1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/DebugCounter.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Transforms/Scalar.h" 35 36 #include <cmath> 37 #include <string> 38 39 using namespace llvm; 40 using namespace PatternMatch; 41 42 #define DEBUG_TYPE "constraint-elimination" 43 44 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 45 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 46 "Controls which conditions are eliminated"); 47 48 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 49 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 50 51 // A helper to multiply 2 signed integers where overflowing is allowed. 52 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 53 int64_t Result; 54 MulOverflow(A, B, Result); 55 return Result; 56 } 57 58 // A helper to add 2 signed integers where overflowing is allowed. 59 static int64_t addWithOverflow(int64_t A, int64_t B) { 60 int64_t Result; 61 AddOverflow(A, B, Result); 62 return Result; 63 } 64 65 namespace { 66 67 class ConstraintInfo; 68 69 struct StackEntry { 70 unsigned NumIn; 71 unsigned NumOut; 72 bool IsSigned = false; 73 /// Variables that can be removed from the system once the stack entry gets 74 /// removed. 75 SmallVector<Value *, 2> ValuesToRelease; 76 77 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 78 SmallVector<Value *, 2> ValuesToRelease) 79 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 80 ValuesToRelease(ValuesToRelease) {} 81 }; 82 83 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 84 struct PreconditionTy { 85 CmpInst::Predicate Pred; 86 Value *Op0; 87 Value *Op1; 88 89 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 90 : Pred(Pred), Op0(Op0), Op1(Op1) {} 91 }; 92 93 struct ConstraintTy { 94 SmallVector<int64_t, 8> Coefficients; 95 SmallVector<PreconditionTy, 2> Preconditions; 96 97 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 98 99 bool IsSigned = false; 100 bool IsEq = false; 101 102 ConstraintTy() = default; 103 104 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 105 : Coefficients(Coefficients), IsSigned(IsSigned) {} 106 107 unsigned size() const { return Coefficients.size(); } 108 109 unsigned empty() const { return Coefficients.empty(); } 110 111 /// Returns true if all preconditions for this list of constraints are 112 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 113 bool isValid(const ConstraintInfo &Info) const; 114 }; 115 116 /// Wrapper encapsulating separate constraint systems and corresponding value 117 /// mappings for both unsigned and signed information. Facts are added to and 118 /// conditions are checked against the corresponding system depending on the 119 /// signed-ness of their predicates. While the information is kept separate 120 /// based on signed-ness, certain conditions can be transferred between the two 121 /// systems. 122 class ConstraintInfo { 123 DenseMap<Value *, unsigned> UnsignedValue2Index; 124 DenseMap<Value *, unsigned> SignedValue2Index; 125 126 ConstraintSystem UnsignedCS; 127 ConstraintSystem SignedCS; 128 129 const DataLayout &DL; 130 131 public: 132 ConstraintInfo(const DataLayout &DL) : DL(DL) {} 133 134 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 135 return Signed ? SignedValue2Index : UnsignedValue2Index; 136 } 137 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 138 return Signed ? SignedValue2Index : UnsignedValue2Index; 139 } 140 141 ConstraintSystem &getCS(bool Signed) { 142 return Signed ? SignedCS : UnsignedCS; 143 } 144 const ConstraintSystem &getCS(bool Signed) const { 145 return Signed ? SignedCS : UnsignedCS; 146 } 147 148 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 149 void popLastNVariables(bool Signed, unsigned N) { 150 getCS(Signed).popLastNVariables(N); 151 } 152 153 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 154 155 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 156 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 157 158 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 159 /// constraints, using indices from the corresponding constraint system. 160 /// New variables that need to be added to the system are collected in 161 /// \p NewVariables. 162 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 163 SmallVectorImpl<Value *> &NewVariables) const; 164 165 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 166 /// constraints using getConstraint. Returns an empty constraint if the result 167 /// cannot be used to query the existing constraint system, e.g. because it 168 /// would require adding new variables. Also tries to convert signed 169 /// predicates to unsigned ones if possible to allow using the unsigned system 170 /// which increases the effectiveness of the signed <-> unsigned transfer 171 /// logic. 172 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 173 Value *Op1) const; 174 175 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 176 /// system if \p Pred is signed/unsigned. 177 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 178 unsigned NumIn, unsigned NumOut, 179 SmallVectorImpl<StackEntry> &DFSInStack); 180 }; 181 182 /// Represents a (Coefficient * Variable) entry after IR decomposition. 183 struct DecompEntry { 184 int64_t Coefficient; 185 Value *Variable; 186 /// True if the variable is known positive in the current constraint. 187 bool IsKnownNonNegative; 188 189 DecompEntry(int64_t Coefficient, Value *Variable, 190 bool IsKnownNonNegative = false) 191 : Coefficient(Coefficient), Variable(Variable), 192 IsKnownNonNegative(IsKnownNonNegative) {} 193 }; 194 195 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 196 struct Decomposition { 197 int64_t Offset = 0; 198 SmallVector<DecompEntry, 3> Vars; 199 200 Decomposition(int64_t Offset) : Offset(Offset) {} 201 Decomposition(Value *V, bool IsKnownNonNegative = false) { 202 Vars.emplace_back(1, V, IsKnownNonNegative); 203 } 204 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 205 : Offset(Offset), Vars(Vars) {} 206 207 void add(int64_t OtherOffset) { 208 Offset = addWithOverflow(Offset, OtherOffset); 209 } 210 211 void add(const Decomposition &Other) { 212 add(Other.Offset); 213 append_range(Vars, Other.Vars); 214 } 215 216 void mul(int64_t Factor) { 217 Offset = multiplyWithOverflow(Offset, Factor); 218 for (auto &Var : Vars) 219 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 220 } 221 }; 222 223 } // namespace 224 225 static Decomposition decompose(Value *V, 226 SmallVectorImpl<PreconditionTy> &Preconditions, 227 bool IsSigned, const DataLayout &DL); 228 229 static bool canUseSExt(ConstantInt *CI) { 230 const APInt &Val = CI->getValue(); 231 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 232 } 233 234 static Decomposition 235 decomposeGEP(GetElementPtrInst &GEP, 236 SmallVectorImpl<PreconditionTy> &Preconditions, bool IsSigned, 237 const DataLayout &DL) { 238 // Do not reason about pointers where the index size is larger than 64 bits, 239 // as the coefficients used to encode constraints are 64 bit integers. 240 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 241 return &GEP; 242 243 if (!GEP.isInBounds()) 244 return &GEP; 245 246 assert(!IsSigned && "The logic below only supports decomposition for " 247 "unsinged predicates at the moment."); 248 Type *PtrTy = GEP.getType()->getScalarType(); 249 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 250 MapVector<Value *, APInt> VariableOffsets; 251 APInt ConstantOffset(BitWidth, 0); 252 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 253 return &GEP; 254 255 // Handle the (gep (gep ....), C) case by incrementing the constant 256 // coefficient of the inner GEP, if C is a constant. 257 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand()); 258 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 259 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 260 Result.add(ConstantOffset.getSExtValue()); 261 262 if (ConstantOffset.isNegative()) { 263 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 264 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 265 if (ConstantOffsetI % Scale != 0) 266 return &GEP; 267 // Add pre-condition ensuring the GEP is increasing monotonically and 268 // can be de-composed. 269 // Both sides are normalized by being divided by Scale. 270 Preconditions.emplace_back( 271 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 272 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 273 -1 * (ConstantOffsetI / Scale))); 274 } 275 return Result; 276 } 277 278 Decomposition Result(ConstantOffset.getSExtValue(), 279 DecompEntry(1, GEP.getPointerOperand())); 280 for (auto [Index, Scale] : VariableOffsets) { 281 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 282 IdxResult.mul(Scale.getSExtValue()); 283 Result.add(IdxResult); 284 285 // If Op0 is signed non-negative, the GEP is increasing monotonically and 286 // can be de-composed. 287 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 288 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 289 ConstantInt::get(Index->getType(), 0)); 290 } 291 return Result; 292 } 293 294 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 295 // Variable } where Coefficient * Variable. The sum of the constant offset and 296 // pairs equals \p V. 297 static Decomposition decompose(Value *V, 298 SmallVectorImpl<PreconditionTy> &Preconditions, 299 bool IsSigned, const DataLayout &DL) { 300 301 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 302 bool IsSignedB) { 303 auto ResA = decompose(A, Preconditions, IsSigned, DL); 304 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 305 ResA.add(ResB); 306 return ResA; 307 }; 308 309 // Decompose \p V used with a signed predicate. 310 if (IsSigned) { 311 if (auto *CI = dyn_cast<ConstantInt>(V)) { 312 if (canUseSExt(CI)) 313 return CI->getSExtValue(); 314 } 315 Value *Op0; 316 Value *Op1; 317 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 318 return MergeResults(Op0, Op1, IsSigned); 319 320 return V; 321 } 322 323 if (auto *CI = dyn_cast<ConstantInt>(V)) { 324 if (CI->uge(MaxConstraintValue)) 325 return V; 326 return int64_t(CI->getZExtValue()); 327 } 328 329 if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) 330 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 331 332 Value *Op0; 333 bool IsKnownNonNegative = false; 334 if (match(V, m_ZExt(m_Value(Op0)))) { 335 IsKnownNonNegative = true; 336 V = Op0; 337 } 338 339 Value *Op1; 340 ConstantInt *CI; 341 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 342 return MergeResults(Op0, Op1, IsSigned); 343 } 344 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 345 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 346 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 347 ConstantInt::get(Op0->getType(), 0)); 348 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 349 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 350 ConstantInt::get(Op1->getType(), 0)); 351 352 return MergeResults(Op0, Op1, IsSigned); 353 } 354 355 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 356 canUseSExt(CI)) { 357 Preconditions.emplace_back( 358 CmpInst::ICMP_UGE, Op0, 359 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 360 return MergeResults(Op0, CI, true); 361 } 362 363 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 364 int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue())); 365 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 366 Result.mul(Mult); 367 return Result; 368 } 369 370 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 371 (!CI->isNegative())) { 372 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 373 Result.mul(CI->getSExtValue()); 374 return Result; 375 } 376 377 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 378 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 379 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 380 return {0, {{1, Op0}, {-1, Op1}}}; 381 382 return {V, IsKnownNonNegative}; 383 } 384 385 ConstraintTy 386 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 387 SmallVectorImpl<Value *> &NewVariables) const { 388 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 389 bool IsEq = false; 390 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 391 switch (Pred) { 392 case CmpInst::ICMP_UGT: 393 case CmpInst::ICMP_UGE: 394 case CmpInst::ICMP_SGT: 395 case CmpInst::ICMP_SGE: { 396 Pred = CmpInst::getSwappedPredicate(Pred); 397 std::swap(Op0, Op1); 398 break; 399 } 400 case CmpInst::ICMP_EQ: 401 if (match(Op1, m_Zero())) { 402 Pred = CmpInst::ICMP_ULE; 403 } else { 404 IsEq = true; 405 Pred = CmpInst::ICMP_ULE; 406 } 407 break; 408 case CmpInst::ICMP_NE: 409 if (!match(Op1, m_Zero())) 410 return {}; 411 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 412 std::swap(Op0, Op1); 413 break; 414 default: 415 break; 416 } 417 418 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 419 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 420 return {}; 421 422 SmallVector<PreconditionTy, 4> Preconditions; 423 bool IsSigned = CmpInst::isSigned(Pred); 424 auto &Value2Index = getValue2Index(IsSigned); 425 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 426 Preconditions, IsSigned, DL); 427 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 428 Preconditions, IsSigned, DL); 429 int64_t Offset1 = ADec.Offset; 430 int64_t Offset2 = BDec.Offset; 431 Offset1 *= -1; 432 433 auto &VariablesA = ADec.Vars; 434 auto &VariablesB = BDec.Vars; 435 436 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 437 // new entry to NewVariables. 438 DenseMap<Value *, unsigned> NewIndexMap; 439 auto GetOrAddIndex = [&Value2Index, &NewVariables, 440 &NewIndexMap](Value *V) -> unsigned { 441 auto V2I = Value2Index.find(V); 442 if (V2I != Value2Index.end()) 443 return V2I->second; 444 auto Insert = 445 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 446 if (Insert.second) 447 NewVariables.push_back(V); 448 return Insert.first->second; 449 }; 450 451 // Make sure all variables have entries in Value2Index or NewVariables. 452 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 453 GetOrAddIndex(KV.Variable); 454 455 // Build result constraint, by first adding all coefficients from A and then 456 // subtracting all coefficients from B. 457 ConstraintTy Res( 458 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 459 IsSigned); 460 // Collect variables that are known to be positive in all uses in the 461 // constraint. 462 DenseMap<Value *, bool> KnownNonNegativeVariables; 463 Res.IsEq = IsEq; 464 auto &R = Res.Coefficients; 465 for (const auto &KV : VariablesA) { 466 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 467 auto I = 468 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 469 I.first->second &= KV.IsKnownNonNegative; 470 } 471 472 for (const auto &KV : VariablesB) { 473 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 474 auto I = 475 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 476 I.first->second &= KV.IsKnownNonNegative; 477 } 478 479 int64_t OffsetSum; 480 if (AddOverflow(Offset1, Offset2, OffsetSum)) 481 return {}; 482 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 483 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 484 return {}; 485 R[0] = OffsetSum; 486 Res.Preconditions = std::move(Preconditions); 487 488 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 489 // variables. 490 while (!NewVariables.empty()) { 491 int64_t Last = R.back(); 492 if (Last != 0) 493 break; 494 R.pop_back(); 495 Value *RemovedV = NewVariables.pop_back_val(); 496 NewIndexMap.erase(RemovedV); 497 } 498 499 // Add extra constraints for variables that are known positive. 500 for (auto &KV : KnownNonNegativeVariables) { 501 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 502 NewIndexMap.find(KV.first) == NewIndexMap.end())) 503 continue; 504 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 505 C[GetOrAddIndex(KV.first)] = -1; 506 Res.ExtraInfo.push_back(C); 507 } 508 return Res; 509 } 510 511 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 512 Value *Op0, 513 Value *Op1) const { 514 // If both operands are known to be non-negative, change signed predicates to 515 // unsigned ones. This increases the reasoning effectiveness in combination 516 // with the signed <-> unsigned transfer logic. 517 if (CmpInst::isSigned(Pred) && 518 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 519 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 520 Pred = CmpInst::getUnsignedPredicate(Pred); 521 522 SmallVector<Value *> NewVariables; 523 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 524 if (R.IsEq || !NewVariables.empty()) 525 return {}; 526 return R; 527 } 528 529 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 530 return Coefficients.size() > 0 && 531 all_of(Preconditions, [&Info](const PreconditionTy &C) { 532 return Info.doesHold(C.Pred, C.Op0, C.Op1); 533 }); 534 } 535 536 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 537 Value *B) const { 538 auto R = getConstraintForSolving(Pred, A, B); 539 return R.Preconditions.empty() && !R.empty() && 540 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 541 } 542 543 void ConstraintInfo::transferToOtherSystem( 544 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 545 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 546 // Check if we can combine facts from the signed and unsigned systems to 547 // derive additional facts. 548 if (!A->getType()->isIntegerTy()) 549 return; 550 // FIXME: This currently depends on the order we add facts. Ideally we 551 // would first add all known facts and only then try to add additional 552 // facts. 553 switch (Pred) { 554 default: 555 break; 556 case CmpInst::ICMP_ULT: 557 // If B is a signed positive constant, A >=s 0 and A <s B. 558 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 559 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 560 NumOut, DFSInStack); 561 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 562 } 563 break; 564 case CmpInst::ICMP_SLT: 565 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 566 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 567 break; 568 case CmpInst::ICMP_SGT: 569 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 570 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 571 NumOut, DFSInStack); 572 break; 573 case CmpInst::ICMP_SGE: 574 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 575 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 576 } 577 break; 578 } 579 } 580 581 namespace { 582 /// Represents either 583 /// * a condition that holds on entry to a block (=conditional fact) 584 /// * an assume (=assume fact) 585 /// * an instruction to simplify. 586 /// It also tracks the Dominator DFS in and out numbers for each entry. 587 struct FactOrCheck { 588 Instruction *Inst; 589 unsigned NumIn; 590 unsigned NumOut; 591 bool IsCheck; 592 bool Not; 593 594 FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool IsCheck, bool Not) 595 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 596 IsCheck(IsCheck), Not(Not) {} 597 598 static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst, 599 bool Not = false) { 600 return FactOrCheck(DTN, Inst, false, Not); 601 } 602 603 static FactOrCheck getCheck(DomTreeNode *DTN, Instruction *Inst) { 604 return FactOrCheck(DTN, Inst, true, false); 605 } 606 607 bool isAssumeFact() const { 608 if (!IsCheck && isa<IntrinsicInst>(Inst)) { 609 assert(match(Inst, m_Intrinsic<Intrinsic::assume>())); 610 return true; 611 } 612 return false; 613 } 614 615 bool isConditionFact() const { return !IsCheck && isa<CmpInst>(Inst); } 616 }; 617 618 /// Keep state required to build worklist. 619 struct State { 620 DominatorTree &DT; 621 SmallVector<FactOrCheck, 64> WorkList; 622 623 State(DominatorTree &DT) : DT(DT) {} 624 625 /// Process block \p BB and add known facts to work-list. 626 void addInfoFor(BasicBlock &BB); 627 628 /// Returns true if we can add a known condition from BB to its successor 629 /// block Succ. 630 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 631 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 632 } 633 }; 634 635 } // namespace 636 637 #ifndef NDEBUG 638 static void dumpWithNames(const ConstraintSystem &CS, 639 DenseMap<Value *, unsigned> &Value2Index) { 640 SmallVector<std::string> Names(Value2Index.size(), ""); 641 for (auto &KV : Value2Index) { 642 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 643 } 644 CS.dump(Names); 645 } 646 647 static void dumpWithNames(ArrayRef<int64_t> C, 648 DenseMap<Value *, unsigned> &Value2Index) { 649 ConstraintSystem CS; 650 CS.addVariableRowFill(C); 651 dumpWithNames(CS, Value2Index); 652 } 653 #endif 654 655 void State::addInfoFor(BasicBlock &BB) { 656 // True as long as long as the current instruction is guaranteed to execute. 657 bool GuaranteedToExecute = true; 658 // Queue conditions and assumes. 659 for (Instruction &I : BB) { 660 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 661 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), Cmp)); 662 continue; 663 } 664 665 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 666 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), &I)); 667 continue; 668 } 669 670 Value *Cond; 671 // For now, just handle assumes with a single compare as condition. 672 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 673 isa<ICmpInst>(Cond)) { 674 if (GuaranteedToExecute) { 675 // The assume is guaranteed to execute when BB is entered, hence Cond 676 // holds on entry to BB. 677 WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()), 678 cast<Instruction>(Cond))); 679 } else { 680 WorkList.emplace_back( 681 FactOrCheck::getFact(DT.getNode(I.getParent()), &I)); 682 } 683 } 684 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 685 } 686 687 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 688 if (!Br || !Br->isConditional()) 689 return; 690 691 Value *Cond = Br->getCondition(); 692 693 // If the condition is a chain of ORs/AND and the successor only has the 694 // current block as predecessor, queue conditions for the successor. 695 Value *Op0, *Op1; 696 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 697 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 698 bool IsOr = match(Cond, m_LogicalOr()); 699 bool IsAnd = match(Cond, m_LogicalAnd()); 700 // If there's a select that matches both AND and OR, we need to commit to 701 // one of the options. Arbitrarily pick OR. 702 if (IsOr && IsAnd) 703 IsAnd = false; 704 705 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 706 if (canAddSuccessor(BB, Successor)) { 707 SmallVector<Value *> CondWorkList; 708 SmallPtrSet<Value *, 8> SeenCond; 709 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 710 if (SeenCond.insert(V).second) 711 CondWorkList.push_back(V); 712 }; 713 QueueValue(Op1); 714 QueueValue(Op0); 715 while (!CondWorkList.empty()) { 716 Value *Cur = CondWorkList.pop_back_val(); 717 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 718 WorkList.emplace_back( 719 FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr)); 720 continue; 721 } 722 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 723 QueueValue(Op1); 724 QueueValue(Op0); 725 continue; 726 } 727 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 728 QueueValue(Op1); 729 QueueValue(Op0); 730 continue; 731 } 732 } 733 } 734 return; 735 } 736 737 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 738 if (!CmpI) 739 return; 740 if (canAddSuccessor(BB, Br->getSuccessor(0))) 741 WorkList.emplace_back( 742 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI)); 743 if (canAddSuccessor(BB, Br->getSuccessor(1))) 744 WorkList.emplace_back( 745 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true)); 746 } 747 748 static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) { 749 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 750 751 CmpInst::Predicate Pred = Cmp->getPredicate(); 752 Value *A = Cmp->getOperand(0); 753 Value *B = Cmp->getOperand(1); 754 755 auto R = Info.getConstraintForSolving(Pred, A, B); 756 if (R.empty() || !R.isValid(Info)){ 757 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 758 return false; 759 } 760 761 auto &CSToUse = Info.getCS(R.IsSigned); 762 763 // If there was extra information collected during decomposition, apply 764 // it now and remove it immediately once we are done with reasoning 765 // about the constraint. 766 for (auto &Row : R.ExtraInfo) 767 CSToUse.addVariableRow(Row); 768 auto InfoRestorer = make_scope_exit([&]() { 769 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 770 CSToUse.popLastConstraint(); 771 }); 772 773 bool Changed = false; 774 if (CSToUse.isConditionImplied(R.Coefficients)) { 775 if (!DebugCounter::shouldExecute(EliminatedCounter)) 776 return false; 777 778 LLVM_DEBUG({ 779 dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n"; 780 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 781 }); 782 Constant *TrueC = 783 ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType())); 784 Cmp->replaceUsesWithIf(TrueC, [](Use &U) { 785 // Conditions in an assume trivially simplify to true. Skip uses 786 // in assume calls to not destroy the available information. 787 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 788 return !II || II->getIntrinsicID() != Intrinsic::assume; 789 }); 790 NumCondsRemoved++; 791 Changed = true; 792 } 793 if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) { 794 if (!DebugCounter::shouldExecute(EliminatedCounter)) 795 return false; 796 797 LLVM_DEBUG({ 798 dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n"; 799 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 800 }); 801 Constant *FalseC = 802 ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType())); 803 Cmp->replaceAllUsesWith(FalseC); 804 NumCondsRemoved++; 805 Changed = true; 806 } 807 return Changed; 808 } 809 810 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 811 unsigned NumIn, unsigned NumOut, 812 SmallVectorImpl<StackEntry> &DFSInStack) { 813 // If the constraint has a pre-condition, skip the constraint if it does not 814 // hold. 815 SmallVector<Value *> NewVariables; 816 auto R = getConstraint(Pred, A, B, NewVariables); 817 if (!R.isValid(*this)) 818 return; 819 820 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; 821 A->printAsOperand(dbgs(), false); dbgs() << ", "; 822 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 823 bool Added = false; 824 auto &CSToUse = getCS(R.IsSigned); 825 if (R.Coefficients.empty()) 826 return; 827 828 Added |= CSToUse.addVariableRowFill(R.Coefficients); 829 830 // If R has been added to the system, add the new variables and queue it for 831 // removal once it goes out-of-scope. 832 if (Added) { 833 SmallVector<Value *, 2> ValuesToRelease; 834 auto &Value2Index = getValue2Index(R.IsSigned); 835 for (Value *V : NewVariables) { 836 Value2Index.insert({V, Value2Index.size() + 1}); 837 ValuesToRelease.push_back(V); 838 } 839 840 LLVM_DEBUG({ 841 dbgs() << " constraint: "; 842 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 843 dbgs() << "\n"; 844 }); 845 846 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 847 std::move(ValuesToRelease)); 848 849 if (R.IsEq) { 850 // Also add the inverted constraint for equality constraints. 851 for (auto &Coeff : R.Coefficients) 852 Coeff *= -1; 853 CSToUse.addVariableRowFill(R.Coefficients); 854 855 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 856 SmallVector<Value *, 2>()); 857 } 858 } 859 } 860 861 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 862 SmallVectorImpl<Instruction *> &ToRemove) { 863 bool Changed = false; 864 IRBuilder<> Builder(II->getParent(), II->getIterator()); 865 Value *Sub = nullptr; 866 for (User *U : make_early_inc_range(II->users())) { 867 if (match(U, m_ExtractValue<0>(m_Value()))) { 868 if (!Sub) 869 Sub = Builder.CreateSub(A, B); 870 U->replaceAllUsesWith(Sub); 871 Changed = true; 872 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 873 U->replaceAllUsesWith(Builder.getFalse()); 874 Changed = true; 875 } else 876 continue; 877 878 if (U->use_empty()) { 879 auto *I = cast<Instruction>(U); 880 ToRemove.push_back(I); 881 I->setOperand(0, PoisonValue::get(II->getType())); 882 Changed = true; 883 } 884 } 885 886 if (II->use_empty()) { 887 II->eraseFromParent(); 888 Changed = true; 889 } 890 return Changed; 891 } 892 893 static bool 894 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 895 SmallVectorImpl<Instruction *> &ToRemove) { 896 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 897 ConstraintInfo &Info) { 898 auto R = Info.getConstraintForSolving(Pred, A, B); 899 if (R.size() < 2 || !R.isValid(Info)) 900 return false; 901 902 auto &CSToUse = Info.getCS(R.IsSigned); 903 return CSToUse.isConditionImplied(R.Coefficients); 904 }; 905 906 bool Changed = false; 907 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 908 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 909 // can be simplified to a regular sub. 910 Value *A = II->getArgOperand(0); 911 Value *B = II->getArgOperand(1); 912 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 913 !DoesConditionHold(CmpInst::ICMP_SGE, B, 914 ConstantInt::get(A->getType(), 0), Info)) 915 return false; 916 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 917 } 918 return Changed; 919 } 920 921 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 922 bool Changed = false; 923 DT.updateDFSNumbers(); 924 925 ConstraintInfo Info(F.getParent()->getDataLayout()); 926 State S(DT); 927 928 // First, collect conditions implied by branches and blocks with their 929 // Dominator DFS in and out numbers. 930 for (BasicBlock &BB : F) { 931 if (!DT.getNode(&BB)) 932 continue; 933 S.addInfoFor(BB); 934 } 935 936 // Next, sort worklist by dominance, so that dominating conditions to check 937 // and facts come before conditions and facts dominated by them. If a 938 // condition to check and a fact have the same numbers, conditional facts come 939 // first. Assume facts and checks are ordered according to their relative 940 // order in the containing basic block. Also make sure conditions with 941 // constant operands come before conditions without constant operands. This 942 // increases the effectiveness of the current signed <-> unsigned fact 943 // transfer logic. 944 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 945 auto HasNoConstOp = [](const FactOrCheck &B) { 946 return !isa<ConstantInt>(B.Inst->getOperand(0)) && 947 !isa<ConstantInt>(B.Inst->getOperand(1)); 948 }; 949 // If both entries have the same In numbers, conditional facts come first. 950 // Otherwise use the relative order in the basic block. 951 if (A.NumIn == B.NumIn) { 952 if (A.isConditionFact() && B.isConditionFact()) { 953 bool NoConstOpA = HasNoConstOp(A); 954 bool NoConstOpB = HasNoConstOp(B); 955 return NoConstOpA < NoConstOpB; 956 } 957 if (A.isConditionFact()) 958 return true; 959 if (B.isConditionFact()) 960 return false; 961 return A.Inst->comesBefore(B.Inst); 962 } 963 return A.NumIn < B.NumIn; 964 }); 965 966 SmallVector<Instruction *> ToRemove; 967 968 // Finally, process ordered worklist and eliminate implied conditions. 969 SmallVector<StackEntry, 16> DFSInStack; 970 for (FactOrCheck &CB : S.WorkList) { 971 // First, pop entries from the stack that are out-of-scope for CB. Remove 972 // the corresponding entry from the constraint system. 973 while (!DFSInStack.empty()) { 974 auto &E = DFSInStack.back(); 975 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 976 << "\n"); 977 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 978 assert(E.NumIn <= CB.NumIn); 979 if (CB.NumOut <= E.NumOut) 980 break; 981 LLVM_DEBUG({ 982 dbgs() << "Removing "; 983 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 984 Info.getValue2Index(E.IsSigned)); 985 dbgs() << "\n"; 986 }); 987 988 Info.popLastConstraint(E.IsSigned); 989 // Remove variables in the system that went out of scope. 990 auto &Mapping = Info.getValue2Index(E.IsSigned); 991 for (Value *V : E.ValuesToRelease) 992 Mapping.erase(V); 993 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 994 DFSInStack.pop_back(); 995 } 996 997 LLVM_DEBUG({ 998 dbgs() << "Processing "; 999 if (CB.IsCheck) 1000 dbgs() << "condition to simplify: " << *CB.Inst; 1001 else 1002 dbgs() << "fact to add to the system: " << *CB.Inst; 1003 dbgs() << "\n"; 1004 }); 1005 1006 // For a block, check if any CmpInsts become known based on the current set 1007 // of constraints. 1008 if (CB.IsCheck) { 1009 if (auto *II = dyn_cast<WithOverflowInst>(CB.Inst)) { 1010 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1011 } else if (auto *Cmp = dyn_cast<ICmpInst>(CB.Inst)) { 1012 Changed |= checkAndReplaceCondition(Cmp, Info); 1013 } 1014 continue; 1015 } 1016 1017 ICmpInst::Predicate Pred; 1018 Value *A, *B; 1019 Value *Cmp = CB.Inst; 1020 match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp))); 1021 if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 1022 // Use the inverse predicate if required. 1023 if (CB.Not) 1024 Pred = CmpInst::getInversePredicate(Pred); 1025 1026 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1027 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1028 } 1029 } 1030 1031 #ifndef NDEBUG 1032 unsigned SignedEntries = 1033 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1034 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1035 "updates to CS and DFSInStack are out of sync"); 1036 assert(Info.getCS(true).size() == SignedEntries && 1037 "updates to CS and DFSInStack are out of sync"); 1038 #endif 1039 1040 for (Instruction *I : ToRemove) 1041 I->eraseFromParent(); 1042 return Changed; 1043 } 1044 1045 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1046 FunctionAnalysisManager &AM) { 1047 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1048 if (!eliminateConstraints(F, DT)) 1049 return PreservedAnalyses::all(); 1050 1051 PreservedAnalyses PA; 1052 PA.preserve<DominatorTreeAnalysis>(); 1053 PA.preserveSet<CFGAnalyses>(); 1054 return PA; 1055 } 1056 1057 namespace { 1058 1059 class ConstraintElimination : public FunctionPass { 1060 public: 1061 static char ID; 1062 1063 ConstraintElimination() : FunctionPass(ID) { 1064 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 1065 } 1066 1067 bool runOnFunction(Function &F) override { 1068 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1069 return eliminateConstraints(F, DT); 1070 } 1071 1072 void getAnalysisUsage(AnalysisUsage &AU) const override { 1073 AU.setPreservesCFG(); 1074 AU.addRequired<DominatorTreeWrapperPass>(); 1075 AU.addPreserved<GlobalsAAWrapperPass>(); 1076 AU.addPreserved<DominatorTreeWrapperPass>(); 1077 } 1078 }; 1079 1080 } // end anonymous namespace 1081 1082 char ConstraintElimination::ID = 0; 1083 1084 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 1085 "Constraint Elimination", false, false) 1086 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1087 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 1088 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 1089 "Constraint Elimination", false, false) 1090 1091 FunctionPass *llvm::createConstraintEliminationPass() { 1092 return new ConstraintElimination(); 1093 } 1094