1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DebugCounter.h" 31 #include "llvm/Transforms/Scalar.h" 32 33 #include <string> 34 35 using namespace llvm; 36 using namespace PatternMatch; 37 38 #define DEBUG_TYPE "constraint-elimination" 39 40 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 41 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 42 "Controls which conditions are eliminated"); 43 44 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 45 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 46 47 namespace { 48 49 /// Wrapper encapsulating separate constraint systems and corresponding value 50 /// mappings for both unsigned and signed information. Facts are added to and 51 /// conditions are checked against the corresponding system depending on the 52 /// signed-ness of their predicates. While the information is kept separate 53 /// based on signed-ness, certain conditions can be transferred between the two 54 /// systems. 55 class ConstraintInfo { 56 DenseMap<Value *, unsigned> UnsignedValue2Index; 57 DenseMap<Value *, unsigned> SignedValue2Index; 58 59 ConstraintSystem UnsignedCS; 60 ConstraintSystem SignedCS; 61 62 public: 63 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 64 return Signed ? SignedValue2Index : UnsignedValue2Index; 65 } 66 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 67 return Signed ? SignedValue2Index : UnsignedValue2Index; 68 } 69 70 ConstraintSystem &getCS(bool Signed) { 71 return Signed ? SignedCS : UnsignedCS; 72 } 73 const ConstraintSystem &getCS(bool Signed) const { 74 return Signed ? SignedCS : UnsignedCS; 75 } 76 77 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 78 }; 79 80 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 81 struct PreconditionTy { 82 CmpInst::Predicate Pred; 83 Value *Op0; 84 Value *Op1; 85 86 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 87 : Pred(Pred), Op0(Op0), Op1(Op1) {} 88 }; 89 90 struct ConstraintTy { 91 SmallVector<int64_t, 8> Coefficients; 92 93 bool IsSigned; 94 95 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 96 : Coefficients(Coefficients), IsSigned(IsSigned) {} 97 98 unsigned size() const { return Coefficients.size(); } 99 }; 100 101 /// Struct to manage a list of constraints with pre-conditions that must be 102 /// satisfied before using the constraints. 103 struct ConstraintListTy { 104 SmallVector<ConstraintTy, 4> Constraints; 105 SmallVector<PreconditionTy, 4> Preconditions; 106 107 ConstraintListTy() = default; 108 109 ConstraintListTy(ArrayRef<ConstraintTy> Constraints, 110 ArrayRef<PreconditionTy> Preconditions) 111 : Constraints(Constraints.begin(), Constraints.end()), 112 Preconditions(Preconditions.begin(), Preconditions.end()) {} 113 114 void mergeIn(const ConstraintListTy &Other) { 115 append_range(Constraints, Other.Constraints); 116 // TODO: Do smarter merges here, e.g. exclude duplicates. 117 append_range(Preconditions, Other.Preconditions); 118 } 119 120 unsigned size() const { return Constraints.size(); } 121 122 unsigned empty() const { return Constraints.empty(); } 123 124 /// Returns true if any constraint has a non-zero coefficient for any of the 125 /// newly added indices. Zero coefficients for new indices are removed. If it 126 /// returns true, no new variable need to be added to the system. 127 bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) { 128 assert(size() == 1); 129 for (unsigned I = 0; I < NewIndices.size(); ++I) { 130 int64_t Last = get(0).Coefficients.pop_back_val(); 131 if (Last != 0) 132 return true; 133 } 134 return false; 135 } 136 137 ConstraintTy &get(unsigned I) { return Constraints[I]; } 138 139 /// Returns true if all preconditions for this list of constraints are 140 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 141 bool isValid(const ConstraintInfo &Info) const; 142 143 /// Returns true if there is exactly one constraint in the list and isValid is 144 /// also true. 145 bool isValidSingle(const ConstraintInfo &Info) const { 146 if (size() != 1) 147 return false; 148 return isValid(Info); 149 } 150 }; 151 152 } // namespace 153 154 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The 155 // sum of the pairs equals \p V. The first pair is the constant-factor and X 156 // must be nullptr. If the expression cannot be decomposed, returns an empty 157 // vector. 158 static SmallVector<std::pair<int64_t, Value *>, 4> 159 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 160 bool IsSigned) { 161 162 // Decompose \p V used with a signed predicate. 163 if (IsSigned) { 164 if (auto *CI = dyn_cast<ConstantInt>(V)) { 165 const APInt &Val = CI->getValue(); 166 if (Val.sle(MinSignedConstraintValue) || Val.sge(MaxConstraintValue)) 167 return {}; 168 return {{CI->getSExtValue(), nullptr}}; 169 } 170 171 return {{0, nullptr}, {1, V}}; 172 } 173 174 if (auto *CI = dyn_cast<ConstantInt>(V)) { 175 if (CI->isNegative() || CI->uge(MaxConstraintValue)) 176 return {}; 177 return {{CI->getSExtValue(), nullptr}}; 178 } 179 auto *GEP = dyn_cast<GetElementPtrInst>(V); 180 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 181 Value *Op0, *Op1; 182 ConstantInt *CI; 183 184 // If the index is zero-extended, it is guaranteed to be positive. 185 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 186 m_ZExt(m_Value(Op0)))) { 187 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI)))) 188 return {{0, nullptr}, 189 {1, GEP->getPointerOperand()}, 190 {std::pow(int64_t(2), CI->getSExtValue()), Op1}}; 191 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI)))) 192 return {{CI->getSExtValue(), nullptr}, 193 {1, GEP->getPointerOperand()}, 194 {1, Op1}}; 195 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 196 } 197 198 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 199 !CI->isNegative()) 200 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 201 202 SmallVector<std::pair<int64_t, Value *>, 4> Result; 203 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 204 m_NUWShl(m_Value(Op0), m_ConstantInt(CI)))) 205 Result = {{0, nullptr}, 206 {1, GEP->getPointerOperand()}, 207 {std::pow(int64_t(2), CI->getSExtValue()), Op0}}; 208 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 209 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI)))) 210 Result = {{CI->getSExtValue(), nullptr}, 211 {1, GEP->getPointerOperand()}, 212 {1, Op0}}; 213 else { 214 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 215 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 216 } 217 // If Op0 is signed non-negative, the GEP is increasing monotonically and 218 // can be de-composed. 219 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 220 ConstantInt::get(Op0->getType(), 0)); 221 return Result; 222 } 223 224 Value *Op0; 225 if (match(V, m_ZExt(m_Value(Op0)))) 226 V = Op0; 227 228 Value *Op1; 229 ConstantInt *CI; 230 if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI)))) 231 return {{CI->getSExtValue(), nullptr}, {1, Op0}}; 232 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) 233 return {{0, nullptr}, {1, Op0}, {1, Op1}}; 234 235 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI)))) 236 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 237 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 238 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 239 240 return {{0, nullptr}, {1, V}}; 241 } 242 243 /// Turn a condition \p CmpI into a vector of constraints, using indices from \p 244 /// Value2Index. Additional indices for newly discovered values are added to \p 245 /// NewIndices. 246 static ConstraintListTy 247 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 248 const DenseMap<Value *, unsigned> &Value2Index, 249 DenseMap<Value *, unsigned> &NewIndices) { 250 251 if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE || 252 Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE) 253 return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0, 254 Value2Index, NewIndices); 255 256 if (Pred == CmpInst::ICMP_EQ) { 257 if (match(Op1, m_Zero())) 258 return getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, 259 NewIndices); 260 261 auto A = 262 getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, NewIndices); 263 auto B = 264 getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices); 265 A.mergeIn(B); 266 return A; 267 } 268 269 if (Pred == CmpInst::ICMP_NE && match(Op1, m_Zero())) { 270 return getConstraint(CmpInst::ICMP_UGT, Op0, Op1, Value2Index, NewIndices); 271 } 272 273 // Only ULE and ULT predicates are supported at the moment. 274 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 275 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 276 return {}; 277 278 SmallVector<PreconditionTy, 4> Preconditions; 279 bool IsSigned = CmpInst::isSigned(Pred); 280 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 281 Preconditions, IsSigned); 282 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 283 Preconditions, IsSigned); 284 // Skip if decomposing either of the values failed. 285 if (ADec.empty() || BDec.empty()) 286 return {}; 287 288 // Skip trivial constraints without any variables. 289 if (ADec.size() == 1 && BDec.size() == 1) 290 return {}; 291 292 int64_t Offset1 = ADec[0].first; 293 int64_t Offset2 = BDec[0].first; 294 Offset1 *= -1; 295 296 // Create iterator ranges that skip the constant-factor. 297 auto VariablesA = llvm::drop_begin(ADec); 298 auto VariablesB = llvm::drop_begin(BDec); 299 300 // First try to look up \p V in Value2Index and NewIndices. Otherwise add a 301 // new entry to NewIndices. 302 auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned { 303 auto V2I = Value2Index.find(V); 304 if (V2I != Value2Index.end()) 305 return V2I->second; 306 auto NewI = NewIndices.find(V); 307 if (NewI != NewIndices.end()) 308 return NewI->second; 309 auto Insert = 310 NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1}); 311 return Insert.first->second; 312 }; 313 314 // Make sure all variables have entries in Value2Index or NewIndices. 315 for (const auto &KV : 316 concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB)) 317 GetOrAddIndex(KV.second); 318 319 // Build result constraint, by first adding all coefficients from A and then 320 // subtracting all coefficients from B. 321 SmallVector<int64_t, 8> R(Value2Index.size() + NewIndices.size() + 1, 0); 322 for (const auto &KV : VariablesA) 323 R[GetOrAddIndex(KV.second)] += KV.first; 324 325 for (const auto &KV : VariablesB) 326 R[GetOrAddIndex(KV.second)] -= KV.first; 327 328 R[0] = Offset1 + Offset2 + 329 (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT) ? -1 : 0); 330 return {{{R, IsSigned}}, Preconditions}; 331 } 332 333 static ConstraintListTy getConstraint(CmpInst *Cmp, ConstraintInfo &Info, 334 DenseMap<Value *, unsigned> &NewIndices) { 335 return getConstraint( 336 Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1), 337 Info.getValue2Index(CmpInst::isSigned(Cmp->getPredicate())), NewIndices); 338 } 339 340 bool ConstraintListTy::isValid(const ConstraintInfo &Info) const { 341 return all_of(Preconditions, [&Info](const PreconditionTy &C) { 342 DenseMap<Value *, unsigned> NewIndices; 343 auto R = getConstraint(C.Pred, C.Op0, C.Op1, 344 Info.getValue2Index(CmpInst::isSigned(C.Pred)), 345 NewIndices); 346 // TODO: properly check NewIndices. 347 return NewIndices.empty() && R.Preconditions.empty() && R.size() == 1 && 348 Info.getCS(CmpInst::isSigned(C.Pred)) 349 .isConditionImplied(R.get(0).Coefficients); 350 }); 351 } 352 353 namespace { 354 /// Represents either a condition that holds on entry to a block or a basic 355 /// block, with their respective Dominator DFS in and out numbers. 356 struct ConstraintOrBlock { 357 unsigned NumIn; 358 unsigned NumOut; 359 bool IsBlock; 360 bool Not; 361 union { 362 BasicBlock *BB; 363 CmpInst *Condition; 364 }; 365 366 ConstraintOrBlock(DomTreeNode *DTN) 367 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 368 BB(DTN->getBlock()) {} 369 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 370 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 371 Not(Not), Condition(Condition) {} 372 }; 373 374 struct StackEntry { 375 unsigned NumIn; 376 unsigned NumOut; 377 Instruction *Condition; 378 bool IsNot; 379 bool IsSigned = false; 380 381 StackEntry(unsigned NumIn, unsigned NumOut, Instruction *Condition, 382 bool IsNot, bool IsSigned) 383 : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot), 384 IsSigned(IsSigned) {} 385 }; 386 } // namespace 387 388 #ifndef NDEBUG 389 static void dumpWithNames(ConstraintTy &C, 390 DenseMap<Value *, unsigned> &Value2Index) { 391 SmallVector<std::string> Names(Value2Index.size(), ""); 392 for (auto &KV : Value2Index) { 393 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 394 } 395 ConstraintSystem CS; 396 CS.addVariableRowFill(C.Coefficients); 397 CS.dump(Names); 398 } 399 #endif 400 401 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 402 bool Changed = false; 403 DT.updateDFSNumbers(); 404 405 ConstraintInfo Info; 406 407 SmallVector<ConstraintOrBlock, 64> WorkList; 408 409 // First, collect conditions implied by branches and blocks with their 410 // Dominator DFS in and out numbers. 411 for (BasicBlock &BB : F) { 412 if (!DT.getNode(&BB)) 413 continue; 414 WorkList.emplace_back(DT.getNode(&BB)); 415 416 // True as long as long as the current instruction is guaranteed to execute. 417 bool GuaranteedToExecute = true; 418 // Scan BB for assume calls. 419 // TODO: also use this scan to queue conditions to simplify, so we can 420 // interleave facts from assumes and conditions to simplify in a single 421 // basic block. And to skip another traversal of each basic block when 422 // simplifying. 423 for (Instruction &I : BB) { 424 Value *Cond; 425 // For now, just handle assumes with a single compare as condition. 426 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 427 isa<CmpInst>(Cond)) { 428 if (GuaranteedToExecute) { 429 // The assume is guaranteed to execute when BB is entered, hence Cond 430 // holds on entry to BB. 431 WorkList.emplace_back(DT.getNode(&BB), cast<CmpInst>(Cond), false); 432 } else { 433 // Otherwise the condition only holds in the successors. 434 for (BasicBlock *Succ : successors(&BB)) 435 WorkList.emplace_back(DT.getNode(Succ), cast<CmpInst>(Cond), false); 436 } 437 } 438 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 439 } 440 441 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 442 if (!Br || !Br->isConditional()) 443 continue; 444 445 // Returns true if we can add a known condition from BB to its successor 446 // block Succ. Each predecessor of Succ can either be BB or be dominated by 447 // Succ (e.g. the case when adding a condition from a pre-header to a loop 448 // header). 449 auto CanAdd = [&BB, &DT](BasicBlock *Succ) { 450 assert(isa<BranchInst>(BB.getTerminator())); 451 return any_of(successors(&BB), 452 [Succ](const BasicBlock *S) { return S != Succ; }) && 453 all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) { 454 return Pred == &BB || DT.dominates(Succ, Pred); 455 }); 456 }; 457 // If the condition is an OR of 2 compares and the false successor only has 458 // the current block as predecessor, queue both negated conditions for the 459 // false successor. 460 Value *Op0, *Op1; 461 if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && 462 match(Op0, m_Cmp()) && match(Op1, m_Cmp())) { 463 BasicBlock *FalseSuccessor = Br->getSuccessor(1); 464 if (CanAdd(FalseSuccessor)) { 465 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0), 466 true); 467 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1), 468 true); 469 } 470 continue; 471 } 472 473 // If the condition is an AND of 2 compares and the true successor only has 474 // the current block as predecessor, queue both conditions for the true 475 // successor. 476 if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && 477 match(Op0, m_Cmp()) && match(Op1, m_Cmp())) { 478 BasicBlock *TrueSuccessor = Br->getSuccessor(0); 479 if (CanAdd(TrueSuccessor)) { 480 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0), 481 false); 482 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1), 483 false); 484 } 485 continue; 486 } 487 488 auto *CmpI = dyn_cast<CmpInst>(Br->getCondition()); 489 if (!CmpI) 490 continue; 491 if (CanAdd(Br->getSuccessor(0))) 492 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 493 if (CanAdd(Br->getSuccessor(1))) 494 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 495 } 496 497 // Next, sort worklist by dominance, so that dominating blocks and conditions 498 // come before blocks and conditions dominated by them. If a block and a 499 // condition have the same numbers, the condition comes before the block, as 500 // it holds on entry to the block. 501 sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 502 return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); 503 }); 504 505 // Finally, process ordered worklist and eliminate implied conditions. 506 SmallVector<StackEntry, 16> DFSInStack; 507 for (ConstraintOrBlock &CB : WorkList) { 508 // First, pop entries from the stack that are out-of-scope for CB. Remove 509 // the corresponding entry from the constraint system. 510 while (!DFSInStack.empty()) { 511 auto &E = DFSInStack.back(); 512 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 513 << "\n"); 514 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 515 assert(E.NumIn <= CB.NumIn); 516 if (CB.NumOut <= E.NumOut) 517 break; 518 LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot 519 << "\n"); 520 DFSInStack.pop_back(); 521 Info.popLastConstraint(E.IsSigned); 522 } 523 524 LLVM_DEBUG({ 525 dbgs() << "Processing "; 526 if (CB.IsBlock) 527 dbgs() << *CB.BB; 528 else 529 dbgs() << *CB.Condition; 530 dbgs() << "\n"; 531 }); 532 533 // For a block, check if any CmpInsts become known based on the current set 534 // of constraints. 535 if (CB.IsBlock) { 536 for (Instruction &I : *CB.BB) { 537 auto *Cmp = dyn_cast<CmpInst>(&I); 538 if (!Cmp) 539 continue; 540 541 DenseMap<Value *, unsigned> NewIndices; 542 auto R = getConstraint(Cmp, Info, NewIndices); 543 if (!R.isValidSingle(Info) || R.needsNewIndices(NewIndices)) 544 continue; 545 546 auto &CSToUse = Info.getCS(R.get(0).IsSigned); 547 if (CSToUse.isConditionImplied(R.get(0).Coefficients)) { 548 if (!DebugCounter::shouldExecute(EliminatedCounter)) 549 continue; 550 551 LLVM_DEBUG(dbgs() << "Condition " << *Cmp 552 << " implied by dominating constraints\n"); 553 LLVM_DEBUG({ 554 for (auto &E : reverse(DFSInStack)) 555 dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; 556 }); 557 Cmp->replaceUsesWithIf( 558 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 559 // Conditions in an assume trivially simplify to true. Skip uses 560 // in assume calls to not destroy the available information. 561 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 562 return !II || II->getIntrinsicID() != Intrinsic::assume; 563 }); 564 NumCondsRemoved++; 565 Changed = true; 566 } 567 if (CSToUse.isConditionImplied( 568 ConstraintSystem::negate(R.get(0).Coefficients))) { 569 if (!DebugCounter::shouldExecute(EliminatedCounter)) 570 continue; 571 572 LLVM_DEBUG(dbgs() << "Condition !" << *Cmp 573 << " implied by dominating constraints\n"); 574 LLVM_DEBUG({ 575 for (auto &E : reverse(DFSInStack)) 576 dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; 577 }); 578 Cmp->replaceAllUsesWith( 579 ConstantInt::getFalse(F.getParent()->getContext())); 580 NumCondsRemoved++; 581 Changed = true; 582 } 583 } 584 continue; 585 } 586 587 // Set up a function to restore the predicate at the end of the scope if it 588 // has been negated. Negate the predicate in-place, if required. 589 auto *CI = dyn_cast<CmpInst>(CB.Condition); 590 auto PredicateRestorer = make_scope_exit([CI, &CB]() { 591 if (CB.Not && CI) 592 CI->setPredicate(CI->getInversePredicate()); 593 }); 594 if (CB.Not) { 595 if (CI) { 596 CI->setPredicate(CI->getInversePredicate()); 597 } else { 598 LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n"); 599 continue; 600 } 601 } 602 603 // Otherwise, add the condition to the system and stack, if we can transform 604 // it into a constraint. 605 DenseMap<Value *, unsigned> NewIndices; 606 auto R = getConstraint(CB.Condition, Info, NewIndices); 607 if (!R.isValid(Info)) 608 continue; 609 610 for (auto &KV : NewIndices) 611 Info.getValue2Index(CmpInst::isSigned(CB.Condition->getPredicate())) 612 .insert(KV); 613 614 LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n"); 615 bool Added = false; 616 for (auto &E : R.Constraints) { 617 auto &CSToUse = Info.getCS(E.IsSigned); 618 if (E.Coefficients.empty()) 619 continue; 620 621 LLVM_DEBUG({ 622 dbgs() << " constraint: "; 623 dumpWithNames(E, Info.getValue2Index(E.IsSigned)); 624 }); 625 626 Added |= CSToUse.addVariableRowFill(E.Coefficients); 627 628 // If R has been added to the system, queue it for removal once it goes 629 // out-of-scope. 630 if (Added) 631 DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not, 632 E.IsSigned); 633 } 634 } 635 636 #ifndef NDEBUG 637 unsigned SignedEntries = 638 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 639 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 640 "updates to CS and DFSInStack are out of sync"); 641 assert(Info.getCS(true).size() == SignedEntries && 642 "updates to CS and DFSInStack are out of sync"); 643 #endif 644 645 return Changed; 646 } 647 648 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 649 FunctionAnalysisManager &AM) { 650 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 651 if (!eliminateConstraints(F, DT)) 652 return PreservedAnalyses::all(); 653 654 PreservedAnalyses PA; 655 PA.preserve<DominatorTreeAnalysis>(); 656 PA.preserveSet<CFGAnalyses>(); 657 return PA; 658 } 659 660 namespace { 661 662 class ConstraintElimination : public FunctionPass { 663 public: 664 static char ID; 665 666 ConstraintElimination() : FunctionPass(ID) { 667 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 668 } 669 670 bool runOnFunction(Function &F) override { 671 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 672 return eliminateConstraints(F, DT); 673 } 674 675 void getAnalysisUsage(AnalysisUsage &AU) const override { 676 AU.setPreservesCFG(); 677 AU.addRequired<DominatorTreeWrapperPass>(); 678 AU.addPreserved<GlobalsAAWrapperPass>(); 679 AU.addPreserved<DominatorTreeWrapperPass>(); 680 } 681 }; 682 683 } // end anonymous namespace 684 685 char ConstraintElimination::ID = 0; 686 687 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 688 "Constraint Elimination", false, false) 689 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 690 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 691 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 692 "Constraint Elimination", false, false) 693 694 FunctionPass *llvm::createConstraintEliminationPass() { 695 return new ConstraintElimination(); 696 } 697