1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/DebugCounter.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Transforms/Scalar.h" 32 33 #include <string> 34 35 using namespace llvm; 36 using namespace PatternMatch; 37 38 #define DEBUG_TYPE "constraint-elimination" 39 40 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 41 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 42 "Controls which conditions are eliminated"); 43 44 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 45 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 46 47 namespace { 48 49 /// Wrapper encapsulating separate constraint systems and corresponding value 50 /// mappings for both unsigned and signed information. Facts are added to and 51 /// conditions are checked against the corresponding system depending on the 52 /// signed-ness of their predicates. While the information is kept separate 53 /// based on signed-ness, certain conditions can be transferred between the two 54 /// systems. 55 class ConstraintInfo { 56 DenseMap<Value *, unsigned> UnsignedValue2Index; 57 DenseMap<Value *, unsigned> SignedValue2Index; 58 59 ConstraintSystem UnsignedCS; 60 ConstraintSystem SignedCS; 61 62 public: 63 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 64 return Signed ? SignedValue2Index : UnsignedValue2Index; 65 } 66 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 67 return Signed ? SignedValue2Index : UnsignedValue2Index; 68 } 69 70 ConstraintSystem &getCS(bool Signed) { 71 return Signed ? SignedCS : UnsignedCS; 72 } 73 const ConstraintSystem &getCS(bool Signed) const { 74 return Signed ? SignedCS : UnsignedCS; 75 } 76 77 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 78 void popLastNVariables(bool Signed, unsigned N) { 79 getCS(Signed).popLastNVariables(N); 80 } 81 }; 82 83 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 84 struct PreconditionTy { 85 CmpInst::Predicate Pred; 86 Value *Op0; 87 Value *Op1; 88 89 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 90 : Pred(Pred), Op0(Op0), Op1(Op1) {} 91 }; 92 93 struct ConstraintTy { 94 SmallVector<int64_t, 8> Coefficients; 95 SmallVector<PreconditionTy, 2> Preconditions; 96 97 bool IsSigned = false; 98 bool IsEq = false; 99 100 ConstraintTy() = default; 101 102 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 103 : Coefficients(Coefficients), IsSigned(IsSigned) {} 104 105 unsigned size() const { return Coefficients.size(); } 106 107 unsigned empty() const { return Coefficients.empty(); } 108 109 /// Returns true if any constraint has a non-zero coefficient for any of the 110 /// newly added indices. Zero coefficients for new indices are removed. If it 111 /// returns true, no new variable need to be added to the system. 112 bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) { 113 for (unsigned I = 0; I < NewIndices.size(); ++I) { 114 int64_t Last = Coefficients.pop_back_val(); 115 if (Last != 0) 116 return true; 117 } 118 return false; 119 } 120 121 /// Returns true if all preconditions for this list of constraints are 122 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 123 bool isValid(const ConstraintInfo &Info) const; 124 125 /// Returns true if there is exactly one constraint in the list and isValid is 126 /// also true. 127 bool isValidSingle(const ConstraintInfo &Info) const { 128 if (size() != 1) 129 return false; 130 return isValid(Info); 131 } 132 }; 133 134 } // namespace 135 136 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The 137 // sum of the pairs equals \p V. The first pair is the constant-factor and X 138 // must be nullptr. If the expression cannot be decomposed, returns an empty 139 // vector. 140 static SmallVector<std::pair<int64_t, Value *>, 4> 141 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 142 bool IsSigned) { 143 144 // Decompose \p V used with a signed predicate. 145 if (IsSigned) { 146 if (auto *CI = dyn_cast<ConstantInt>(V)) { 147 const APInt &Val = CI->getValue(); 148 if (Val.sle(MinSignedConstraintValue) || Val.sge(MaxConstraintValue)) 149 return {}; 150 return {{CI->getSExtValue(), nullptr}}; 151 } 152 153 return {{0, nullptr}, {1, V}}; 154 } 155 156 if (auto *CI = dyn_cast<ConstantInt>(V)) { 157 if (CI->uge(MaxConstraintValue)) 158 return {}; 159 return {{CI->getZExtValue(), nullptr}}; 160 } 161 auto *GEP = dyn_cast<GetElementPtrInst>(V); 162 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 163 Value *Op0, *Op1; 164 ConstantInt *CI; 165 166 // If the index is zero-extended, it is guaranteed to be positive. 167 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 168 m_ZExt(m_Value(Op0)))) { 169 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI)))) 170 return {{0, nullptr}, 171 {1, GEP->getPointerOperand()}, 172 {std::pow(int64_t(2), CI->getSExtValue()), Op1}}; 173 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI)))) 174 return {{CI->getSExtValue(), nullptr}, 175 {1, GEP->getPointerOperand()}, 176 {1, Op1}}; 177 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 178 } 179 180 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 181 !CI->isNegative()) 182 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 183 184 SmallVector<std::pair<int64_t, Value *>, 4> Result; 185 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 186 m_NUWShl(m_Value(Op0), m_ConstantInt(CI)))) 187 Result = {{0, nullptr}, 188 {1, GEP->getPointerOperand()}, 189 {std::pow(int64_t(2), CI->getSExtValue()), Op0}}; 190 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 191 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI)))) 192 Result = {{CI->getSExtValue(), nullptr}, 193 {1, GEP->getPointerOperand()}, 194 {1, Op0}}; 195 else { 196 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 197 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 198 } 199 // If Op0 is signed non-negative, the GEP is increasing monotonically and 200 // can be de-composed. 201 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 202 ConstantInt::get(Op0->getType(), 0)); 203 return Result; 204 } 205 206 Value *Op0; 207 if (match(V, m_ZExt(m_Value(Op0)))) 208 V = Op0; 209 210 Value *Op1; 211 ConstantInt *CI; 212 if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) && 213 !CI->uge(MaxConstraintValue)) 214 return {{CI->getZExtValue(), nullptr}, {1, Op0}}; 215 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative()) { 216 Preconditions.emplace_back( 217 CmpInst::ICMP_UGE, Op0, 218 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 219 return {{CI->getSExtValue(), nullptr}, {1, Op0}}; 220 } 221 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) 222 return {{0, nullptr}, {1, Op0}, {1, Op1}}; 223 224 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI)))) 225 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 226 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 227 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 228 229 return {{0, nullptr}, {1, V}}; 230 } 231 232 /// Turn a condition \p CmpI into a vector of constraints, using indices from \p 233 /// Value2Index. Additional indices for newly discovered values are added to \p 234 /// NewIndices. 235 static ConstraintTy 236 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 237 const DenseMap<Value *, unsigned> &Value2Index, 238 DenseMap<Value *, unsigned> &NewIndices) { 239 bool IsEq = false; 240 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 241 switch (Pred) { 242 case CmpInst::ICMP_UGT: 243 case CmpInst::ICMP_UGE: 244 case CmpInst::ICMP_SGT: 245 case CmpInst::ICMP_SGE: { 246 Pred = CmpInst::getSwappedPredicate(Pred); 247 std::swap(Op0, Op1); 248 break; 249 } 250 case CmpInst::ICMP_EQ: 251 if (match(Op1, m_Zero())) { 252 Pred = CmpInst::ICMP_ULE; 253 } else { 254 IsEq = true; 255 Pred = CmpInst::ICMP_ULE; 256 } 257 break; 258 case CmpInst::ICMP_NE: 259 if (!match(Op1, m_Zero())) 260 return {}; 261 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 262 std::swap(Op0, Op1); 263 break; 264 default: 265 break; 266 } 267 268 // Only ULE and ULT predicates are supported at the moment. 269 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 270 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 271 return {}; 272 273 SmallVector<PreconditionTy, 4> Preconditions; 274 bool IsSigned = CmpInst::isSigned(Pred); 275 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 276 Preconditions, IsSigned); 277 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 278 Preconditions, IsSigned); 279 // Skip if decomposing either of the values failed. 280 if (ADec.empty() || BDec.empty()) 281 return {}; 282 283 // Skip trivial constraints without any variables. 284 if (ADec.size() == 1 && BDec.size() == 1) 285 return {}; 286 287 int64_t Offset1 = ADec[0].first; 288 int64_t Offset2 = BDec[0].first; 289 Offset1 *= -1; 290 291 // Create iterator ranges that skip the constant-factor. 292 auto VariablesA = llvm::drop_begin(ADec); 293 auto VariablesB = llvm::drop_begin(BDec); 294 295 // First try to look up \p V in Value2Index and NewIndices. Otherwise add a 296 // new entry to NewIndices. 297 auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned { 298 auto V2I = Value2Index.find(V); 299 if (V2I != Value2Index.end()) 300 return V2I->second; 301 auto Insert = 302 NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1}); 303 return Insert.first->second; 304 }; 305 306 // Make sure all variables have entries in Value2Index or NewIndices. 307 for (const auto &KV : 308 concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB)) 309 GetOrAddIndex(KV.second); 310 311 // Build result constraint, by first adding all coefficients from A and then 312 // subtracting all coefficients from B. 313 ConstraintTy Res( 314 SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0), 315 IsSigned); 316 Res.IsEq = IsEq; 317 auto &R = Res.Coefficients; 318 for (const auto &KV : VariablesA) 319 R[GetOrAddIndex(KV.second)] += KV.first; 320 321 for (const auto &KV : VariablesB) 322 R[GetOrAddIndex(KV.second)] -= KV.first; 323 324 int64_t OffsetSum; 325 if (AddOverflow(Offset1, Offset2, OffsetSum)) 326 return {}; 327 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 328 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 329 return {}; 330 R[0] = OffsetSum; 331 Res.Preconditions = std::move(Preconditions); 332 return Res; 333 } 334 335 static ConstraintTy getConstraint(CmpInst *Cmp, ConstraintInfo &Info, 336 DenseMap<Value *, unsigned> &NewIndices) { 337 return getConstraint( 338 Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1), 339 Info.getValue2Index(CmpInst::isSigned(Cmp->getPredicate())), NewIndices); 340 } 341 342 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 343 return Coefficients.size() > 0 && 344 all_of(Preconditions, [&Info](const PreconditionTy &C) { 345 DenseMap<Value *, unsigned> NewIndices; 346 auto R = getConstraint( 347 C.Pred, C.Op0, C.Op1, 348 Info.getValue2Index(CmpInst::isSigned(C.Pred)), NewIndices); 349 // TODO: properly check NewIndices. 350 return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq && 351 R.size() >= 2 && 352 Info.getCS(CmpInst::isSigned(C.Pred)) 353 .isConditionImplied(R.Coefficients); 354 }); 355 } 356 357 namespace { 358 /// Represents either a condition that holds on entry to a block or a basic 359 /// block, with their respective Dominator DFS in and out numbers. 360 struct ConstraintOrBlock { 361 unsigned NumIn; 362 unsigned NumOut; 363 bool IsBlock; 364 bool Not; 365 union { 366 BasicBlock *BB; 367 CmpInst *Condition; 368 }; 369 370 ConstraintOrBlock(DomTreeNode *DTN) 371 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 372 BB(DTN->getBlock()) {} 373 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 374 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 375 Not(Not), Condition(Condition) {} 376 }; 377 378 struct StackEntry { 379 unsigned NumIn; 380 unsigned NumOut; 381 Instruction *Condition; 382 bool IsNot; 383 bool IsSigned = false; 384 /// Variables that can be removed from the system once the stack entry gets 385 /// removed. 386 SmallVector<Value *, 2> ValuesToRelease; 387 388 StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot, 389 bool IsSigned, SmallVector<Value *, 2> ValuesToRelease) 390 : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot), 391 IsSigned(IsSigned), ValuesToRelease(ValuesToRelease) {} 392 }; 393 } // namespace 394 395 #ifndef NDEBUG 396 static void dumpWithNames(ConstraintTy &C, 397 DenseMap<Value *, unsigned> &Value2Index) { 398 SmallVector<std::string> Names(Value2Index.size(), ""); 399 for (auto &KV : Value2Index) { 400 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 401 } 402 ConstraintSystem CS; 403 CS.addVariableRowFill(C.Coefficients); 404 CS.dump(Names); 405 } 406 #endif 407 408 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 409 bool Changed = false; 410 DT.updateDFSNumbers(); 411 412 ConstraintInfo Info; 413 414 SmallVector<ConstraintOrBlock, 64> WorkList; 415 416 // First, collect conditions implied by branches and blocks with their 417 // Dominator DFS in and out numbers. 418 for (BasicBlock &BB : F) { 419 if (!DT.getNode(&BB)) 420 continue; 421 WorkList.emplace_back(DT.getNode(&BB)); 422 423 // Returns true if we can add a known condition from BB to its successor 424 // block Succ. Each predecessor of Succ can either be BB or be dominated by 425 // Succ (e.g. the case when adding a condition from a pre-header to a loop 426 // header). 427 auto CanAdd = [&BB, &DT](BasicBlock *Succ) { 428 if (BB.getSingleSuccessor()) { 429 assert(BB.getSingleSuccessor() == Succ); 430 return DT.properlyDominates(&BB, Succ); 431 } 432 return any_of(successors(&BB), 433 [Succ](const BasicBlock *S) { return S != Succ; }) && 434 all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) { 435 return Pred == &BB || DT.dominates(Succ, Pred); 436 }); 437 }; 438 439 // True as long as long as the current instruction is guaranteed to execute. 440 bool GuaranteedToExecute = true; 441 // Scan BB for assume calls. 442 // TODO: also use this scan to queue conditions to simplify, so we can 443 // interleave facts from assumes and conditions to simplify in a single 444 // basic block. And to skip another traversal of each basic block when 445 // simplifying. 446 for (Instruction &I : BB) { 447 Value *Cond; 448 // For now, just handle assumes with a single compare as condition. 449 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 450 isa<ICmpInst>(Cond)) { 451 if (GuaranteedToExecute) { 452 // The assume is guaranteed to execute when BB is entered, hence Cond 453 // holds on entry to BB. 454 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 455 } else { 456 // Otherwise the condition only holds in the successors. 457 for (BasicBlock *Succ : successors(&BB)) { 458 if (!CanAdd(Succ)) 459 continue; 460 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), 461 false); 462 } 463 } 464 } 465 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 466 } 467 468 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 469 if (!Br || !Br->isConditional()) 470 continue; 471 472 // If the condition is an OR of 2 compares and the false successor only has 473 // the current block as predecessor, queue both negated conditions for the 474 // false successor. 475 Value *Op0, *Op1; 476 if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && 477 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 478 BasicBlock *FalseSuccessor = Br->getSuccessor(1); 479 if (CanAdd(FalseSuccessor)) { 480 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0), 481 true); 482 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1), 483 true); 484 } 485 continue; 486 } 487 488 // If the condition is an AND of 2 compares and the true successor only has 489 // the current block as predecessor, queue both conditions for the true 490 // successor. 491 if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && 492 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 493 BasicBlock *TrueSuccessor = Br->getSuccessor(0); 494 if (CanAdd(TrueSuccessor)) { 495 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0), 496 false); 497 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1), 498 false); 499 } 500 continue; 501 } 502 503 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 504 if (!CmpI) 505 continue; 506 if (CanAdd(Br->getSuccessor(0))) 507 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 508 if (CanAdd(Br->getSuccessor(1))) 509 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 510 } 511 512 // Next, sort worklist by dominance, so that dominating blocks and conditions 513 // come before blocks and conditions dominated by them. If a block and a 514 // condition have the same numbers, the condition comes before the block, as 515 // it holds on entry to the block. 516 sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 517 return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); 518 }); 519 520 // Finally, process ordered worklist and eliminate implied conditions. 521 SmallVector<StackEntry, 16> DFSInStack; 522 for (ConstraintOrBlock &CB : WorkList) { 523 // First, pop entries from the stack that are out-of-scope for CB. Remove 524 // the corresponding entry from the constraint system. 525 while (!DFSInStack.empty()) { 526 auto &E = DFSInStack.back(); 527 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 528 << "\n"); 529 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 530 assert(E.NumIn <= CB.NumIn); 531 if (CB.NumOut <= E.NumOut) 532 break; 533 LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot 534 << "\n"); 535 Info.popLastConstraint(E.IsSigned); 536 // Remove variables in the system that went out of scope. 537 auto &Mapping = Info.getValue2Index(E.IsSigned); 538 for (Value *V : E.ValuesToRelease) 539 Mapping.erase(V); 540 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 541 DFSInStack.pop_back(); 542 } 543 544 LLVM_DEBUG({ 545 dbgs() << "Processing "; 546 if (CB.IsBlock) 547 dbgs() << *CB.BB; 548 else 549 dbgs() << *CB.Condition; 550 dbgs() << "\n"; 551 }); 552 553 // For a block, check if any CmpInsts become known based on the current set 554 // of constraints. 555 if (CB.IsBlock) { 556 for (Instruction &I : *CB.BB) { 557 auto *Cmp = dyn_cast<ICmpInst>(&I); 558 if (!Cmp) 559 continue; 560 561 DenseMap<Value *, unsigned> NewIndices; 562 auto R = getConstraint(Cmp, Info, NewIndices); 563 if (R.IsEq || R.size() < 2 || R.needsNewIndices(NewIndices) || 564 !R.isValid(Info)) 565 continue; 566 567 auto &CSToUse = Info.getCS(R.IsSigned); 568 if (CSToUse.isConditionImplied(R.Coefficients)) { 569 if (!DebugCounter::shouldExecute(EliminatedCounter)) 570 continue; 571 572 LLVM_DEBUG(dbgs() << "Condition " << *Cmp 573 << " implied by dominating constraints\n"); 574 LLVM_DEBUG({ 575 for (auto &E : reverse(DFSInStack)) 576 dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; 577 }); 578 Cmp->replaceUsesWithIf( 579 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 580 // Conditions in an assume trivially simplify to true. Skip uses 581 // in assume calls to not destroy the available information. 582 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 583 return !II || II->getIntrinsicID() != Intrinsic::assume; 584 }); 585 NumCondsRemoved++; 586 Changed = true; 587 } 588 if (CSToUse.isConditionImplied( 589 ConstraintSystem::negate(R.Coefficients))) { 590 if (!DebugCounter::shouldExecute(EliminatedCounter)) 591 continue; 592 593 LLVM_DEBUG(dbgs() << "Condition !" << *Cmp 594 << " implied by dominating constraints\n"); 595 LLVM_DEBUG({ 596 for (auto &E : reverse(DFSInStack)) 597 dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; 598 }); 599 Cmp->replaceAllUsesWith( 600 ConstantInt::getFalse(F.getParent()->getContext())); 601 NumCondsRemoved++; 602 Changed = true; 603 } 604 } 605 continue; 606 } 607 608 // Set up a function to restore the predicate at the end of the scope if it 609 // has been negated. Negate the predicate in-place, if required. 610 auto *CI = dyn_cast<ICmpInst>(CB.Condition); 611 auto PredicateRestorer = make_scope_exit([CI, &CB]() { 612 if (CB.Not && CI) 613 CI->setPredicate(CI->getInversePredicate()); 614 }); 615 if (CB.Not) { 616 if (CI) { 617 CI->setPredicate(CI->getInversePredicate()); 618 } else { 619 LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n"); 620 continue; 621 } 622 } 623 624 // Otherwise, add the condition to the system and stack, if we can transform 625 // it into a constraint. 626 DenseMap<Value *, unsigned> NewIndices; 627 auto R = getConstraint(CB.Condition, Info, NewIndices); 628 if (!R.isValid(Info)) 629 continue; 630 631 LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n"); 632 bool Added = false; 633 assert(CmpInst::isSigned(CB.Condition->getPredicate()) == R.IsSigned && 634 "condition and constraint signs must match"); 635 auto &CSToUse = Info.getCS(R.IsSigned); 636 if (R.Coefficients.empty()) 637 continue; 638 639 Added |= CSToUse.addVariableRowFill(R.Coefficients); 640 641 // If R has been added to the system, queue it for removal once it goes 642 // out-of-scope. 643 if (Added) { 644 SmallVector<Value *, 2> ValuesToRelease; 645 for (auto &KV : NewIndices) { 646 Info.getValue2Index(R.IsSigned).insert(KV); 647 ValuesToRelease.push_back(KV.first); 648 } 649 650 LLVM_DEBUG({ 651 dbgs() << " constraint: "; 652 dumpWithNames(R, Info.getValue2Index(R.IsSigned)); 653 }); 654 655 DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not, 656 R.IsSigned, ValuesToRelease); 657 658 if (R.IsEq) { 659 // Also add the inverted constraint for equality constraints. 660 for (auto &Coeff : R.Coefficients) 661 Coeff *= -1; 662 CSToUse.addVariableRowFill(R.Coefficients); 663 664 DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not, 665 R.IsSigned, SmallVector<Value *, 2>()); 666 } 667 } 668 } 669 670 #ifndef NDEBUG 671 unsigned SignedEntries = 672 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 673 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 674 "updates to CS and DFSInStack are out of sync"); 675 assert(Info.getCS(true).size() == SignedEntries && 676 "updates to CS and DFSInStack are out of sync"); 677 #endif 678 679 return Changed; 680 } 681 682 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 683 FunctionAnalysisManager &AM) { 684 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 685 if (!eliminateConstraints(F, DT)) 686 return PreservedAnalyses::all(); 687 688 PreservedAnalyses PA; 689 PA.preserve<DominatorTreeAnalysis>(); 690 PA.preserveSet<CFGAnalyses>(); 691 return PA; 692 } 693 694 namespace { 695 696 class ConstraintElimination : public FunctionPass { 697 public: 698 static char ID; 699 700 ConstraintElimination() : FunctionPass(ID) { 701 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 702 } 703 704 bool runOnFunction(Function &F) override { 705 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 706 return eliminateConstraints(F, DT); 707 } 708 709 void getAnalysisUsage(AnalysisUsage &AU) const override { 710 AU.setPreservesCFG(); 711 AU.addRequired<DominatorTreeWrapperPass>(); 712 AU.addPreserved<GlobalsAAWrapperPass>(); 713 AU.addPreserved<DominatorTreeWrapperPass>(); 714 } 715 }; 716 717 } // end anonymous namespace 718 719 char ConstraintElimination::ID = 0; 720 721 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 722 "Constraint Elimination", false, false) 723 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 724 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 725 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 726 "Constraint Elimination", false, false) 727 728 FunctionPass *llvm::createConstraintEliminationPass() { 729 return new ConstraintElimination(); 730 } 731