if (BB.getSingleSuccessor()) { 516 assert(BB.getSingleSuccessor() == Succ); 517 return DT.properlyDominates(&BB, Succ); 518 } 519 return any_of(successors(&BB), 520 [Succ](const BasicBlock *S) { return S != Succ; }) && 521 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 522 return Pred == &BB || DT.dominates(Succ, Pred); 523 }); 524 } 525 }; 526 527 } // namespace 528 529 #ifndef NDEBUG 530 static void dumpWithNames(const ConstraintSystem &CS, 531 DenseMap<Value *, unsigned> &Value2Index) { 532 SmallVector<std::string> Names(Value2Index.size(), ""); 533 for (auto &KV : Value2Index) { 534 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 535 } 536 CS.dump(Names); 537 } 538 539 static void dumpWithNames(ArrayRef<int64_t> C, 540 DenseMap<Value *, unsigned> &Value2Index) { 541 ConstraintSystem CS; 542 CS.addVariableRowFill(C); 543 dumpWithNames(CS, Value2Index); 544 } 545 #endif 546 547 void State::addInfoFor(BasicBlock &BB) { 548 WorkList.emplace_back(DT.getNode(&BB)); 549 550 // True as long as long as the current instruction is guaranteed to execute. 551 bool GuaranteedToExecute = true; 552 // Scan BB for assume calls. 553 // TODO: also use this scan to queue conditions to simplify, so we can 554 // interleave facts from assumes and conditions to simplify in a single 555 // basic block. And to skip another traversal of each basic block when 556 // simplifying. 557 for (Instruction &I : BB) { 558 Value *Cond; 559 // For now, just handle assumes with a single compare as condition. 560 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 561 isa<ICmpInst>(Cond)) { 562 if (GuaranteedToExecute) { 563 // The assume is guaranteed to execute when BB is entered, hence Cond 564 // holds on entry to BB. 565 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 566 } else { 567 // Otherwise the condition only holds in the successors. 568 for (BasicBlock *Succ : successors(&BB)) { 569 if (!canAddSuccessor(BB, Succ)) 570 continue; 571 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false); 572 } 573 } 574 } 575 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 576 } 577 578 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 579 if (!Br || !Br->isConditional()) 580 return; 581 582 // If the condition is an OR of 2 compares and the false successor only has 583 // the current block as predecessor, queue both negated conditions for the 584 // false successor. 585 Value *Op0, *Op1; 586 if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && 587 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 588 BasicBlock *FalseSuccessor = Br->getSuccessor(1); 589 if (canAddSuccessor(BB, FalseSuccessor)) { 590 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0), 591 true); 592 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1), 593 true); 594 } 595 return; 596 } 597 598 // If the condition is an AND of 2 compares and the true successor only has 599 // the current block as predecessor, queue both conditions for the true 600 // successor. 601 if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && 602 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 603 BasicBlock *TrueSuccessor = Br->getSuccessor(0); 604 if (canAddSuccessor(BB, TrueSuccessor)) { 605 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0), 606 false); 607 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1), 608 false); 609 } 610 return; 611 } 612 613 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 614 if (!CmpI) 615 return; 616 if (canAddSuccessor(BB, Br->getSuccessor(0))) 617 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 618 if (canAddSuccessor(BB, Br->getSuccessor(1))) 619 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 620 } 621 622 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 623 unsigned NumIn, unsigned NumOut, 624 SmallVectorImpl<StackEntry> &DFSInStack) { 625 // If the constraint has a pre-condition, skip the constraint if it does not 626 // hold. 627 SmallVector<Value *> NewVariables; 628 auto R = getConstraint(Pred, A, B, NewVariables); 629 if (!R.isValid(*this)) 630 return; 631 632 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; 633 A->printAsOperand(dbgs(), false); dbgs() << ", "; 634 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 635 bool Added = false; 636 assert(CmpInst::isSigned(Pred) == R.IsSigned && 637 "condition and constraint signs must match"); 638 auto &CSToUse = getCS(R.IsSigned); 639 if (R.Coefficients.empty()) 640 return; 641 642 Added |= CSToUse.addVariableRowFill(R.Coefficients); 643 644 // If R has been added to the system, add the new variables and queue it for 645 // removal once it goes out-of-scope. 646 if (Added) { 647 SmallVector<Value *, 2> ValuesToRelease; 648 auto &Value2Index = getValue2Index(R.IsSigned); 649 for (Value *V : NewVariables) { 650 Value2Index.insert({V, Value2Index.size() + 1}); 651 ValuesToRelease.push_back(V); 652 } 653 654 LLVM_DEBUG({ 655 dbgs() << " constraint: "; 656 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 657 dbgs() << "\n"; 658 }); 659 660 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease); 661 662 if (R.IsEq) { 663 // Also add the inverted constraint for equality constraints. 664 for (auto &Coeff : R.Coefficients) 665 Coeff *= -1; 666 CSToUse.addVariableRowFill(R.Coefficients); 667 668 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 669 SmallVector<Value *, 2>()); 670 } 671 } 672 } 673 674 static bool 675 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 676 SmallVectorImpl<Instruction *> &ToRemove) { 677 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 678 ConstraintInfo &Info) { 679 SmallVector<Value *> NewVariables; 680 auto R = Info.getConstraint(Pred, A, B, NewVariables); 681 if (R.size() < 2 || !NewVariables.empty() || !R.isValid(Info)) 682 return false; 683 684 auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred)); 685 return CSToUse.isConditionImplied(R.Coefficients); 686 }; 687 688 bool Changed = false; 689 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 690 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 691 // can be simplified to a regular sub. 692 Value *A = II->getArgOperand(0); 693 Value *B = II->getArgOperand(1); 694 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 695 !DoesConditionHold(CmpInst::ICMP_SGE, B, 696 ConstantInt::get(A->getType(), 0), Info)) 697 return false; 698 699 IRBuilder<> Builder(II->getParent(), II->getIterator()); 700 Value *Sub = nullptr; 701 for (User *U : make_early_inc_range(II->users())) { 702 if (match(U, m_ExtractValue<0>(m_Value()))) { 703 if (!Sub) 704 Sub = Builder.CreateSub(A, B); 705 U->replaceAllUsesWith(Sub); 706 Changed = true; 707 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 708 U->replaceAllUsesWith(Builder.getFalse()); 709 Changed = true; 710 } else 711 continue; 712 713 if (U->use_empty()) { 714 auto *I = cast<Instruction>(U); 715 ToRemove.push_back(I); 716 I->setOperand(0, PoisonValue::get(II->getType())); 717 Changed = true; 718 } 719 } 720 721 if (II->use_empty()) { 722 II->eraseFromParent(); 723 Changed = true; 724 } 725 } 726 return Changed; 727 } 728 729 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 730 bool Changed = false; 731 DT.updateDFSNumbers(); 732 733 ConstraintInfo Info; 734 State S(DT); 735 736 // First, collect conditions implied by branches and blocks with their 737 // Dominator DFS in and out numbers. 738 for (BasicBlock &BB : F) { 739 if (!DT.getNode(&BB)) 740 continue; 741 S.addInfoFor(BB); 742 } 743 744 // Next, sort worklist by dominance, so that dominating blocks and conditions 745 // come before blocks and conditions dominated by them. If a block and a 746 // condition have the same numbers, the condition comes before the block, as 747 // it holds on entry to the block. 748 stable_sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 749 return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); 750 }); 751 752 SmallVector<Instruction *> ToRemove; 753 754 // Finally, process ordered worklist and eliminate implied conditions. 755 SmallVector<StackEntry, 16> DFSInStack; 756 for (ConstraintOrBlock &CB : S.WorkList) { 757 // First, pop entries from the stack that are out-of-scope for CB. Remove 758 // the corresponding entry from the constraint system. 759 while (!DFSInStack.empty()) { 760 auto &E = DFSInStack.back(); 761 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 762 << "\n"); 763 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 764 assert(E.NumIn <= CB.NumIn); 765 if (CB.NumOut <= E.NumOut) 766 break; 767 LLVM_DEBUG({ 768 dbgs() << "Removing "; 769 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 770 Info.getValue2Index(E.IsSigned)); 771 dbgs() << "\n"; 772 }); 773 774 Info.popLastConstraint(E.IsSigned); 775 // Remove variables in the system that went out of scope. 776 auto &Mapping = Info.getValue2Index(E.IsSigned); 777 for (Value *V : E.ValuesToRelease) 778 Mapping.erase(V); 779 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 780 DFSInStack.pop_back(); 781 } 782 783 LLVM_DEBUG({ 784 dbgs() << "Processing "; 785 if (CB.IsBlock) 786 dbgs() << *CB.BB; 787 else 788 dbgs() << *CB.Condition; 789 dbgs() << "\n"; 790 }); 791 792 // For a block, check if any CmpInsts become known based on the current set 793 // of constraints. 794 if (CB.IsBlock) { 795 for (Instruction &I : make_early_inc_range(*CB.BB)) { 796 if (auto *II = dyn_cast<WithOverflowInst>(&I)) { 797 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 798 continue; 799 } 800 auto *Cmp = dyn_cast<ICmpInst>(&I); 801 if (!Cmp) 802 continue; 803 804 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 805 SmallVector<Value *> NewVariables; 806 auto R = Info.getConstraint(Cmp, NewVariables); 807 if (R.IsEq || R.empty() || !NewVariables.empty() || !R.isValid(Info)) 808 continue; 809 810 auto &CSToUse = Info.getCS(R.IsSigned); 811 812 // If there was extra information collected during decomposition, apply 813 // it now and remove it immediately once we are done with reasoning 814 // about the constraint. 815 for (auto &Row : R.ExtraInfo) 816 CSToUse.addVariableRow(Row); 817 auto InfoRestorer = make_scope_exit([&]() { 818 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 819 CSToUse.popLastConstraint(); 820 }); 821 822 if (CSToUse.isConditionImplied(R.Coefficients)) { 823 if (!DebugCounter::shouldExecute(EliminatedCounter)) 824 continue; 825 826 LLVM_DEBUG({ 827 dbgs() << "Condition " << *Cmp 828 << " implied by dominating constraints\n"; 829 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 830 }); 831 Cmp->replaceUsesWithIf( 832 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 833 // Conditions in an assume trivially simplify to true. Skip uses 834 // in assume calls to not destroy the available information. 835 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 836 return !II || II->getIntrinsicID() != Intrinsic::assume; 837 }); 838 NumCondsRemoved++; 839 Changed = true; 840 } 841 if (CSToUse.isConditionImplied( 842 ConstraintSystem::negate(R.Coefficients))) { 843 if (!DebugCounter::shouldExecute(EliminatedCounter)) 844 continue; 845 846 LLVM_DEBUG({ 847 dbgs() << "Condition !" << *Cmp 848 << " implied by dominating constraints\n"; 849 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 850 }); 851 Cmp->replaceAllUsesWith( 852 ConstantInt::getFalse(F.getParent()->getContext())); 853 NumCondsRemoved++; 854 Changed = true; 855 } 856 } 857 continue; 858 } 859 860 ICmpInst::Predicate Pred; 861 Value *A, *B; 862 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 863 // Use the inverse predicate if required. 864 if (CB.Not) 865 Pred = CmpInst::getInversePredicate(Pred); 866 867 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 868 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 869 } 870 } 871 872 #ifndef NDEBUG 873 unsigned SignedEntries = 874 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 875 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 876 "updates to CS and DFSInStack are out of sync"); 877 assert(Info.getCS(true).size() == SignedEntries && 878 "updates to CS and DFSInStack are out of sync"); 879 #endif 880 881 for (Instruction *I : ToRemove) 882 I->eraseFromParent(); 883 return Changed; 884 } 885 886 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 887 FunctionAnalysisManager &AM) { 888 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 889 if (!eliminateConstraints(F, DT)) 890 return PreservedAnalyses::all(); 891 892 PreservedAnalyses PA; 893 PA.preserve<DominatorTreeAnalysis>(); 894 PA.preserveSet<CFGAnalyses>(); 895 return PA; 896 } 897 898 namespace { 899 900 class ConstraintElimination : public FunctionPass { 901 public: 902 static char ID; 903 904 ConstraintElimination() : FunctionPass(ID) { 905 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 906 } 907 908 bool runOnFunction(Function &F) override { 909 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 910 return eliminateConstraints(F, DT); 911 } 912 913 void getAnalysisUsage(AnalysisUsage &AU) const override { 914 AU.setPreservesCFG(); 915 AU.addRequired<DominatorTreeWrapperPass>(); 916 AU.addPreserved<GlobalsAAWrapperPass>(); 917 AU.addPreserved<DominatorTreeWrapperPass>(); 918 } 919 }; 920 921 } // end anonymous namespace 922 923 char ConstraintElimination::ID = 0; 924 925 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 926 "Constraint Elimination", false, false) 927 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 928 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 929 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 930 "Constraint Elimination", false, false) 931 932 FunctionPass *llvm::createConstraintEliminationPass() { 933 return new ConstraintElimination(); 934 } 935