1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/DebugCounter.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 44 #include <cmath> 45 #include <optional> 46 #include <string> 47 48 using namespace llvm; 49 using namespace PatternMatch; 50 51 #define DEBUG_TYPE "constraint-elimination" 52 53 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 54 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 55 "Controls which conditions are eliminated"); 56 57 static cl::opt<unsigned> 58 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 59 cl::desc("Maximum number of rows to keep in constraint system")); 60 61 static cl::opt<bool> DumpReproducers( 62 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 63 cl::desc("Dump IR to reproduce successful transformations.")); 64 65 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 66 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 67 68 // A helper to multiply 2 signed integers where overflowing is allowed. 69 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 70 int64_t Result; 71 MulOverflow(A, B, Result); 72 return Result; 73 } 74 75 // A helper to add 2 signed integers where overflowing is allowed. 76 static int64_t addWithOverflow(int64_t A, int64_t B) { 77 int64_t Result; 78 AddOverflow(A, B, Result); 79 return Result; 80 } 81 82 static Instruction *getContextInstForUse(Use &U) { 83 Instruction *UserI = cast<Instruction>(U.getUser()); 84 if (auto *Phi = dyn_cast<PHINode>(UserI)) 85 UserI = Phi->getIncomingBlock(U)->getTerminator(); 86 return UserI; 87 } 88 89 namespace { 90 /// Struct to express a condition of the form %Op0 Pred %Op1. 91 struct ConditionTy { 92 CmpInst::Predicate Pred; 93 Value *Op0; 94 Value *Op1; 95 96 ConditionTy() 97 : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {} 98 ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 99 : Pred(Pred), Op0(Op0), Op1(Op1) {} 100 }; 101 102 /// Represents either 103 /// * a condition that holds on entry to a block (=condition fact) 104 /// * an assume (=assume fact) 105 /// * a use of a compare instruction to simplify. 106 /// It also tracks the Dominator DFS in and out numbers for each entry. 107 struct FactOrCheck { 108 enum class EntryTy { 109 ConditionFact, /// A condition that holds on entry to a block. 110 InstFact, /// A fact that holds after Inst executed (e.g. an assume or 111 /// min/mix intrinsic. 112 InstCheck, /// An instruction to simplify (e.g. an overflow math 113 /// intrinsics). 114 UseCheck /// An use of a compare instruction to simplify. 115 }; 116 117 union { 118 Instruction *Inst; 119 Use *U; 120 ConditionTy Cond; 121 }; 122 123 /// A pre-condition that must hold for the current fact to be added to the 124 /// system. 125 ConditionTy DoesHold; 126 127 unsigned NumIn; 128 unsigned NumOut; 129 EntryTy Ty; 130 131 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 132 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 133 Ty(Ty) {} 134 135 FactOrCheck(DomTreeNode *DTN, Use *U) 136 : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr), 137 NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 138 Ty(EntryTy::UseCheck) {} 139 140 FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1, 141 ConditionTy Precond = ConditionTy()) 142 : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()), 143 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 144 145 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 146 Value *Op0, Value *Op1, 147 ConditionTy Precond = ConditionTy()) { 148 return FactOrCheck(DTN, Pred, Op0, Op1, Precond); 149 } 150 151 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 152 return FactOrCheck(EntryTy::InstFact, DTN, Inst); 153 } 154 155 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 156 return FactOrCheck(DTN, U); 157 } 158 159 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 160 return FactOrCheck(EntryTy::InstCheck, DTN, CI); 161 } 162 163 bool isCheck() const { 164 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 165 } 166 167 Instruction *getContextInst() const { 168 if (Ty == EntryTy::UseCheck) 169 return getContextInstForUse(*U); 170 return Inst; 171 } 172 173 Instruction *getInstructionToSimplify() const { 174 assert(isCheck()); 175 if (Ty == EntryTy::InstCheck) 176 return Inst; 177 // The use may have been simplified to a constant already. 178 return dyn_cast<Instruction>(*U); 179 } 180 181 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 182 }; 183 184 /// Keep state required to build worklist. 185 struct State { 186 DominatorTree &DT; 187 LoopInfo &LI; 188 ScalarEvolution &SE; 189 SmallVector<FactOrCheck, 64> WorkList; 190 191 State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE) 192 : DT(DT), LI(LI), SE(SE) {} 193 194 /// Process block \p BB and add known facts to work-list. 195 void addInfoFor(BasicBlock &BB); 196 197 /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares 198 /// controlling the loop header. 199 void addInfoForInductions(BasicBlock &BB); 200 201 /// Returns true if we can add a known condition from BB to its successor 202 /// block Succ. 203 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 204 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 205 } 206 }; 207 208 class ConstraintInfo; 209 210 struct StackEntry { 211 unsigned NumIn; 212 unsigned NumOut; 213 bool IsSigned = false; 214 /// Variables that can be removed from the system once the stack entry gets 215 /// removed. 216 SmallVector<Value *, 2> ValuesToRelease; 217 218 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 219 SmallVector<Value *, 2> ValuesToRelease) 220 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 221 ValuesToRelease(ValuesToRelease) {} 222 }; 223 224 struct ConstraintTy { 225 SmallVector<int64_t, 8> Coefficients; 226 SmallVector<ConditionTy, 2> Preconditions; 227 228 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 229 230 bool IsSigned = false; 231 232 ConstraintTy() = default; 233 234 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 235 bool IsNe) 236 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 237 } 238 239 unsigned size() const { return Coefficients.size(); } 240 241 unsigned empty() const { return Coefficients.empty(); } 242 243 /// Returns true if all preconditions for this list of constraints are 244 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 245 bool isValid(const ConstraintInfo &Info) const; 246 247 bool isEq() const { return IsEq; } 248 249 bool isNe() const { return IsNe; } 250 251 /// Check if the current constraint is implied by the given ConstraintSystem. 252 /// 253 /// \return true or false if the constraint is proven to be respectively true, 254 /// or false. When the constraint cannot be proven to be either true or false, 255 /// std::nullopt is returned. 256 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 257 258 private: 259 bool IsEq = false; 260 bool IsNe = false; 261 }; 262 263 /// Wrapper encapsulating separate constraint systems and corresponding value 264 /// mappings for both unsigned and signed information. Facts are added to and 265 /// conditions are checked against the corresponding system depending on the 266 /// signed-ness of their predicates. While the information is kept separate 267 /// based on signed-ness, certain conditions can be transferred between the two 268 /// systems. 269 class ConstraintInfo { 270 271 ConstraintSystem UnsignedCS; 272 ConstraintSystem SignedCS; 273 274 const DataLayout &DL; 275 276 public: 277 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 278 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 279 280 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 281 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 282 } 283 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 284 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 285 } 286 287 ConstraintSystem &getCS(bool Signed) { 288 return Signed ? SignedCS : UnsignedCS; 289 } 290 const ConstraintSystem &getCS(bool Signed) const { 291 return Signed ? SignedCS : UnsignedCS; 292 } 293 294 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 295 void popLastNVariables(bool Signed, unsigned N) { 296 getCS(Signed).popLastNVariables(N); 297 } 298 299 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 300 301 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 302 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 303 304 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 305 /// constraints, using indices from the corresponding constraint system. 306 /// New variables that need to be added to the system are collected in 307 /// \p NewVariables. 308 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 309 SmallVectorImpl<Value *> &NewVariables) const; 310 311 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 312 /// constraints using getConstraint. Returns an empty constraint if the result 313 /// cannot be used to query the existing constraint system, e.g. because it 314 /// would require adding new variables. Also tries to convert signed 315 /// predicates to unsigned ones if possible to allow using the unsigned system 316 /// which increases the effectiveness of the signed <-> unsigned transfer 317 /// logic. 318 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 319 Value *Op1) const; 320 321 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 322 /// system if \p Pred is signed/unsigned. 323 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 324 unsigned NumIn, unsigned NumOut, 325 SmallVectorImpl<StackEntry> &DFSInStack); 326 }; 327 328 /// Represents a (Coefficient * Variable) entry after IR decomposition. 329 struct DecompEntry { 330 int64_t Coefficient; 331 Value *Variable; 332 /// True if the variable is known positive in the current constraint. 333 bool IsKnownNonNegative; 334 335 DecompEntry(int64_t Coefficient, Value *Variable, 336 bool IsKnownNonNegative = false) 337 : Coefficient(Coefficient), Variable(Variable), 338 IsKnownNonNegative(IsKnownNonNegative) {} 339 }; 340 341 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 342 struct Decomposition { 343 int64_t Offset = 0; 344 SmallVector<DecompEntry, 3> Vars; 345 346 Decomposition(int64_t Offset) : Offset(Offset) {} 347 Decomposition(Value *V, bool IsKnownNonNegative = false) { 348 Vars.emplace_back(1, V, IsKnownNonNegative); 349 } 350 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 351 : Offset(Offset), Vars(Vars) {} 352 353 void add(int64_t OtherOffset) { 354 Offset = addWithOverflow(Offset, OtherOffset); 355 } 356 357 void add(const Decomposition &Other) { 358 add(Other.Offset); 359 append_range(Vars, Other.Vars); 360 } 361 362 void mul(int64_t Factor) { 363 Offset = multiplyWithOverflow(Offset, Factor); 364 for (auto &Var : Vars) 365 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 366 } 367 }; 368 369 } // namespace 370 371 static Decomposition decompose(Value *V, 372 SmallVectorImpl<ConditionTy> &Preconditions, 373 bool IsSigned, const DataLayout &DL); 374 375 static bool canUseSExt(ConstantInt *CI) { 376 const APInt &Val = CI->getValue(); 377 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 378 } 379 380 static Decomposition decomposeGEP(GEPOperator &GEP, 381 SmallVectorImpl<ConditionTy> &Preconditions, 382 bool IsSigned, const DataLayout &DL) { 383 // Do not reason about pointers where the index size is larger than 64 bits, 384 // as the coefficients used to encode constraints are 64 bit integers. 385 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 386 return &GEP; 387 388 if (!GEP.isInBounds()) 389 return &GEP; 390 391 assert(!IsSigned && "The logic below only supports decomposition for " 392 "unsinged predicates at the moment."); 393 Type *PtrTy = GEP.getType()->getScalarType(); 394 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 395 MapVector<Value *, APInt> VariableOffsets; 396 APInt ConstantOffset(BitWidth, 0); 397 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 398 return &GEP; 399 400 // Handle the (gep (gep ....), C) case by incrementing the constant 401 // coefficient of the inner GEP, if C is a constant. 402 auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand()); 403 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 404 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 405 Result.add(ConstantOffset.getSExtValue()); 406 407 if (ConstantOffset.isNegative()) { 408 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 409 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 410 if (ConstantOffsetI % Scale != 0) 411 return &GEP; 412 // Add pre-condition ensuring the GEP is increasing monotonically and 413 // can be de-composed. 414 // Both sides are normalized by being divided by Scale. 415 Preconditions.emplace_back( 416 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 417 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 418 -1 * (ConstantOffsetI / Scale))); 419 } 420 return Result; 421 } 422 423 Decomposition Result(ConstantOffset.getSExtValue(), 424 DecompEntry(1, GEP.getPointerOperand())); 425 for (auto [Index, Scale] : VariableOffsets) { 426 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 427 IdxResult.mul(Scale.getSExtValue()); 428 Result.add(IdxResult); 429 430 // If Op0 is signed non-negative, the GEP is increasing monotonically and 431 // can be de-composed. 432 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 433 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 434 ConstantInt::get(Index->getType(), 0)); 435 } 436 return Result; 437 } 438 439 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 440 // Variable } where Coefficient * Variable. The sum of the constant offset and 441 // pairs equals \p V. 442 static Decomposition decompose(Value *V, 443 SmallVectorImpl<ConditionTy> &Preconditions, 444 bool IsSigned, const DataLayout &DL) { 445 446 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 447 bool IsSignedB) { 448 auto ResA = decompose(A, Preconditions, IsSigned, DL); 449 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 450 ResA.add(ResB); 451 return ResA; 452 }; 453 454 // Decompose \p V used with a signed predicate. 455 if (IsSigned) { 456 if (auto *CI = dyn_cast<ConstantInt>(V)) { 457 if (canUseSExt(CI)) 458 return CI->getSExtValue(); 459 } 460 Value *Op0; 461 Value *Op1; 462 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 463 return MergeResults(Op0, Op1, IsSigned); 464 465 ConstantInt *CI; 466 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 467 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 468 Result.mul(CI->getSExtValue()); 469 return Result; 470 } 471 472 return V; 473 } 474 475 if (auto *CI = dyn_cast<ConstantInt>(V)) { 476 if (CI->uge(MaxConstraintValue)) 477 return V; 478 return int64_t(CI->getZExtValue()); 479 } 480 481 if (auto *GEP = dyn_cast<GEPOperator>(V)) 482 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 483 484 Value *Op0; 485 bool IsKnownNonNegative = false; 486 if (match(V, m_ZExt(m_Value(Op0)))) { 487 IsKnownNonNegative = true; 488 V = Op0; 489 } 490 491 Value *Op1; 492 ConstantInt *CI; 493 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 494 return MergeResults(Op0, Op1, IsSigned); 495 } 496 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 497 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 498 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 499 ConstantInt::get(Op0->getType(), 0)); 500 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 501 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 502 ConstantInt::get(Op1->getType(), 0)); 503 504 return MergeResults(Op0, Op1, IsSigned); 505 } 506 507 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 508 canUseSExt(CI)) { 509 Preconditions.emplace_back( 510 CmpInst::ICMP_UGE, Op0, 511 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 512 return MergeResults(Op0, CI, true); 513 } 514 515 // Decompose or as an add if there are no common bits between the operands. 516 if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && 517 haveNoCommonBitsSet(Op0, CI, DL)) { 518 return MergeResults(Op0, CI, IsSigned); 519 } 520 521 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 522 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 523 return {V, IsKnownNonNegative}; 524 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 525 Result.mul(int64_t{1} << CI->getSExtValue()); 526 return Result; 527 } 528 529 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 530 (!CI->isNegative())) { 531 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 532 Result.mul(CI->getSExtValue()); 533 return Result; 534 } 535 536 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 537 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 538 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 539 return {0, {{1, Op0}, {-1, Op1}}}; 540 541 return {V, IsKnownNonNegative}; 542 } 543 544 ConstraintTy 545 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 546 SmallVectorImpl<Value *> &NewVariables) const { 547 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 548 bool IsEq = false; 549 bool IsNe = false; 550 551 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 552 switch (Pred) { 553 case CmpInst::ICMP_UGT: 554 case CmpInst::ICMP_UGE: 555 case CmpInst::ICMP_SGT: 556 case CmpInst::ICMP_SGE: { 557 Pred = CmpInst::getSwappedPredicate(Pred); 558 std::swap(Op0, Op1); 559 break; 560 } 561 case CmpInst::ICMP_EQ: 562 if (match(Op1, m_Zero())) { 563 Pred = CmpInst::ICMP_ULE; 564 } else { 565 IsEq = true; 566 Pred = CmpInst::ICMP_ULE; 567 } 568 break; 569 case CmpInst::ICMP_NE: 570 if (match(Op1, m_Zero())) { 571 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 572 std::swap(Op0, Op1); 573 } else { 574 IsNe = true; 575 Pred = CmpInst::ICMP_ULE; 576 } 577 break; 578 default: 579 break; 580 } 581 582 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 583 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 584 return {}; 585 586 SmallVector<ConditionTy, 4> Preconditions; 587 bool IsSigned = CmpInst::isSigned(Pred); 588 auto &Value2Index = getValue2Index(IsSigned); 589 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 590 Preconditions, IsSigned, DL); 591 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 592 Preconditions, IsSigned, DL); 593 int64_t Offset1 = ADec.Offset; 594 int64_t Offset2 = BDec.Offset; 595 Offset1 *= -1; 596 597 auto &VariablesA = ADec.Vars; 598 auto &VariablesB = BDec.Vars; 599 600 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 601 // new entry to NewVariables. 602 DenseMap<Value *, unsigned> NewIndexMap; 603 auto GetOrAddIndex = [&Value2Index, &NewVariables, 604 &NewIndexMap](Value *V) -> unsigned { 605 auto V2I = Value2Index.find(V); 606 if (V2I != Value2Index.end()) 607 return V2I->second; 608 auto Insert = 609 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 610 if (Insert.second) 611 NewVariables.push_back(V); 612 return Insert.first->second; 613 }; 614 615 // Make sure all variables have entries in Value2Index or NewVariables. 616 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 617 GetOrAddIndex(KV.Variable); 618 619 // Build result constraint, by first adding all coefficients from A and then 620 // subtracting all coefficients from B. 621 ConstraintTy Res( 622 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 623 IsSigned, IsEq, IsNe); 624 // Collect variables that are known to be positive in all uses in the 625 // constraint. 626 DenseMap<Value *, bool> KnownNonNegativeVariables; 627 auto &R = Res.Coefficients; 628 for (const auto &KV : VariablesA) { 629 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 630 auto I = 631 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 632 I.first->second &= KV.IsKnownNonNegative; 633 } 634 635 for (const auto &KV : VariablesB) { 636 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 637 R[GetOrAddIndex(KV.Variable)])) 638 return {}; 639 auto I = 640 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 641 I.first->second &= KV.IsKnownNonNegative; 642 } 643 644 int64_t OffsetSum; 645 if (AddOverflow(Offset1, Offset2, OffsetSum)) 646 return {}; 647 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 648 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 649 return {}; 650 R[0] = OffsetSum; 651 Res.Preconditions = std::move(Preconditions); 652 653 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 654 // variables. 655 while (!NewVariables.empty()) { 656 int64_t Last = R.back(); 657 if (Last != 0) 658 break; 659 R.pop_back(); 660 Value *RemovedV = NewVariables.pop_back_val(); 661 NewIndexMap.erase(RemovedV); 662 } 663 664 // Add extra constraints for variables that are known positive. 665 for (auto &KV : KnownNonNegativeVariables) { 666 if (!KV.second || 667 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 668 continue; 669 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 670 C[GetOrAddIndex(KV.first)] = -1; 671 Res.ExtraInfo.push_back(C); 672 } 673 return Res; 674 } 675 676 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 677 Value *Op0, 678 Value *Op1) const { 679 Constant *NullC = Constant::getNullValue(Op0->getType()); 680 // Handle trivially true compares directly to avoid adding V UGE 0 constraints 681 // for all variables in the unsigned system. 682 if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) || 683 (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) { 684 auto &Value2Index = getValue2Index(false); 685 // Return constraint that's trivially true. 686 return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false, 687 false, false); 688 } 689 690 // If both operands are known to be non-negative, change signed predicates to 691 // unsigned ones. This increases the reasoning effectiveness in combination 692 // with the signed <-> unsigned transfer logic. 693 if (CmpInst::isSigned(Pred) && 694 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 695 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 696 Pred = CmpInst::getUnsignedPredicate(Pred); 697 698 SmallVector<Value *> NewVariables; 699 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 700 if (!NewVariables.empty()) 701 return {}; 702 return R; 703 } 704 705 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 706 return Coefficients.size() > 0 && 707 all_of(Preconditions, [&Info](const ConditionTy &C) { 708 return Info.doesHold(C.Pred, C.Op0, C.Op1); 709 }); 710 } 711 712 std::optional<bool> 713 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 714 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 715 716 if (IsEq || IsNe) { 717 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 718 bool IsNegatedOrEqualImplied = 719 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 720 721 // In order to check that `%a == %b` is true (equality), both conditions `%a 722 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 723 // is true), we return true if they both hold, false in the other cases. 724 if (IsConditionImplied && IsNegatedOrEqualImplied) 725 return IsEq; 726 727 auto Negated = ConstraintSystem::negate(Coefficients); 728 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 729 730 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 731 bool IsStrictLessThanImplied = 732 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 733 734 // In order to check that `%a != %b` is true (non-equality), either 735 // condition `%a > %b` or `%a < %b` must hold true. When checking for 736 // non-equality (`IsNe` is true), we return true if one of the two holds, 737 // false in the other cases. 738 if (IsNegatedImplied || IsStrictLessThanImplied) 739 return IsNe; 740 741 return std::nullopt; 742 } 743 744 if (IsConditionImplied) 745 return true; 746 747 auto Negated = ConstraintSystem::negate(Coefficients); 748 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 749 if (IsNegatedImplied) 750 return false; 751 752 // Neither the condition nor its negated holds, did not prove anything. 753 return std::nullopt; 754 } 755 756 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 757 Value *B) const { 758 auto R = getConstraintForSolving(Pred, A, B); 759 return R.isValid(*this) && 760 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 761 } 762 763 void ConstraintInfo::transferToOtherSystem( 764 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 765 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 766 // Check if we can combine facts from the signed and unsigned systems to 767 // derive additional facts. 768 if (!A->getType()->isIntegerTy()) 769 return; 770 // FIXME: This currently depends on the order we add facts. Ideally we 771 // would first add all known facts and only then try to add additional 772 // facts. 773 switch (Pred) { 774 default: 775 break; 776 case CmpInst::ICMP_ULT: 777 case CmpInst::ICMP_ULE: 778 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B. 779 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 780 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 781 NumOut, DFSInStack); 782 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 783 DFSInStack); 784 } 785 break; 786 case CmpInst::ICMP_UGE: 787 case CmpInst::ICMP_UGT: 788 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B. 789 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) { 790 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn, 791 NumOut, DFSInStack); 792 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 793 DFSInStack); 794 } 795 break; 796 case CmpInst::ICMP_SLT: 797 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 798 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 799 break; 800 case CmpInst::ICMP_SGT: { 801 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 802 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 803 NumOut, DFSInStack); 804 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) 805 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 806 807 break; 808 } 809 case CmpInst::ICMP_SGE: 810 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 811 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 812 } 813 break; 814 } 815 } 816 817 #ifndef NDEBUG 818 819 static void dumpConstraint(ArrayRef<int64_t> C, 820 const DenseMap<Value *, unsigned> &Value2Index) { 821 ConstraintSystem CS(Value2Index); 822 CS.addVariableRowFill(C); 823 CS.dump(); 824 } 825 #endif 826 827 void State::addInfoForInductions(BasicBlock &BB) { 828 auto *L = LI.getLoopFor(&BB); 829 if (!L || L->getHeader() != &BB) 830 return; 831 832 Value *A; 833 Value *B; 834 CmpInst::Predicate Pred; 835 836 if (!match(BB.getTerminator(), 837 m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value()))) 838 return; 839 PHINode *PN = dyn_cast<PHINode>(A); 840 if (!PN) { 841 Pred = CmpInst::getSwappedPredicate(Pred); 842 std::swap(A, B); 843 PN = dyn_cast<PHINode>(A); 844 } 845 846 if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 || 847 !SE.isSCEVable(PN->getType())) 848 return; 849 850 BasicBlock *InLoopSucc = nullptr; 851 if (Pred == CmpInst::ICMP_NE) 852 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0); 853 else if (Pred == CmpInst::ICMP_EQ) 854 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1); 855 else 856 return; 857 858 if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB) 859 return; 860 861 auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN)); 862 if (!AR) 863 return; 864 865 const SCEV *StartSCEV = AR->getStart(); 866 Value *StartValue = nullptr; 867 if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) 868 StartValue = C->getValue(); 869 else if (auto *U = dyn_cast<SCEVUnknown>(StartSCEV)) 870 StartValue = U->getValue(); 871 872 if (!StartValue) 873 return; 874 875 DomTreeNode *DTN = DT.getNode(InLoopSucc); 876 auto Inc = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT); 877 bool MonotonicallyIncreasing = 878 Inc && *Inc == ScalarEvolution::MonotonicallyIncreasing; 879 if (MonotonicallyIncreasing) { 880 // SCEV guarantees that AR does not wrap, so PN >= StartValue can be added 881 // unconditionally. 882 WorkList.push_back( 883 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue)); 884 } 885 886 APInt StepOffset; 887 if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 888 StepOffset = C->getAPInt(); 889 else 890 return; 891 892 // Make sure AR either steps by 1 or that the value we compare against is a 893 // GEP based on the same start value and all offsets are a multiple of the 894 // step size, to guarantee that the induction will reach the value. 895 if (StepOffset.isZero() || StepOffset.isNegative()) 896 return; 897 898 if (!StepOffset.isOne()) { 899 auto *UpperGEP = dyn_cast<GetElementPtrInst>(B); 900 if (!UpperGEP || UpperGEP->getPointerOperand() != StartValue || 901 !UpperGEP->isInBounds()) 902 return; 903 904 MapVector<Value *, APInt> UpperVariableOffsets; 905 APInt UpperConstantOffset(StepOffset.getBitWidth(), 0); 906 const DataLayout &DL = BB.getModule()->getDataLayout(); 907 if (!UpperGEP->collectOffset(DL, StepOffset.getBitWidth(), 908 UpperVariableOffsets, UpperConstantOffset)) 909 return; 910 // All variable offsets and the constant offset have to be a multiple of the 911 // step. 912 if (!UpperConstantOffset.urem(StepOffset).isZero() || 913 any_of(UpperVariableOffsets, [&StepOffset](const auto &P) { 914 return !P.second.urem(StepOffset).isZero(); 915 })) 916 return; 917 } 918 919 // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which 920 // guarantees that the loop exits before wrapping in combination with the 921 // restrictions on B and the step above. 922 if (!MonotonicallyIncreasing) { 923 WorkList.push_back(FactOrCheck::getConditionFact( 924 DTN, CmpInst::ICMP_UGE, PN, StartValue, 925 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 926 } 927 WorkList.push_back(FactOrCheck::getConditionFact( 928 DTN, CmpInst::ICMP_ULT, PN, B, 929 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 930 } 931 932 void State::addInfoFor(BasicBlock &BB) { 933 addInfoForInductions(BB); 934 935 // True as long as long as the current instruction is guaranteed to execute. 936 bool GuaranteedToExecute = true; 937 // Queue conditions and assumes. 938 for (Instruction &I : BB) { 939 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 940 for (Use &U : Cmp->uses()) { 941 auto *UserI = getContextInstForUse(U); 942 auto *DTN = DT.getNode(UserI->getParent()); 943 if (!DTN) 944 continue; 945 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 946 } 947 continue; 948 } 949 950 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 951 WorkList.push_back( 952 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 953 continue; 954 } 955 956 if (isa<MinMaxIntrinsic>(&I)) { 957 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 958 continue; 959 } 960 961 Value *A, *B; 962 CmpInst::Predicate Pred; 963 // For now, just handle assumes with a single compare as condition. 964 if (match(&I, m_Intrinsic<Intrinsic::assume>( 965 m_ICmp(Pred, m_Value(A), m_Value(B))))) { 966 if (GuaranteedToExecute) { 967 // The assume is guaranteed to execute when BB is entered, hence Cond 968 // holds on entry to BB. 969 WorkList.emplace_back(FactOrCheck::getConditionFact( 970 DT.getNode(I.getParent()), Pred, A, B)); 971 } else { 972 WorkList.emplace_back( 973 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 974 } 975 } 976 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 977 } 978 979 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 980 for (auto &Case : Switch->cases()) { 981 BasicBlock *Succ = Case.getCaseSuccessor(); 982 Value *V = Case.getCaseValue(); 983 if (!canAddSuccessor(BB, Succ)) 984 continue; 985 WorkList.emplace_back(FactOrCheck::getConditionFact( 986 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 987 } 988 return; 989 } 990 991 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 992 if (!Br || !Br->isConditional()) 993 return; 994 995 Value *Cond = Br->getCondition(); 996 997 // If the condition is a chain of ORs/AND and the successor only has the 998 // current block as predecessor, queue conditions for the successor. 999 Value *Op0, *Op1; 1000 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 1001 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1002 bool IsOr = match(Cond, m_LogicalOr()); 1003 bool IsAnd = match(Cond, m_LogicalAnd()); 1004 // If there's a select that matches both AND and OR, we need to commit to 1005 // one of the options. Arbitrarily pick OR. 1006 if (IsOr && IsAnd) 1007 IsAnd = false; 1008 1009 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 1010 if (canAddSuccessor(BB, Successor)) { 1011 SmallVector<Value *> CondWorkList; 1012 SmallPtrSet<Value *, 8> SeenCond; 1013 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 1014 if (SeenCond.insert(V).second) 1015 CondWorkList.push_back(V); 1016 }; 1017 QueueValue(Op1); 1018 QueueValue(Op0); 1019 while (!CondWorkList.empty()) { 1020 Value *Cur = CondWorkList.pop_back_val(); 1021 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 1022 WorkList.emplace_back(FactOrCheck::getConditionFact( 1023 DT.getNode(Successor), 1024 IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate()) 1025 : Cmp->getPredicate(), 1026 Cmp->getOperand(0), Cmp->getOperand(1))); 1027 continue; 1028 } 1029 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 1030 QueueValue(Op1); 1031 QueueValue(Op0); 1032 continue; 1033 } 1034 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1035 QueueValue(Op1); 1036 QueueValue(Op0); 1037 continue; 1038 } 1039 } 1040 } 1041 return; 1042 } 1043 1044 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 1045 if (!CmpI) 1046 return; 1047 if (canAddSuccessor(BB, Br->getSuccessor(0))) 1048 WorkList.emplace_back(FactOrCheck::getConditionFact( 1049 DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(), 1050 CmpI->getOperand(0), CmpI->getOperand(1))); 1051 if (canAddSuccessor(BB, Br->getSuccessor(1))) 1052 WorkList.emplace_back(FactOrCheck::getConditionFact( 1053 DT.getNode(Br->getSuccessor(1)), 1054 CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0), 1055 CmpI->getOperand(1))); 1056 } 1057 1058 namespace { 1059 /// Helper to keep track of a condition and if it should be treated as negated 1060 /// for reproducer construction. 1061 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 1062 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 1063 struct ReproducerEntry { 1064 ICmpInst::Predicate Pred; 1065 Value *LHS; 1066 Value *RHS; 1067 1068 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 1069 : Pred(Pred), LHS(LHS), RHS(RHS) {} 1070 }; 1071 } // namespace 1072 1073 /// Helper function to generate a reproducer function for simplifying \p Cond. 1074 /// The reproducer function contains a series of @llvm.assume calls, one for 1075 /// each condition in \p Stack. For each condition, the operand instruction are 1076 /// cloned until we reach operands that have an entry in \p Value2Index. Those 1077 /// will then be added as function arguments. \p DT is used to order cloned 1078 /// instructions. The reproducer function will get added to \p M, if it is 1079 /// non-null. Otherwise no reproducer function is generated. 1080 static void generateReproducer(CmpInst *Cond, Module *M, 1081 ArrayRef<ReproducerEntry> Stack, 1082 ConstraintInfo &Info, DominatorTree &DT) { 1083 if (!M) 1084 return; 1085 1086 LLVMContext &Ctx = Cond->getContext(); 1087 1088 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 1089 1090 ValueToValueMapTy Old2New; 1091 SmallVector<Value *> Args; 1092 SmallPtrSet<Value *, 8> Seen; 1093 // Traverse Cond and its operands recursively until we reach a value that's in 1094 // Value2Index or not an instruction, or not a operation that 1095 // ConstraintElimination can decompose. Such values will be considered as 1096 // external inputs to the reproducer, they are collected and added as function 1097 // arguments later. 1098 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1099 auto &Value2Index = Info.getValue2Index(IsSigned); 1100 SmallVector<Value *, 4> WorkList(Ops); 1101 while (!WorkList.empty()) { 1102 Value *V = WorkList.pop_back_val(); 1103 if (!Seen.insert(V).second) 1104 continue; 1105 if (Old2New.find(V) != Old2New.end()) 1106 continue; 1107 if (isa<Constant>(V)) 1108 continue; 1109 1110 auto *I = dyn_cast<Instruction>(V); 1111 if (Value2Index.contains(V) || !I || 1112 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 1113 Old2New[V] = V; 1114 Args.push_back(V); 1115 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 1116 } else { 1117 append_range(WorkList, I->operands()); 1118 } 1119 } 1120 }; 1121 1122 for (auto &Entry : Stack) 1123 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 1124 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 1125 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 1126 1127 SmallVector<Type *> ParamTys; 1128 for (auto *P : Args) 1129 ParamTys.push_back(P->getType()); 1130 1131 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 1132 /*isVarArg=*/false); 1133 Function *F = Function::Create(FTy, Function::ExternalLinkage, 1134 Cond->getModule()->getName() + 1135 Cond->getFunction()->getName() + "repro", 1136 M); 1137 // Add arguments to the reproducer function for each external value collected. 1138 for (unsigned I = 0; I < Args.size(); ++I) { 1139 F->getArg(I)->setName(Args[I]->getName()); 1140 Old2New[Args[I]] = F->getArg(I); 1141 } 1142 1143 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 1144 IRBuilder<> Builder(Entry); 1145 Builder.CreateRet(Builder.getTrue()); 1146 Builder.SetInsertPoint(Entry->getTerminator()); 1147 1148 // Clone instructions in \p Ops and their operands recursively until reaching 1149 // an value in Value2Index (external input to the reproducer). Update Old2New 1150 // mapping for the original and cloned instructions. Sort instructions to 1151 // clone by dominance, then insert the cloned instructions in the function. 1152 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1153 SmallVector<Value *, 4> WorkList(Ops); 1154 SmallVector<Instruction *> ToClone; 1155 auto &Value2Index = Info.getValue2Index(IsSigned); 1156 while (!WorkList.empty()) { 1157 Value *V = WorkList.pop_back_val(); 1158 if (Old2New.find(V) != Old2New.end()) 1159 continue; 1160 1161 auto *I = dyn_cast<Instruction>(V); 1162 if (!Value2Index.contains(V) && I) { 1163 Old2New[V] = nullptr; 1164 ToClone.push_back(I); 1165 append_range(WorkList, I->operands()); 1166 } 1167 } 1168 1169 sort(ToClone, 1170 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 1171 for (Instruction *I : ToClone) { 1172 Instruction *Cloned = I->clone(); 1173 Old2New[I] = Cloned; 1174 Old2New[I]->setName(I->getName()); 1175 Cloned->insertBefore(&*Builder.GetInsertPoint()); 1176 Cloned->dropUnknownNonDebugMetadata(); 1177 Cloned->setDebugLoc({}); 1178 } 1179 }; 1180 1181 // Materialize the assumptions for the reproducer using the entries in Stack. 1182 // That is, first clone the operands of the condition recursively until we 1183 // reach an external input to the reproducer and add them to the reproducer 1184 // function. Then add an ICmp for the condition (with the inverse predicate if 1185 // the entry is negated) and an assert using the ICmp. 1186 for (auto &Entry : Stack) { 1187 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1188 continue; 1189 1190 LLVM_DEBUG( 1191 dbgs() << " Materializing assumption icmp " << Entry.Pred << ' '; 1192 Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", "; 1193 Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n"); 1194 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1195 1196 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1197 Builder.CreateAssumption(Cmp); 1198 } 1199 1200 // Finally, clone the condition to reproduce and remap instruction operands in 1201 // the reproducer using Old2New. 1202 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1203 Entry->getTerminator()->setOperand(0, Cond); 1204 remapInstructionsInBlocks({Entry}, Old2New); 1205 1206 assert(!verifyFunction(*F, &dbgs())); 1207 } 1208 1209 static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info, 1210 unsigned NumIn, unsigned NumOut, 1211 Instruction *ContextInst) { 1212 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 1213 1214 CmpInst::Predicate Pred = Cmp->getPredicate(); 1215 Value *A = Cmp->getOperand(0); 1216 Value *B = Cmp->getOperand(1); 1217 1218 auto R = Info.getConstraintForSolving(Pred, A, B); 1219 if (R.empty() || !R.isValid(Info)){ 1220 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1221 return std::nullopt; 1222 } 1223 1224 auto &CSToUse = Info.getCS(R.IsSigned); 1225 1226 // If there was extra information collected during decomposition, apply 1227 // it now and remove it immediately once we are done with reasoning 1228 // about the constraint. 1229 for (auto &Row : R.ExtraInfo) 1230 CSToUse.addVariableRow(Row); 1231 auto InfoRestorer = make_scope_exit([&]() { 1232 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1233 CSToUse.popLastConstraint(); 1234 }); 1235 1236 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1237 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1238 return std::nullopt; 1239 1240 LLVM_DEBUG({ 1241 if (*ImpliedCondition) { 1242 dbgs() << "Condition " << *Cmp; 1243 } else { 1244 auto InversePred = Cmp->getInversePredicate(); 1245 dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " " 1246 << *A << ", " << *B; 1247 } 1248 dbgs() << " implied by dominating constraints\n"; 1249 CSToUse.dump(); 1250 }); 1251 return ImpliedCondition; 1252 } 1253 1254 return std::nullopt; 1255 } 1256 1257 static bool checkAndReplaceCondition( 1258 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1259 Instruction *ContextInst, Module *ReproducerModule, 1260 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1261 SmallVectorImpl<Instruction *> &ToRemove) { 1262 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1263 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1264 Constant *ConstantC = ConstantInt::getBool( 1265 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1266 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1267 ContextInst](Use &U) { 1268 auto *UserI = getContextInstForUse(U); 1269 auto *DTN = DT.getNode(UserI->getParent()); 1270 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1271 return false; 1272 if (UserI->getParent() == ContextInst->getParent() && 1273 UserI->comesBefore(ContextInst)) 1274 return false; 1275 1276 // Conditions in an assume trivially simplify to true. Skip uses 1277 // in assume calls to not destroy the available information. 1278 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1279 return !II || II->getIntrinsicID() != Intrinsic::assume; 1280 }); 1281 NumCondsRemoved++; 1282 if (Cmp->use_empty()) 1283 ToRemove.push_back(Cmp); 1284 return true; 1285 }; 1286 1287 if (auto ImpliedCondition = 1288 checkCondition(Cmp, Info, NumIn, NumOut, ContextInst)) 1289 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1290 return false; 1291 } 1292 1293 static void 1294 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1295 Module *ReproducerModule, 1296 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1297 SmallVectorImpl<StackEntry> &DFSInStack) { 1298 Info.popLastConstraint(E.IsSigned); 1299 // Remove variables in the system that went out of scope. 1300 auto &Mapping = Info.getValue2Index(E.IsSigned); 1301 for (Value *V : E.ValuesToRelease) 1302 Mapping.erase(V); 1303 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1304 DFSInStack.pop_back(); 1305 if (ReproducerModule) 1306 ReproducerCondStack.pop_back(); 1307 } 1308 1309 /// Check if the first condition for an AND implies the second. 1310 static bool checkAndSecondOpImpliedByFirst( 1311 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1312 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1313 SmallVectorImpl<StackEntry> &DFSInStack) { 1314 1315 CmpInst::Predicate Pred; 1316 Value *A, *B; 1317 Instruction *And = CB.getContextInst(); 1318 if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1319 return false; 1320 1321 // Optimistically add fact from first condition. 1322 unsigned OldSize = DFSInStack.size(); 1323 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1324 if (OldSize == DFSInStack.size()) 1325 return false; 1326 1327 bool Changed = false; 1328 // Check if the second condition can be simplified now. 1329 if (auto ImpliedCondition = 1330 checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn, 1331 CB.NumOut, CB.getContextInst())) { 1332 And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition)); 1333 Changed = true; 1334 } 1335 1336 // Remove entries again. 1337 while (OldSize < DFSInStack.size()) { 1338 StackEntry E = DFSInStack.back(); 1339 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1340 DFSInStack); 1341 } 1342 return Changed; 1343 } 1344 1345 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1346 unsigned NumIn, unsigned NumOut, 1347 SmallVectorImpl<StackEntry> &DFSInStack) { 1348 // If the constraint has a pre-condition, skip the constraint if it does not 1349 // hold. 1350 SmallVector<Value *> NewVariables; 1351 auto R = getConstraint(Pred, A, B, NewVariables); 1352 1353 // TODO: Support non-equality for facts as well. 1354 if (!R.isValid(*this) || R.isNe()) 1355 return; 1356 1357 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; 1358 A->printAsOperand(dbgs(), false); dbgs() << ", "; 1359 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 1360 bool Added = false; 1361 auto &CSToUse = getCS(R.IsSigned); 1362 if (R.Coefficients.empty()) 1363 return; 1364 1365 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1366 1367 // If R has been added to the system, add the new variables and queue it for 1368 // removal once it goes out-of-scope. 1369 if (Added) { 1370 SmallVector<Value *, 2> ValuesToRelease; 1371 auto &Value2Index = getValue2Index(R.IsSigned); 1372 for (Value *V : NewVariables) { 1373 Value2Index.insert({V, Value2Index.size() + 1}); 1374 ValuesToRelease.push_back(V); 1375 } 1376 1377 LLVM_DEBUG({ 1378 dbgs() << " constraint: "; 1379 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1380 dbgs() << "\n"; 1381 }); 1382 1383 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1384 std::move(ValuesToRelease)); 1385 1386 if (R.isEq()) { 1387 // Also add the inverted constraint for equality constraints. 1388 for (auto &Coeff : R.Coefficients) 1389 Coeff *= -1; 1390 CSToUse.addVariableRowFill(R.Coefficients); 1391 1392 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1393 SmallVector<Value *, 2>()); 1394 } 1395 } 1396 } 1397 1398 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1399 SmallVectorImpl<Instruction *> &ToRemove) { 1400 bool Changed = false; 1401 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1402 Value *Sub = nullptr; 1403 for (User *U : make_early_inc_range(II->users())) { 1404 if (match(U, m_ExtractValue<0>(m_Value()))) { 1405 if (!Sub) 1406 Sub = Builder.CreateSub(A, B); 1407 U->replaceAllUsesWith(Sub); 1408 Changed = true; 1409 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1410 U->replaceAllUsesWith(Builder.getFalse()); 1411 Changed = true; 1412 } else 1413 continue; 1414 1415 if (U->use_empty()) { 1416 auto *I = cast<Instruction>(U); 1417 ToRemove.push_back(I); 1418 I->setOperand(0, PoisonValue::get(II->getType())); 1419 Changed = true; 1420 } 1421 } 1422 1423 if (II->use_empty()) { 1424 II->eraseFromParent(); 1425 Changed = true; 1426 } 1427 return Changed; 1428 } 1429 1430 static bool 1431 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1432 SmallVectorImpl<Instruction *> &ToRemove) { 1433 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1434 ConstraintInfo &Info) { 1435 auto R = Info.getConstraintForSolving(Pred, A, B); 1436 if (R.size() < 2 || !R.isValid(Info)) 1437 return false; 1438 1439 auto &CSToUse = Info.getCS(R.IsSigned); 1440 return CSToUse.isConditionImplied(R.Coefficients); 1441 }; 1442 1443 bool Changed = false; 1444 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1445 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1446 // can be simplified to a regular sub. 1447 Value *A = II->getArgOperand(0); 1448 Value *B = II->getArgOperand(1); 1449 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1450 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1451 ConstantInt::get(A->getType(), 0), Info)) 1452 return false; 1453 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1454 } 1455 return Changed; 1456 } 1457 1458 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI, 1459 ScalarEvolution &SE, 1460 OptimizationRemarkEmitter &ORE) { 1461 bool Changed = false; 1462 DT.updateDFSNumbers(); 1463 SmallVector<Value *> FunctionArgs; 1464 for (Value &Arg : F.args()) 1465 FunctionArgs.push_back(&Arg); 1466 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1467 State S(DT, LI, SE); 1468 std::unique_ptr<Module> ReproducerModule( 1469 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1470 1471 // First, collect conditions implied by branches and blocks with their 1472 // Dominator DFS in and out numbers. 1473 for (BasicBlock &BB : F) { 1474 if (!DT.getNode(&BB)) 1475 continue; 1476 S.addInfoFor(BB); 1477 } 1478 1479 // Next, sort worklist by dominance, so that dominating conditions to check 1480 // and facts come before conditions and facts dominated by them. If a 1481 // condition to check and a fact have the same numbers, conditional facts come 1482 // first. Assume facts and checks are ordered according to their relative 1483 // order in the containing basic block. Also make sure conditions with 1484 // constant operands come before conditions without constant operands. This 1485 // increases the effectiveness of the current signed <-> unsigned fact 1486 // transfer logic. 1487 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1488 auto HasNoConstOp = [](const FactOrCheck &B) { 1489 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 1490 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 1491 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1492 }; 1493 // If both entries have the same In numbers, conditional facts come first. 1494 // Otherwise use the relative order in the basic block. 1495 if (A.NumIn == B.NumIn) { 1496 if (A.isConditionFact() && B.isConditionFact()) { 1497 bool NoConstOpA = HasNoConstOp(A); 1498 bool NoConstOpB = HasNoConstOp(B); 1499 return NoConstOpA < NoConstOpB; 1500 } 1501 if (A.isConditionFact()) 1502 return true; 1503 if (B.isConditionFact()) 1504 return false; 1505 auto *InstA = A.getContextInst(); 1506 auto *InstB = B.getContextInst(); 1507 return InstA->comesBefore(InstB); 1508 } 1509 return A.NumIn < B.NumIn; 1510 }); 1511 1512 SmallVector<Instruction *> ToRemove; 1513 1514 // Finally, process ordered worklist and eliminate implied conditions. 1515 SmallVector<StackEntry, 16> DFSInStack; 1516 SmallVector<ReproducerEntry> ReproducerCondStack; 1517 for (FactOrCheck &CB : S.WorkList) { 1518 // First, pop entries from the stack that are out-of-scope for CB. Remove 1519 // the corresponding entry from the constraint system. 1520 while (!DFSInStack.empty()) { 1521 auto &E = DFSInStack.back(); 1522 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1523 << "\n"); 1524 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1525 assert(E.NumIn <= CB.NumIn); 1526 if (CB.NumOut <= E.NumOut) 1527 break; 1528 LLVM_DEBUG({ 1529 dbgs() << "Removing "; 1530 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1531 Info.getValue2Index(E.IsSigned)); 1532 dbgs() << "\n"; 1533 }); 1534 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1535 DFSInStack); 1536 } 1537 1538 LLVM_DEBUG(dbgs() << "Processing "); 1539 1540 // For a block, check if any CmpInsts become known based on the current set 1541 // of constraints. 1542 if (CB.isCheck()) { 1543 Instruction *Inst = CB.getInstructionToSimplify(); 1544 if (!Inst) 1545 continue; 1546 LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 1547 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1548 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1549 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1550 bool Simplified = checkAndReplaceCondition( 1551 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1552 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1553 if (!Simplified && match(CB.getContextInst(), 1554 m_LogicalAnd(m_Value(), m_Specific(Inst)))) { 1555 Simplified = 1556 checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(), 1557 ReproducerCondStack, DFSInStack); 1558 } 1559 Changed |= Simplified; 1560 } 1561 continue; 1562 } 1563 1564 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1565 LLVM_DEBUG(dbgs() << "fact to add to the system: " 1566 << CmpInst::getPredicateName(Pred) << " "; 1567 A->printAsOperand(dbgs()); dbgs() << ", "; 1568 B->printAsOperand(dbgs()); dbgs() << "\n"); 1569 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1570 LLVM_DEBUG( 1571 dbgs() 1572 << "Skip adding constraint because system has too many rows.\n"); 1573 return; 1574 } 1575 1576 LLVM_DEBUG({ 1577 dbgs() << "Processing fact to add to the system: " << Pred << " "; 1578 A->printAsOperand(dbgs()); 1579 dbgs() << ", "; 1580 B->printAsOperand(dbgs(), false); 1581 dbgs() << "\n"; 1582 }); 1583 1584 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1585 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1586 ReproducerCondStack.emplace_back(Pred, A, B); 1587 1588 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1589 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1590 // Add dummy entries to ReproducerCondStack to keep it in sync with 1591 // DFSInStack. 1592 for (unsigned I = 0, 1593 E = (DFSInStack.size() - ReproducerCondStack.size()); 1594 I < E; ++I) { 1595 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1596 nullptr, nullptr); 1597 } 1598 } 1599 }; 1600 1601 ICmpInst::Predicate Pred; 1602 if (!CB.isConditionFact()) { 1603 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1604 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1605 AddFact(Pred, MinMax, MinMax->getLHS()); 1606 AddFact(Pred, MinMax, MinMax->getRHS()); 1607 continue; 1608 } 1609 } 1610 1611 Value *A = nullptr, *B = nullptr; 1612 if (CB.isConditionFact()) { 1613 Pred = CB.Cond.Pred; 1614 A = CB.Cond.Op0; 1615 B = CB.Cond.Op1; 1616 if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE && 1617 !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) 1618 continue; 1619 } else { 1620 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 1621 m_ICmp(Pred, m_Value(A), m_Value(B)))); 1622 (void)Matched; 1623 assert(Matched && "Must have an assume intrinsic with a icmp operand"); 1624 } 1625 AddFact(Pred, A, B); 1626 } 1627 1628 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1629 std::string S; 1630 raw_string_ostream StringS(S); 1631 ReproducerModule->print(StringS, nullptr); 1632 StringS.flush(); 1633 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1634 Rem << ore::NV("module") << S; 1635 ORE.emit(Rem); 1636 } 1637 1638 #ifndef NDEBUG 1639 unsigned SignedEntries = 1640 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1641 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1642 "updates to CS and DFSInStack are out of sync"); 1643 assert(Info.getCS(true).size() == SignedEntries && 1644 "updates to CS and DFSInStack are out of sync"); 1645 #endif 1646 1647 for (Instruction *I : ToRemove) 1648 I->eraseFromParent(); 1649 return Changed; 1650 } 1651 1652 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1653 FunctionAnalysisManager &AM) { 1654 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1655 auto &LI = AM.getResult<LoopAnalysis>(F); 1656 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1657 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1658 if (!eliminateConstraints(F, DT, LI, SE, ORE)) 1659 return PreservedAnalyses::all(); 1660 1661 PreservedAnalyses PA; 1662 PA.preserve<DominatorTreeAnalysis>(); 1663 PA.preserve<LoopAnalysis>(); 1664 PA.preserve<ScalarEvolutionAnalysis>(); 1665 PA.preserveSet<CFGAnalyses>(); 1666 return PA; 1667 } 1668