xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 9a33f3975e1a0cbfcfa3e5455b0d1429b98fabf4)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/DebugCounter.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Scalar.h"
33 
34 #include <string>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "constraint-elimination"
40 
41 STATISTIC(NumCondsRemoved, "Number of instructions removed");
42 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
43               "Controls which conditions are eliminated");
44 
45 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
46 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
47 
48 namespace {
49 
50 class ConstraintInfo;
51 
52 struct StackEntry {
53   unsigned NumIn;
54   unsigned NumOut;
55   bool IsNot;
56   bool IsSigned = false;
57   /// Variables that can be removed from the system once the stack entry gets
58   /// removed.
59   SmallVector<Value *, 2> ValuesToRelease;
60 
61   StackEntry(unsigned NumIn, unsigned NumOut, bool IsNot, bool IsSigned,
62              SmallVector<Value *, 2> ValuesToRelease)
63       : NumIn(NumIn), NumOut(NumOut), IsNot(IsNot), IsSigned(IsSigned),
64         ValuesToRelease(ValuesToRelease) {}
65 };
66 
67 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
68 struct PreconditionTy {
69   CmpInst::Predicate Pred;
70   Value *Op0;
71   Value *Op1;
72 
73   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
74       : Pred(Pred), Op0(Op0), Op1(Op1) {}
75 };
76 
77 struct ConstraintTy {
78   SmallVector<int64_t, 8> Coefficients;
79   SmallVector<PreconditionTy, 2> Preconditions;
80 
81   bool IsSigned = false;
82   bool IsEq = false;
83 
84   ConstraintTy() = default;
85 
86   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
87       : Coefficients(Coefficients), IsSigned(IsSigned) {}
88 
89   unsigned size() const { return Coefficients.size(); }
90 
91   unsigned empty() const { return Coefficients.empty(); }
92 
93   /// Returns true if any constraint has a non-zero coefficient for any of the
94   /// newly added indices. Zero coefficients for new indices are removed. If it
95   /// returns true, no new variable need to be added to the system.
96   bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) {
97     for (unsigned I = 0; I < NewIndices.size(); ++I) {
98       int64_t Last = Coefficients.pop_back_val();
99       if (Last != 0)
100         return true;
101     }
102     return false;
103   }
104 
105   /// Returns true if all preconditions for this list of constraints are
106   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
107   bool isValid(const ConstraintInfo &Info) const;
108 };
109 
110 /// Wrapper encapsulating separate constraint systems and corresponding value
111 /// mappings for both unsigned and signed information. Facts are added to and
112 /// conditions are checked against the corresponding system depending on the
113 /// signed-ness of their predicates. While the information is kept separate
114 /// based on signed-ness, certain conditions can be transferred between the two
115 /// systems.
116 class ConstraintInfo {
117   DenseMap<Value *, unsigned> UnsignedValue2Index;
118   DenseMap<Value *, unsigned> SignedValue2Index;
119 
120   ConstraintSystem UnsignedCS;
121   ConstraintSystem SignedCS;
122 
123 public:
124   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
125     return Signed ? SignedValue2Index : UnsignedValue2Index;
126   }
127   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
128     return Signed ? SignedValue2Index : UnsignedValue2Index;
129   }
130 
131   ConstraintSystem &getCS(bool Signed) {
132     return Signed ? SignedCS : UnsignedCS;
133   }
134   const ConstraintSystem &getCS(bool Signed) const {
135     return Signed ? SignedCS : UnsignedCS;
136   }
137 
138   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
139   void popLastNVariables(bool Signed, unsigned N) {
140     getCS(Signed).popLastNVariables(N);
141   }
142 
143   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
144 
145   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated,
146                unsigned NumIn, unsigned NumOut,
147                SmallVectorImpl<StackEntry> &DFSInStack);
148 
149   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
150   /// constraints, using indices from the corresponding constraint system.
151   /// Additional indices for newly discovered values are added to \p NewIndices.
152   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
153                              DenseMap<Value *, unsigned> &NewIndices) const;
154 
155   /// Turn a condition \p CmpI into a vector of constraints, using indices from
156   /// the corresponding constraint system. Additional indices for newly
157   /// discovered values are added to \p NewIndices.
158   ConstraintTy getConstraint(CmpInst *Cmp,
159                              DenseMap<Value *, unsigned> &NewIndices) const {
160     return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
161                          Cmp->getOperand(1), NewIndices);
162   }
163 
164   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
165   /// system if \p Pred is signed/unsigned.
166   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
167                              bool IsNegated, unsigned NumIn, unsigned NumOut,
168                              SmallVectorImpl<StackEntry> &DFSInStack);
169 };
170 
171 } // namespace
172 
173 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
174 // sum of the pairs equals \p V.  The first pair is the constant-factor and X
175 // must be nullptr. If the expression cannot be decomposed, returns an empty
176 // vector.
177 static SmallVector<std::pair<int64_t, Value *>, 4>
178 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
179           bool IsSigned) {
180 
181   auto CanUseSExt = [](ConstantInt *CI) {
182     const APInt &Val = CI->getValue();
183     return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
184   };
185   // Decompose \p V used with a signed predicate.
186   if (IsSigned) {
187     if (auto *CI = dyn_cast<ConstantInt>(V)) {
188       if (CanUseSExt(CI))
189         return {{CI->getSExtValue(), nullptr}};
190     }
191 
192     return {{0, nullptr}, {1, V}};
193   }
194 
195   if (auto *CI = dyn_cast<ConstantInt>(V)) {
196     if (CI->uge(MaxConstraintValue))
197       return {};
198     return {{CI->getZExtValue(), nullptr}};
199   }
200   auto *GEP = dyn_cast<GetElementPtrInst>(V);
201   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
202     Value *Op0, *Op1;
203     ConstantInt *CI;
204 
205     // If the index is zero-extended, it is guaranteed to be positive.
206     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
207               m_ZExt(m_Value(Op0)))) {
208       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) &&
209           CanUseSExt(CI))
210         return {{0, nullptr},
211                 {1, GEP->getPointerOperand()},
212                 {std::pow(int64_t(2), CI->getSExtValue()), Op1}};
213       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) &&
214           CanUseSExt(CI))
215         return {{CI->getSExtValue(), nullptr},
216                 {1, GEP->getPointerOperand()},
217                 {1, Op1}};
218       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
219     }
220 
221     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
222         !CI->isNegative() && CanUseSExt(CI))
223       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
224 
225     SmallVector<std::pair<int64_t, Value *>, 4> Result;
226     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
227               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) &&
228         CanUseSExt(CI))
229       Result = {{0, nullptr},
230                 {1, GEP->getPointerOperand()},
231                 {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
232     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
233                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
234              CanUseSExt(CI))
235       Result = {{CI->getSExtValue(), nullptr},
236                 {1, GEP->getPointerOperand()},
237                 {1, Op0}};
238     else {
239       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
240       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
241     }
242     // If Op0 is signed non-negative, the GEP is increasing monotonically and
243     // can be de-composed.
244     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
245                                ConstantInt::get(Op0->getType(), 0));
246     return Result;
247   }
248 
249   Value *Op0;
250   if (match(V, m_ZExt(m_Value(Op0))))
251     V = Op0;
252 
253   Value *Op1;
254   ConstantInt *CI;
255   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
256       !CI->uge(MaxConstraintValue))
257     return {{CI->getZExtValue(), nullptr}, {1, Op0}};
258   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
259       CanUseSExt(CI)) {
260     Preconditions.emplace_back(
261         CmpInst::ICMP_UGE, Op0,
262         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
263     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
264   }
265   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
266     return {{0, nullptr}, {1, Op0}, {1, Op1}};
267 
268   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI))
269     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
270   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
271     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
272 
273   return {{0, nullptr}, {1, V}};
274 }
275 
276 ConstraintTy
277 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
278                               DenseMap<Value *, unsigned> &NewIndices) const {
279   bool IsEq = false;
280   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
281   switch (Pred) {
282   case CmpInst::ICMP_UGT:
283   case CmpInst::ICMP_UGE:
284   case CmpInst::ICMP_SGT:
285   case CmpInst::ICMP_SGE: {
286     Pred = CmpInst::getSwappedPredicate(Pred);
287     std::swap(Op0, Op1);
288     break;
289   }
290   case CmpInst::ICMP_EQ:
291     if (match(Op1, m_Zero())) {
292       Pred = CmpInst::ICMP_ULE;
293     } else {
294       IsEq = true;
295       Pred = CmpInst::ICMP_ULE;
296     }
297     break;
298   case CmpInst::ICMP_NE:
299     if (!match(Op1, m_Zero()))
300       return {};
301     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
302     std::swap(Op0, Op1);
303     break;
304   default:
305     break;
306   }
307 
308   // Only ULE and ULT predicates are supported at the moment.
309   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
310       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
311     return {};
312 
313   SmallVector<PreconditionTy, 4> Preconditions;
314   bool IsSigned = CmpInst::isSigned(Pred);
315   auto &Value2Index = getValue2Index(IsSigned);
316   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
317                         Preconditions, IsSigned);
318   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
319                         Preconditions, IsSigned);
320   // Skip if decomposing either of the values failed.
321   if (ADec.empty() || BDec.empty())
322     return {};
323 
324   int64_t Offset1 = ADec[0].first;
325   int64_t Offset2 = BDec[0].first;
326   Offset1 *= -1;
327 
328   // Create iterator ranges that skip the constant-factor.
329   auto VariablesA = llvm::drop_begin(ADec);
330   auto VariablesB = llvm::drop_begin(BDec);
331 
332   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
333   // new entry to NewIndices.
334   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
335     auto V2I = Value2Index.find(V);
336     if (V2I != Value2Index.end())
337       return V2I->second;
338     auto Insert =
339         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
340     return Insert.first->second;
341   };
342 
343   // Make sure all variables have entries in Value2Index or NewIndices.
344   for (const auto &KV :
345        concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
346     GetOrAddIndex(KV.second);
347 
348   // Build result constraint, by first adding all coefficients from A and then
349   // subtracting all coefficients from B.
350   ConstraintTy Res(
351       SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0),
352       IsSigned);
353   Res.IsEq = IsEq;
354   auto &R = Res.Coefficients;
355   for (const auto &KV : VariablesA)
356     R[GetOrAddIndex(KV.second)] += KV.first;
357 
358   for (const auto &KV : VariablesB)
359     R[GetOrAddIndex(KV.second)] -= KV.first;
360 
361   int64_t OffsetSum;
362   if (AddOverflow(Offset1, Offset2, OffsetSum))
363     return {};
364   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
365     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
366       return {};
367   R[0] = OffsetSum;
368   Res.Preconditions = std::move(Preconditions);
369   return Res;
370 }
371 
372 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
373   return Coefficients.size() > 0 &&
374          all_of(Preconditions, [&Info](const PreconditionTy &C) {
375            return Info.doesHold(C.Pred, C.Op0, C.Op1);
376          });
377 }
378 
379 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
380                               Value *B) const {
381   DenseMap<Value *, unsigned> NewIndices;
382   auto R = getConstraint(Pred, A, B, NewIndices);
383 
384   if (!NewIndices.empty())
385     return false;
386 
387   // TODO: properly check NewIndices.
388   return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq &&
389          !R.empty() &&
390          getCS(CmpInst::isSigned(Pred)).isConditionImplied(R.Coefficients);
391 }
392 
393 void ConstraintInfo::transferToOtherSystem(
394     CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn,
395     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
396   // Check if we can combine facts from the signed and unsigned systems to
397   // derive additional facts.
398   if (!A->getType()->isIntegerTy())
399     return;
400   // FIXME: This currently depends on the order we add facts. Ideally we
401   // would first add all known facts and only then try to add additional
402   // facts.
403   switch (Pred) {
404   default:
405     break;
406   case CmpInst::ICMP_SLT:
407     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
408       addFact(CmpInst::ICMP_ULT, A, B, IsNegated, NumIn, NumOut, DFSInStack);
409     break;
410   case CmpInst::ICMP_SGT:
411     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
412       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0),
413               IsNegated, NumIn, NumOut, DFSInStack);
414     break;
415   case CmpInst::ICMP_SGE:
416     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
417       addFact(CmpInst::ICMP_UGE, A, B, IsNegated, NumIn, NumOut, DFSInStack);
418     }
419     break;
420   }
421 }
422 
423 namespace {
424 /// Represents either a condition that holds on entry to a block or a basic
425 /// block, with their respective Dominator DFS in and out numbers.
426 struct ConstraintOrBlock {
427   unsigned NumIn;
428   unsigned NumOut;
429   bool IsBlock;
430   bool Not;
431   union {
432     BasicBlock *BB;
433     CmpInst *Condition;
434   };
435 
436   ConstraintOrBlock(DomTreeNode *DTN)
437       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
438         BB(DTN->getBlock()) {}
439   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
440       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
441         Not(Not), Condition(Condition) {}
442 };
443 
444 /// Keep state required to build worklist.
445 struct State {
446   DominatorTree &DT;
447   SmallVector<ConstraintOrBlock, 64> WorkList;
448 
449   State(DominatorTree &DT) : DT(DT) {}
450 
451   /// Process block \p BB and add known facts to work-list.
452   void addInfoFor(BasicBlock &BB);
453 
454   /// Returns true if we can add a known condition from BB to its successor
455   /// block Succ. Each predecessor of Succ can either be BB or be dominated
456   /// by Succ (e.g. the case when adding a condition from a pre-header to a
457   /// loop header).
458   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
459     if (BB.getSingleSuccessor()) {
460       assert(BB.getSingleSuccessor() == Succ);
461       return DT.properlyDominates(&BB, Succ);
462     }
463     return any_of(successors(&BB),
464                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
465            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
466              return Pred == &BB || DT.dominates(Succ, Pred);
467            });
468   }
469 };
470 
471 } // namespace
472 
473 #ifndef NDEBUG
474 static void dumpWithNames(const ConstraintSystem &CS,
475                           DenseMap<Value *, unsigned> &Value2Index) {
476   SmallVector<std::string> Names(Value2Index.size(), "");
477   for (auto &KV : Value2Index) {
478     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
479   }
480   CS.dump(Names);
481 }
482 
483 static void dumpWithNames(ArrayRef<int64_t> C,
484                           DenseMap<Value *, unsigned> &Value2Index) {
485   ConstraintSystem CS;
486   CS.addVariableRowFill(C);
487   dumpWithNames(CS, Value2Index);
488 }
489 #endif
490 
491 void State::addInfoFor(BasicBlock &BB) {
492   WorkList.emplace_back(DT.getNode(&BB));
493 
494   // True as long as long as the current instruction is guaranteed to execute.
495   bool GuaranteedToExecute = true;
496   // Scan BB for assume calls.
497   // TODO: also use this scan to queue conditions to simplify, so we can
498   // interleave facts from assumes and conditions to simplify in a single
499   // basic block. And to skip another traversal of each basic block when
500   // simplifying.
501   for (Instruction &I : BB) {
502     Value *Cond;
503     // For now, just handle assumes with a single compare as condition.
504     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
505         isa<ICmpInst>(Cond)) {
506       if (GuaranteedToExecute) {
507         // The assume is guaranteed to execute when BB is entered, hence Cond
508         // holds on entry to BB.
509         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
510       } else {
511         // Otherwise the condition only holds in the successors.
512         for (BasicBlock *Succ : successors(&BB)) {
513           if (!canAddSuccessor(BB, Succ))
514             continue;
515           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
516         }
517       }
518     }
519     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
520   }
521 
522   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
523   if (!Br || !Br->isConditional())
524     return;
525 
526   // If the condition is an OR of 2 compares and the false successor only has
527   // the current block as predecessor, queue both negated conditions for the
528   // false successor.
529   Value *Op0, *Op1;
530   if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
531       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
532     BasicBlock *FalseSuccessor = Br->getSuccessor(1);
533     if (canAddSuccessor(BB, FalseSuccessor)) {
534       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0),
535                             true);
536       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1),
537                             true);
538     }
539     return;
540   }
541 
542   // If the condition is an AND of 2 compares and the true successor only has
543   // the current block as predecessor, queue both conditions for the true
544   // successor.
545   if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
546       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
547     BasicBlock *TrueSuccessor = Br->getSuccessor(0);
548     if (canAddSuccessor(BB, TrueSuccessor)) {
549       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0),
550                             false);
551       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1),
552                             false);
553     }
554     return;
555   }
556 
557   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
558   if (!CmpI)
559     return;
560   if (canAddSuccessor(BB, Br->getSuccessor(0)))
561     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
562   if (canAddSuccessor(BB, Br->getSuccessor(1)))
563     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
564 }
565 
566 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
567                              bool IsNegated, unsigned NumIn, unsigned NumOut,
568                              SmallVectorImpl<StackEntry> &DFSInStack) {
569   // If the constraint has a pre-condition, skip the constraint if it does not
570   // hold.
571   DenseMap<Value *, unsigned> NewIndices;
572   auto R = getConstraint(Pred, A, B, NewIndices);
573   if (!R.isValid(*this))
574     return;
575 
576   //LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n");
577   bool Added = false;
578   assert(CmpInst::isSigned(Pred) == R.IsSigned &&
579          "condition and constraint signs must match");
580   auto &CSToUse = getCS(R.IsSigned);
581   if (R.Coefficients.empty())
582     return;
583 
584   Added |= CSToUse.addVariableRowFill(R.Coefficients);
585 
586   // If R has been added to the system, queue it for removal once it goes
587   // out-of-scope.
588   if (Added) {
589     SmallVector<Value *, 2> ValuesToRelease;
590     for (auto &KV : NewIndices) {
591       getValue2Index(R.IsSigned).insert(KV);
592       ValuesToRelease.push_back(KV.first);
593     }
594 
595     LLVM_DEBUG({
596       dbgs() << "  constraint: ";
597       dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
598     });
599 
600     DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned,
601                             ValuesToRelease);
602 
603     if (R.IsEq) {
604       // Also add the inverted constraint for equality constraints.
605       for (auto &Coeff : R.Coefficients)
606         Coeff *= -1;
607       CSToUse.addVariableRowFill(R.Coefficients);
608 
609       DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned,
610                               SmallVector<Value *, 2>());
611     }
612   }
613 }
614 
615 static void
616 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
617                           SmallVectorImpl<Instruction *> &ToRemove) {
618   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
619                               ConstraintInfo &Info) {
620     DenseMap<Value *, unsigned> NewIndices;
621     auto R = Info.getConstraint(Pred, A, B, NewIndices);
622     if (R.size() < 2 || R.needsNewIndices(NewIndices) || !R.isValid(Info))
623       return false;
624 
625     auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred));
626     return CSToUse.isConditionImplied(R.Coefficients);
627   };
628 
629   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
630     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
631     // can be simplified to a regular sub.
632     Value *A = II->getArgOperand(0);
633     Value *B = II->getArgOperand(1);
634     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
635         !DoesConditionHold(CmpInst::ICMP_SGE, B,
636                            ConstantInt::get(A->getType(), 0), Info))
637       return;
638 
639     IRBuilder<> Builder(II->getParent(), II->getIterator());
640     Value *Sub = nullptr;
641     for (User *U : make_early_inc_range(II->users())) {
642       if (match(U, m_ExtractValue<0>(m_Value()))) {
643         if (!Sub)
644           Sub = Builder.CreateSub(A, B);
645         U->replaceAllUsesWith(Sub);
646       } else if (match(U, m_ExtractValue<1>(m_Value())))
647         U->replaceAllUsesWith(Builder.getFalse());
648       else
649         continue;
650 
651       if (U->use_empty()) {
652         auto *I = cast<Instruction>(U);
653         ToRemove.push_back(I);
654         I->setOperand(0, PoisonValue::get(II->getType()));
655       }
656     }
657 
658     if (II->use_empty())
659       II->eraseFromParent();
660   }
661 }
662 
663 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
664   bool Changed = false;
665   DT.updateDFSNumbers();
666 
667   ConstraintInfo Info;
668   State S(DT);
669 
670   // First, collect conditions implied by branches and blocks with their
671   // Dominator DFS in and out numbers.
672   for (BasicBlock &BB : F) {
673     if (!DT.getNode(&BB))
674       continue;
675     S.addInfoFor(BB);
676   }
677 
678   // Next, sort worklist by dominance, so that dominating blocks and conditions
679   // come before blocks and conditions dominated by them. If a block and a
680   // condition have the same numbers, the condition comes before the block, as
681   // it holds on entry to the block.
682   sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
683     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
684   });
685 
686   SmallVector<Instruction *> ToRemove;
687 
688   // Finally, process ordered worklist and eliminate implied conditions.
689   SmallVector<StackEntry, 16> DFSInStack;
690   for (ConstraintOrBlock &CB : S.WorkList) {
691     // First, pop entries from the stack that are out-of-scope for CB. Remove
692     // the corresponding entry from the constraint system.
693     while (!DFSInStack.empty()) {
694       auto &E = DFSInStack.back();
695       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
696                         << "\n");
697       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
698       assert(E.NumIn <= CB.NumIn);
699       if (CB.NumOut <= E.NumOut)
700         break;
701       LLVM_DEBUG({
702         dbgs() << "Removing ";
703         dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
704                       Info.getValue2Index(E.IsSigned));
705         dbgs() << "\n";
706       });
707 
708       Info.popLastConstraint(E.IsSigned);
709       // Remove variables in the system that went out of scope.
710       auto &Mapping = Info.getValue2Index(E.IsSigned);
711       for (Value *V : E.ValuesToRelease)
712         Mapping.erase(V);
713       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
714       DFSInStack.pop_back();
715     }
716 
717     LLVM_DEBUG({
718       dbgs() << "Processing ";
719       if (CB.IsBlock)
720         dbgs() << *CB.BB;
721       else
722         dbgs() << *CB.Condition;
723       dbgs() << "\n";
724     });
725 
726     // For a block, check if any CmpInsts become known based on the current set
727     // of constraints.
728     if (CB.IsBlock) {
729       for (Instruction &I : make_early_inc_range(*CB.BB)) {
730         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
731           tryToSimplifyOverflowMath(II, Info, ToRemove);
732           continue;
733         }
734         auto *Cmp = dyn_cast<ICmpInst>(&I);
735         if (!Cmp)
736           continue;
737 
738         DenseMap<Value *, unsigned> NewIndices;
739         auto R = Info.getConstraint(Cmp, NewIndices);
740         if (R.IsEq || R.empty() || R.needsNewIndices(NewIndices) ||
741             !R.isValid(Info))
742           continue;
743 
744         auto &CSToUse = Info.getCS(R.IsSigned);
745         if (CSToUse.isConditionImplied(R.Coefficients)) {
746           if (!DebugCounter::shouldExecute(EliminatedCounter))
747             continue;
748 
749           LLVM_DEBUG({
750             dbgs() << "Condition " << *Cmp
751                    << " implied by dominating constraints\n";
752             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
753           });
754           Cmp->replaceUsesWithIf(
755               ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
756                 // Conditions in an assume trivially simplify to true. Skip uses
757                 // in assume calls to not destroy the available information.
758                 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
759                 return !II || II->getIntrinsicID() != Intrinsic::assume;
760               });
761           NumCondsRemoved++;
762           Changed = true;
763         }
764         if (CSToUse.isConditionImplied(
765                 ConstraintSystem::negate(R.Coefficients))) {
766           if (!DebugCounter::shouldExecute(EliminatedCounter))
767             continue;
768 
769           LLVM_DEBUG({
770             dbgs() << "Condition !" << *Cmp
771                    << " implied by dominating constraints\n";
772             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
773           });
774           Cmp->replaceAllUsesWith(
775               ConstantInt::getFalse(F.getParent()->getContext()));
776           NumCondsRemoved++;
777           Changed = true;
778         }
779       }
780       continue;
781     }
782 
783     // Set up a function to restore the predicate at the end of the scope if it
784     // has been negated. Negate the predicate in-place, if required.
785     auto *CI = dyn_cast<ICmpInst>(CB.Condition);
786     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
787       if (CB.Not && CI)
788         CI->setPredicate(CI->getInversePredicate());
789     });
790     if (CB.Not) {
791       if (CI) {
792         CI->setPredicate(CI->getInversePredicate());
793       } else {
794         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
795         continue;
796       }
797     }
798 
799     ICmpInst::Predicate Pred;
800     Value *A, *B;
801     if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
802       // Otherwise, add the condition to the system and stack, if we can
803       // transform it into a constraint.
804       Info.addFact(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, DFSInStack);
805       Info.transferToOtherSystem(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut,
806                                  DFSInStack);
807     }
808   }
809 
810 #ifndef NDEBUG
811   unsigned SignedEntries =
812       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
813   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
814          "updates to CS and DFSInStack are out of sync");
815   assert(Info.getCS(true).size() == SignedEntries &&
816          "updates to CS and DFSInStack are out of sync");
817 #endif
818 
819   for (Instruction *I : ToRemove)
820     I->eraseFromParent();
821   return Changed;
822 }
823 
824 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
825                                                  FunctionAnalysisManager &AM) {
826   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
827   if (!eliminateConstraints(F, DT))
828     return PreservedAnalyses::all();
829 
830   PreservedAnalyses PA;
831   PA.preserve<DominatorTreeAnalysis>();
832   PA.preserveSet<CFGAnalyses>();
833   return PA;
834 }
835 
836 namespace {
837 
838 class ConstraintElimination : public FunctionPass {
839 public:
840   static char ID;
841 
842   ConstraintElimination() : FunctionPass(ID) {
843     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
844   }
845 
846   bool runOnFunction(Function &F) override {
847     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
848     return eliminateConstraints(F, DT);
849   }
850 
851   void getAnalysisUsage(AnalysisUsage &AU) const override {
852     AU.setPreservesCFG();
853     AU.addRequired<DominatorTreeWrapperPass>();
854     AU.addPreserved<GlobalsAAWrapperPass>();
855     AU.addPreserved<DominatorTreeWrapperPass>();
856   }
857 };
858 
859 } // end anonymous namespace
860 
861 char ConstraintElimination::ID = 0;
862 
863 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
864                       "Constraint Elimination", false, false)
865 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
866 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
867 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
868                     "Constraint Elimination", false, false)
869 
870 FunctionPass *llvm::createConstraintEliminationPass() {
871   return new ConstraintElimination();
872 }
873