1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Verifier.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/DebugCounter.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 #include "llvm/Transforms/Utils/ValueMapper.h" 41 42 #include <cmath> 43 #include <optional> 44 #include <string> 45 46 using namespace llvm; 47 using namespace PatternMatch; 48 49 #define DEBUG_TYPE "constraint-elimination" 50 51 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 52 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 53 "Controls which conditions are eliminated"); 54 55 static cl::opt<unsigned> 56 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 57 cl::desc("Maximum number of rows to keep in constraint system")); 58 59 static cl::opt<bool> DumpReproducers( 60 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 61 cl::desc("Dump IR to reproduce successful transformations.")); 62 63 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 64 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 65 66 // A helper to multiply 2 signed integers where overflowing is allowed. 67 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 68 int64_t Result; 69 MulOverflow(A, B, Result); 70 return Result; 71 } 72 73 // A helper to add 2 signed integers where overflowing is allowed. 74 static int64_t addWithOverflow(int64_t A, int64_t B) { 75 int64_t Result; 76 AddOverflow(A, B, Result); 77 return Result; 78 } 79 80 static Instruction *getContextInstForUse(Use &U) { 81 Instruction *UserI = cast<Instruction>(U.getUser()); 82 if (auto *Phi = dyn_cast<PHINode>(UserI)) 83 UserI = Phi->getIncomingBlock(U)->getTerminator(); 84 return UserI; 85 } 86 87 namespace { 88 /// Struct to express a condition of the form %Op0 Pred %Op1. 89 struct ConditionTy { 90 CmpInst::Predicate Pred; 91 Value *Op0; 92 Value *Op1; 93 94 ConditionTy() 95 : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {} 96 ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 97 : Pred(Pred), Op0(Op0), Op1(Op1) {} 98 }; 99 100 /// Represents either 101 /// * a condition that holds on entry to a block (=condition fact) 102 /// * an assume (=assume fact) 103 /// * a use of a compare instruction to simplify. 104 /// It also tracks the Dominator DFS in and out numbers for each entry. 105 struct FactOrCheck { 106 enum class EntryTy { 107 ConditionFact, /// A condition that holds on entry to a block. 108 InstFact, /// A fact that holds after Inst executed (e.g. an assume or 109 /// min/mix intrinsic. 110 InstCheck, /// An instruction to simplify (e.g. an overflow math 111 /// intrinsics). 112 UseCheck /// An use of a compare instruction to simplify. 113 }; 114 115 union { 116 Instruction *Inst; 117 Use *U; 118 ConditionTy Cond; 119 }; 120 121 /// A pre-condition that must hold for the current fact to be added to the 122 /// system. 123 ConditionTy DoesHold; 124 125 unsigned NumIn; 126 unsigned NumOut; 127 EntryTy Ty; 128 129 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 130 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 131 Ty(Ty) {} 132 133 FactOrCheck(DomTreeNode *DTN, Use *U) 134 : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr), 135 NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 136 Ty(EntryTy::UseCheck) {} 137 138 FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1, 139 ConditionTy Precond = ConditionTy()) 140 : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()), 141 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 142 143 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 144 Value *Op0, Value *Op1, 145 ConditionTy Precond = ConditionTy()) { 146 return FactOrCheck(DTN, Pred, Op0, Op1, Precond); 147 } 148 149 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 150 return FactOrCheck(EntryTy::InstFact, DTN, Inst); 151 } 152 153 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 154 return FactOrCheck(DTN, U); 155 } 156 157 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 158 return FactOrCheck(EntryTy::InstCheck, DTN, CI); 159 } 160 161 bool isCheck() const { 162 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 163 } 164 165 Instruction *getContextInst() const { 166 if (Ty == EntryTy::UseCheck) 167 return getContextInstForUse(*U); 168 return Inst; 169 } 170 171 Instruction *getInstructionToSimplify() const { 172 assert(isCheck()); 173 if (Ty == EntryTy::InstCheck) 174 return Inst; 175 // The use may have been simplified to a constant already. 176 return dyn_cast<Instruction>(*U); 177 } 178 179 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 180 }; 181 182 /// Keep state required to build worklist. 183 struct State { 184 DominatorTree &DT; 185 LoopInfo &LI; 186 ScalarEvolution &SE; 187 SmallVector<FactOrCheck, 64> WorkList; 188 189 State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE) 190 : DT(DT), LI(LI), SE(SE) {} 191 192 /// Process block \p BB and add known facts to work-list. 193 void addInfoFor(BasicBlock &BB); 194 195 /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares 196 /// controlling the loop header. 197 void addInfoForInductions(BasicBlock &BB); 198 199 /// Returns true if we can add a known condition from BB to its successor 200 /// block Succ. 201 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 202 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 203 } 204 }; 205 206 class ConstraintInfo; 207 208 struct StackEntry { 209 unsigned NumIn; 210 unsigned NumOut; 211 bool IsSigned = false; 212 /// Variables that can be removed from the system once the stack entry gets 213 /// removed. 214 SmallVector<Value *, 2> ValuesToRelease; 215 216 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 217 SmallVector<Value *, 2> ValuesToRelease) 218 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 219 ValuesToRelease(ValuesToRelease) {} 220 }; 221 222 struct ConstraintTy { 223 SmallVector<int64_t, 8> Coefficients; 224 SmallVector<ConditionTy, 2> Preconditions; 225 226 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 227 228 bool IsSigned = false; 229 230 ConstraintTy() = default; 231 232 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 233 bool IsNe) 234 : Coefficients(std::move(Coefficients)), IsSigned(IsSigned), IsEq(IsEq), 235 IsNe(IsNe) {} 236 237 unsigned size() const { return Coefficients.size(); } 238 239 unsigned empty() const { return Coefficients.empty(); } 240 241 /// Returns true if all preconditions for this list of constraints are 242 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 243 bool isValid(const ConstraintInfo &Info) const; 244 245 bool isEq() const { return IsEq; } 246 247 bool isNe() const { return IsNe; } 248 249 /// Check if the current constraint is implied by the given ConstraintSystem. 250 /// 251 /// \return true or false if the constraint is proven to be respectively true, 252 /// or false. When the constraint cannot be proven to be either true or false, 253 /// std::nullopt is returned. 254 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 255 256 private: 257 bool IsEq = false; 258 bool IsNe = false; 259 }; 260 261 /// Wrapper encapsulating separate constraint systems and corresponding value 262 /// mappings for both unsigned and signed information. Facts are added to and 263 /// conditions are checked against the corresponding system depending on the 264 /// signed-ness of their predicates. While the information is kept separate 265 /// based on signed-ness, certain conditions can be transferred between the two 266 /// systems. 267 class ConstraintInfo { 268 269 ConstraintSystem UnsignedCS; 270 ConstraintSystem SignedCS; 271 272 const DataLayout &DL; 273 274 public: 275 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 276 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) { 277 auto &Value2Index = getValue2Index(false); 278 // Add Arg > -1 constraints to unsigned system for all function arguments. 279 for (Value *Arg : FunctionArgs) { 280 ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0), 281 false, false, false); 282 VarPos.Coefficients[Value2Index[Arg]] = -1; 283 UnsignedCS.addVariableRow(VarPos.Coefficients); 284 } 285 } 286 287 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 288 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 289 } 290 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 291 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 292 } 293 294 ConstraintSystem &getCS(bool Signed) { 295 return Signed ? SignedCS : UnsignedCS; 296 } 297 const ConstraintSystem &getCS(bool Signed) const { 298 return Signed ? SignedCS : UnsignedCS; 299 } 300 301 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 302 void popLastNVariables(bool Signed, unsigned N) { 303 getCS(Signed).popLastNVariables(N); 304 } 305 306 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 307 308 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 309 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 310 311 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 312 /// constraints, using indices from the corresponding constraint system. 313 /// New variables that need to be added to the system are collected in 314 /// \p NewVariables. 315 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 316 SmallVectorImpl<Value *> &NewVariables) const; 317 318 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 319 /// constraints using getConstraint. Returns an empty constraint if the result 320 /// cannot be used to query the existing constraint system, e.g. because it 321 /// would require adding new variables. Also tries to convert signed 322 /// predicates to unsigned ones if possible to allow using the unsigned system 323 /// which increases the effectiveness of the signed <-> unsigned transfer 324 /// logic. 325 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 326 Value *Op1) const; 327 328 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 329 /// system if \p Pred is signed/unsigned. 330 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 331 unsigned NumIn, unsigned NumOut, 332 SmallVectorImpl<StackEntry> &DFSInStack); 333 }; 334 335 /// Represents a (Coefficient * Variable) entry after IR decomposition. 336 struct DecompEntry { 337 int64_t Coefficient; 338 Value *Variable; 339 /// True if the variable is known positive in the current constraint. 340 bool IsKnownNonNegative; 341 342 DecompEntry(int64_t Coefficient, Value *Variable, 343 bool IsKnownNonNegative = false) 344 : Coefficient(Coefficient), Variable(Variable), 345 IsKnownNonNegative(IsKnownNonNegative) {} 346 }; 347 348 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 349 struct Decomposition { 350 int64_t Offset = 0; 351 SmallVector<DecompEntry, 3> Vars; 352 353 Decomposition(int64_t Offset) : Offset(Offset) {} 354 Decomposition(Value *V, bool IsKnownNonNegative = false) { 355 Vars.emplace_back(1, V, IsKnownNonNegative); 356 } 357 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 358 : Offset(Offset), Vars(Vars) {} 359 360 void add(int64_t OtherOffset) { 361 Offset = addWithOverflow(Offset, OtherOffset); 362 } 363 364 void add(const Decomposition &Other) { 365 add(Other.Offset); 366 append_range(Vars, Other.Vars); 367 } 368 369 void sub(const Decomposition &Other) { 370 Decomposition Tmp = Other; 371 Tmp.mul(-1); 372 add(Tmp.Offset); 373 append_range(Vars, Tmp.Vars); 374 } 375 376 void mul(int64_t Factor) { 377 Offset = multiplyWithOverflow(Offset, Factor); 378 for (auto &Var : Vars) 379 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 380 } 381 }; 382 383 // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr. 384 struct OffsetResult { 385 Value *BasePtr; 386 APInt ConstantOffset; 387 MapVector<Value *, APInt> VariableOffsets; 388 bool AllInbounds; 389 390 OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {} 391 392 OffsetResult(GEPOperator &GEP, const DataLayout &DL) 393 : BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) { 394 ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0); 395 } 396 }; 397 } // namespace 398 399 // Try to collect variable and constant offsets for \p GEP, partly traversing 400 // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting 401 // the offset fails. 402 static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) { 403 OffsetResult Result(GEP, DL); 404 unsigned BitWidth = Result.ConstantOffset.getBitWidth(); 405 if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets, 406 Result.ConstantOffset)) 407 return {}; 408 409 // If we have a nested GEP, check if we can combine the constant offset of the 410 // inner GEP with the outer GEP. 411 if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) { 412 MapVector<Value *, APInt> VariableOffsets2; 413 APInt ConstantOffset2(BitWidth, 0); 414 bool CanCollectInner = InnerGEP->collectOffset( 415 DL, BitWidth, VariableOffsets2, ConstantOffset2); 416 // TODO: Support cases with more than 1 variable offset. 417 if (!CanCollectInner || Result.VariableOffsets.size() > 1 || 418 VariableOffsets2.size() > 1 || 419 (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) { 420 // More than 1 variable index, use outer result. 421 return Result; 422 } 423 Result.BasePtr = InnerGEP->getPointerOperand(); 424 Result.ConstantOffset += ConstantOffset2; 425 if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1) 426 Result.VariableOffsets = VariableOffsets2; 427 Result.AllInbounds &= InnerGEP->isInBounds(); 428 } 429 return Result; 430 } 431 432 static Decomposition decompose(Value *V, 433 SmallVectorImpl<ConditionTy> &Preconditions, 434 bool IsSigned, const DataLayout &DL); 435 436 static bool canUseSExt(ConstantInt *CI) { 437 const APInt &Val = CI->getValue(); 438 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 439 } 440 441 static Decomposition decomposeGEP(GEPOperator &GEP, 442 SmallVectorImpl<ConditionTy> &Preconditions, 443 bool IsSigned, const DataLayout &DL) { 444 // Do not reason about pointers where the index size is larger than 64 bits, 445 // as the coefficients used to encode constraints are 64 bit integers. 446 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 447 return &GEP; 448 449 assert(!IsSigned && "The logic below only supports decomposition for " 450 "unsigned predicates at the moment."); 451 const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] = 452 collectOffsets(GEP, DL); 453 if (!BasePtr || !AllInbounds) 454 return &GEP; 455 456 Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr)); 457 for (auto [Index, Scale] : VariableOffsets) { 458 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 459 IdxResult.mul(Scale.getSExtValue()); 460 Result.add(IdxResult); 461 462 // If Op0 is signed non-negative, the GEP is increasing monotonically and 463 // can be de-composed. 464 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 465 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 466 ConstantInt::get(Index->getType(), 0)); 467 } 468 return Result; 469 } 470 471 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 472 // Variable } where Coefficient * Variable. The sum of the constant offset and 473 // pairs equals \p V. 474 static Decomposition decompose(Value *V, 475 SmallVectorImpl<ConditionTy> &Preconditions, 476 bool IsSigned, const DataLayout &DL) { 477 478 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 479 bool IsSignedB) { 480 auto ResA = decompose(A, Preconditions, IsSigned, DL); 481 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 482 ResA.add(ResB); 483 return ResA; 484 }; 485 486 Type *Ty = V->getType()->getScalarType(); 487 if (Ty->isPointerTy() && !IsSigned) { 488 if (auto *GEP = dyn_cast<GEPOperator>(V)) 489 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 490 if (isa<ConstantPointerNull>(V)) 491 return int64_t(0); 492 493 return V; 494 } 495 496 // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so 497 // coefficient add/mul may wrap, while the operation in the full bit width 498 // would not. 499 if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64) 500 return V; 501 502 bool IsKnownNonNegative = false; 503 504 // Decompose \p V used with a signed predicate. 505 if (IsSigned) { 506 if (auto *CI = dyn_cast<ConstantInt>(V)) { 507 if (canUseSExt(CI)) 508 return CI->getSExtValue(); 509 } 510 Value *Op0; 511 Value *Op1; 512 513 if (match(V, m_SExt(m_Value(Op0)))) 514 V = Op0; 515 else if (match(V, m_NNegZExt(m_Value(Op0)))) { 516 V = Op0; 517 IsKnownNonNegative = true; 518 } 519 520 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 521 return MergeResults(Op0, Op1, IsSigned); 522 523 ConstantInt *CI; 524 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 525 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 526 Result.mul(CI->getSExtValue()); 527 return Result; 528 } 529 530 // (shl nsw x, shift) is (mul nsw x, (1<<shift)), with the exception of 531 // shift == bw-1. 532 if (match(V, m_NSWShl(m_Value(Op0), m_ConstantInt(CI)))) { 533 uint64_t Shift = CI->getValue().getLimitedValue(); 534 if (Shift < Ty->getIntegerBitWidth() - 1) { 535 assert(Shift < 64 && "Would overflow"); 536 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 537 Result.mul(int64_t(1) << Shift); 538 return Result; 539 } 540 } 541 542 return {V, IsKnownNonNegative}; 543 } 544 545 if (auto *CI = dyn_cast<ConstantInt>(V)) { 546 if (CI->uge(MaxConstraintValue)) 547 return V; 548 return int64_t(CI->getZExtValue()); 549 } 550 551 Value *Op0; 552 if (match(V, m_ZExt(m_Value(Op0)))) { 553 IsKnownNonNegative = true; 554 V = Op0; 555 } 556 557 Value *Op1; 558 ConstantInt *CI; 559 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 560 return MergeResults(Op0, Op1, IsSigned); 561 } 562 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 563 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 564 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 565 ConstantInt::get(Op0->getType(), 0)); 566 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 567 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 568 ConstantInt::get(Op1->getType(), 0)); 569 570 return MergeResults(Op0, Op1, IsSigned); 571 } 572 573 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 574 canUseSExt(CI)) { 575 Preconditions.emplace_back( 576 CmpInst::ICMP_UGE, Op0, 577 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 578 return MergeResults(Op0, CI, true); 579 } 580 581 // Decompose or as an add if there are no common bits between the operands. 582 if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI)))) 583 return MergeResults(Op0, CI, IsSigned); 584 585 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 586 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 587 return {V, IsKnownNonNegative}; 588 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 589 Result.mul(int64_t{1} << CI->getSExtValue()); 590 return Result; 591 } 592 593 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 594 (!CI->isNegative())) { 595 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 596 Result.mul(CI->getSExtValue()); 597 return Result; 598 } 599 600 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) { 601 auto ResA = decompose(Op0, Preconditions, IsSigned, DL); 602 auto ResB = decompose(Op1, Preconditions, IsSigned, DL); 603 ResA.sub(ResB); 604 return ResA; 605 } 606 607 return {V, IsKnownNonNegative}; 608 } 609 610 ConstraintTy 611 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 612 SmallVectorImpl<Value *> &NewVariables) const { 613 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 614 bool IsEq = false; 615 bool IsNe = false; 616 617 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 618 switch (Pred) { 619 case CmpInst::ICMP_UGT: 620 case CmpInst::ICMP_UGE: 621 case CmpInst::ICMP_SGT: 622 case CmpInst::ICMP_SGE: { 623 Pred = CmpInst::getSwappedPredicate(Pred); 624 std::swap(Op0, Op1); 625 break; 626 } 627 case CmpInst::ICMP_EQ: 628 if (match(Op1, m_Zero())) { 629 Pred = CmpInst::ICMP_ULE; 630 } else { 631 IsEq = true; 632 Pred = CmpInst::ICMP_ULE; 633 } 634 break; 635 case CmpInst::ICMP_NE: 636 if (match(Op1, m_Zero())) { 637 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 638 std::swap(Op0, Op1); 639 } else { 640 IsNe = true; 641 Pred = CmpInst::ICMP_ULE; 642 } 643 break; 644 default: 645 break; 646 } 647 648 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 649 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 650 return {}; 651 652 SmallVector<ConditionTy, 4> Preconditions; 653 bool IsSigned = CmpInst::isSigned(Pred); 654 auto &Value2Index = getValue2Index(IsSigned); 655 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 656 Preconditions, IsSigned, DL); 657 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 658 Preconditions, IsSigned, DL); 659 int64_t Offset1 = ADec.Offset; 660 int64_t Offset2 = BDec.Offset; 661 Offset1 *= -1; 662 663 auto &VariablesA = ADec.Vars; 664 auto &VariablesB = BDec.Vars; 665 666 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 667 // new entry to NewVariables. 668 SmallDenseMap<Value *, unsigned> NewIndexMap; 669 auto GetOrAddIndex = [&Value2Index, &NewVariables, 670 &NewIndexMap](Value *V) -> unsigned { 671 auto V2I = Value2Index.find(V); 672 if (V2I != Value2Index.end()) 673 return V2I->second; 674 auto Insert = 675 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 676 if (Insert.second) 677 NewVariables.push_back(V); 678 return Insert.first->second; 679 }; 680 681 // Make sure all variables have entries in Value2Index or NewVariables. 682 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 683 GetOrAddIndex(KV.Variable); 684 685 // Build result constraint, by first adding all coefficients from A and then 686 // subtracting all coefficients from B. 687 ConstraintTy Res( 688 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 689 IsSigned, IsEq, IsNe); 690 // Collect variables that are known to be positive in all uses in the 691 // constraint. 692 SmallDenseMap<Value *, bool> KnownNonNegativeVariables; 693 auto &R = Res.Coefficients; 694 for (const auto &KV : VariablesA) { 695 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 696 auto I = 697 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 698 I.first->second &= KV.IsKnownNonNegative; 699 } 700 701 for (const auto &KV : VariablesB) { 702 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 703 R[GetOrAddIndex(KV.Variable)])) 704 return {}; 705 auto I = 706 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 707 I.first->second &= KV.IsKnownNonNegative; 708 } 709 710 int64_t OffsetSum; 711 if (AddOverflow(Offset1, Offset2, OffsetSum)) 712 return {}; 713 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 714 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 715 return {}; 716 R[0] = OffsetSum; 717 Res.Preconditions = std::move(Preconditions); 718 719 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 720 // variables. 721 while (!NewVariables.empty()) { 722 int64_t Last = R.back(); 723 if (Last != 0) 724 break; 725 R.pop_back(); 726 Value *RemovedV = NewVariables.pop_back_val(); 727 NewIndexMap.erase(RemovedV); 728 } 729 730 // Add extra constraints for variables that are known positive. 731 for (auto &KV : KnownNonNegativeVariables) { 732 if (!KV.second || 733 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 734 continue; 735 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 736 C[GetOrAddIndex(KV.first)] = -1; 737 Res.ExtraInfo.push_back(C); 738 } 739 return Res; 740 } 741 742 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 743 Value *Op0, 744 Value *Op1) const { 745 Constant *NullC = Constant::getNullValue(Op0->getType()); 746 // Handle trivially true compares directly to avoid adding V UGE 0 constraints 747 // for all variables in the unsigned system. 748 if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) || 749 (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) { 750 auto &Value2Index = getValue2Index(false); 751 // Return constraint that's trivially true. 752 return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false, 753 false, false); 754 } 755 756 // If both operands are known to be non-negative, change signed predicates to 757 // unsigned ones. This increases the reasoning effectiveness in combination 758 // with the signed <-> unsigned transfer logic. 759 if (CmpInst::isSigned(Pred) && 760 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 761 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 762 Pred = CmpInst::getUnsignedPredicate(Pred); 763 764 SmallVector<Value *> NewVariables; 765 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 766 if (!NewVariables.empty()) 767 return {}; 768 return R; 769 } 770 771 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 772 return Coefficients.size() > 0 && 773 all_of(Preconditions, [&Info](const ConditionTy &C) { 774 return Info.doesHold(C.Pred, C.Op0, C.Op1); 775 }); 776 } 777 778 std::optional<bool> 779 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 780 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 781 782 if (IsEq || IsNe) { 783 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 784 bool IsNegatedOrEqualImplied = 785 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 786 787 // In order to check that `%a == %b` is true (equality), both conditions `%a 788 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 789 // is true), we return true if they both hold, false in the other cases. 790 if (IsConditionImplied && IsNegatedOrEqualImplied) 791 return IsEq; 792 793 auto Negated = ConstraintSystem::negate(Coefficients); 794 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 795 796 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 797 bool IsStrictLessThanImplied = 798 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 799 800 // In order to check that `%a != %b` is true (non-equality), either 801 // condition `%a > %b` or `%a < %b` must hold true. When checking for 802 // non-equality (`IsNe` is true), we return true if one of the two holds, 803 // false in the other cases. 804 if (IsNegatedImplied || IsStrictLessThanImplied) 805 return IsNe; 806 807 return std::nullopt; 808 } 809 810 if (IsConditionImplied) 811 return true; 812 813 auto Negated = ConstraintSystem::negate(Coefficients); 814 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 815 if (IsNegatedImplied) 816 return false; 817 818 // Neither the condition nor its negated holds, did not prove anything. 819 return std::nullopt; 820 } 821 822 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 823 Value *B) const { 824 auto R = getConstraintForSolving(Pred, A, B); 825 return R.isValid(*this) && 826 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 827 } 828 829 void ConstraintInfo::transferToOtherSystem( 830 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 831 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 832 auto IsKnownNonNegative = [this](Value *V) { 833 return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) || 834 isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1); 835 }; 836 // Check if we can combine facts from the signed and unsigned systems to 837 // derive additional facts. 838 if (!A->getType()->isIntegerTy()) 839 return; 840 // FIXME: This currently depends on the order we add facts. Ideally we 841 // would first add all known facts and only then try to add additional 842 // facts. 843 switch (Pred) { 844 default: 845 break; 846 case CmpInst::ICMP_ULT: 847 case CmpInst::ICMP_ULE: 848 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B. 849 if (IsKnownNonNegative(B)) { 850 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 851 NumOut, DFSInStack); 852 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 853 DFSInStack); 854 } 855 break; 856 case CmpInst::ICMP_UGE: 857 case CmpInst::ICMP_UGT: 858 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B. 859 if (IsKnownNonNegative(A)) { 860 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn, 861 NumOut, DFSInStack); 862 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 863 DFSInStack); 864 } 865 break; 866 case CmpInst::ICMP_SLT: 867 if (IsKnownNonNegative(A)) 868 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 869 break; 870 case CmpInst::ICMP_SGT: { 871 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 872 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 873 NumOut, DFSInStack); 874 if (IsKnownNonNegative(B)) 875 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 876 877 break; 878 } 879 case CmpInst::ICMP_SGE: 880 if (IsKnownNonNegative(B)) 881 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 882 break; 883 } 884 } 885 886 #ifndef NDEBUG 887 888 static void dumpConstraint(ArrayRef<int64_t> C, 889 const DenseMap<Value *, unsigned> &Value2Index) { 890 ConstraintSystem CS(Value2Index); 891 CS.addVariableRowFill(C); 892 CS.dump(); 893 } 894 #endif 895 896 void State::addInfoForInductions(BasicBlock &BB) { 897 auto *L = LI.getLoopFor(&BB); 898 if (!L || L->getHeader() != &BB) 899 return; 900 901 Value *A; 902 Value *B; 903 CmpInst::Predicate Pred; 904 905 if (!match(BB.getTerminator(), 906 m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value()))) 907 return; 908 PHINode *PN = dyn_cast<PHINode>(A); 909 if (!PN) { 910 Pred = CmpInst::getSwappedPredicate(Pred); 911 std::swap(A, B); 912 PN = dyn_cast<PHINode>(A); 913 } 914 915 if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 || 916 !SE.isSCEVable(PN->getType())) 917 return; 918 919 BasicBlock *InLoopSucc = nullptr; 920 if (Pred == CmpInst::ICMP_NE) 921 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0); 922 else if (Pred == CmpInst::ICMP_EQ) 923 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1); 924 else 925 return; 926 927 if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB) 928 return; 929 930 auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN)); 931 BasicBlock *LoopPred = L->getLoopPredecessor(); 932 if (!AR || AR->getLoop() != L || !LoopPred) 933 return; 934 935 const SCEV *StartSCEV = AR->getStart(); 936 Value *StartValue = nullptr; 937 if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) { 938 StartValue = C->getValue(); 939 } else { 940 StartValue = PN->getIncomingValueForBlock(LoopPred); 941 assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value"); 942 } 943 944 DomTreeNode *DTN = DT.getNode(InLoopSucc); 945 auto IncUnsigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT); 946 auto IncSigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_SGT); 947 bool MonotonicallyIncreasingUnsigned = 948 IncUnsigned && *IncUnsigned == ScalarEvolution::MonotonicallyIncreasing; 949 bool MonotonicallyIncreasingSigned = 950 IncSigned && *IncSigned == ScalarEvolution::MonotonicallyIncreasing; 951 // If SCEV guarantees that AR does not wrap, PN >= StartValue can be added 952 // unconditionally. 953 if (MonotonicallyIncreasingUnsigned) 954 WorkList.push_back( 955 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue)); 956 if (MonotonicallyIncreasingSigned) 957 WorkList.push_back( 958 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_SGE, PN, StartValue)); 959 960 APInt StepOffset; 961 if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 962 StepOffset = C->getAPInt(); 963 else 964 return; 965 966 // Make sure the bound B is loop-invariant. 967 if (!L->isLoopInvariant(B)) 968 return; 969 970 // Handle negative steps. 971 if (StepOffset.isNegative()) { 972 // TODO: Extend to allow steps > -1. 973 if (!(-StepOffset).isOne()) 974 return; 975 976 // AR may wrap. 977 // Add StartValue >= PN conditional on B <= StartValue which guarantees that 978 // the loop exits before wrapping with a step of -1. 979 WorkList.push_back(FactOrCheck::getConditionFact( 980 DTN, CmpInst::ICMP_UGE, StartValue, PN, 981 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 982 WorkList.push_back(FactOrCheck::getConditionFact( 983 DTN, CmpInst::ICMP_SGE, StartValue, PN, 984 ConditionTy(CmpInst::ICMP_SLE, B, StartValue))); 985 // Add PN > B conditional on B <= StartValue which guarantees that the loop 986 // exits when reaching B with a step of -1. 987 WorkList.push_back(FactOrCheck::getConditionFact( 988 DTN, CmpInst::ICMP_UGT, PN, B, 989 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 990 WorkList.push_back(FactOrCheck::getConditionFact( 991 DTN, CmpInst::ICMP_SGT, PN, B, 992 ConditionTy(CmpInst::ICMP_SLE, B, StartValue))); 993 return; 994 } 995 996 // Make sure AR either steps by 1 or that the value we compare against is a 997 // GEP based on the same start value and all offsets are a multiple of the 998 // step size, to guarantee that the induction will reach the value. 999 if (StepOffset.isZero() || StepOffset.isNegative()) 1000 return; 1001 1002 if (!StepOffset.isOne()) { 1003 // Check whether B-Start is known to be a multiple of StepOffset. 1004 const SCEV *BMinusStart = SE.getMinusSCEV(SE.getSCEV(B), StartSCEV); 1005 if (isa<SCEVCouldNotCompute>(BMinusStart) || 1006 !SE.getConstantMultiple(BMinusStart).urem(StepOffset).isZero()) 1007 return; 1008 } 1009 1010 // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which 1011 // guarantees that the loop exits before wrapping in combination with the 1012 // restrictions on B and the step above. 1013 if (!MonotonicallyIncreasingUnsigned) 1014 WorkList.push_back(FactOrCheck::getConditionFact( 1015 DTN, CmpInst::ICMP_UGE, PN, StartValue, 1016 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 1017 if (!MonotonicallyIncreasingSigned) 1018 WorkList.push_back(FactOrCheck::getConditionFact( 1019 DTN, CmpInst::ICMP_SGE, PN, StartValue, 1020 ConditionTy(CmpInst::ICMP_SLE, StartValue, B))); 1021 1022 WorkList.push_back(FactOrCheck::getConditionFact( 1023 DTN, CmpInst::ICMP_ULT, PN, B, 1024 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 1025 WorkList.push_back(FactOrCheck::getConditionFact( 1026 DTN, CmpInst::ICMP_SLT, PN, B, 1027 ConditionTy(CmpInst::ICMP_SLE, StartValue, B))); 1028 } 1029 1030 void State::addInfoFor(BasicBlock &BB) { 1031 addInfoForInductions(BB); 1032 1033 // True as long as long as the current instruction is guaranteed to execute. 1034 bool GuaranteedToExecute = true; 1035 // Queue conditions and assumes. 1036 for (Instruction &I : BB) { 1037 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 1038 for (Use &U : Cmp->uses()) { 1039 auto *UserI = getContextInstForUse(U); 1040 auto *DTN = DT.getNode(UserI->getParent()); 1041 if (!DTN) 1042 continue; 1043 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 1044 } 1045 continue; 1046 } 1047 1048 auto *II = dyn_cast<IntrinsicInst>(&I); 1049 Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic; 1050 switch (ID) { 1051 case Intrinsic::assume: { 1052 Value *A, *B; 1053 CmpInst::Predicate Pred; 1054 if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1055 break; 1056 if (GuaranteedToExecute) { 1057 // The assume is guaranteed to execute when BB is entered, hence Cond 1058 // holds on entry to BB. 1059 WorkList.emplace_back(FactOrCheck::getConditionFact( 1060 DT.getNode(I.getParent()), Pred, A, B)); 1061 } else { 1062 WorkList.emplace_back( 1063 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 1064 } 1065 break; 1066 } 1067 // Enqueue ssub_with_overflow for simplification. 1068 case Intrinsic::ssub_with_overflow: 1069 WorkList.push_back( 1070 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 1071 break; 1072 // Enqueue the intrinsics to add extra info. 1073 case Intrinsic::umin: 1074 case Intrinsic::umax: 1075 case Intrinsic::smin: 1076 case Intrinsic::smax: 1077 // TODO: handle llvm.abs as well 1078 WorkList.push_back( 1079 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 1080 // TODO: Check if it is possible to instead only added the min/max facts 1081 // when simplifying uses of the min/max intrinsics. 1082 if (!isGuaranteedNotToBePoison(&I)) 1083 break; 1084 [[fallthrough]]; 1085 case Intrinsic::abs: 1086 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 1087 break; 1088 } 1089 1090 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 1091 } 1092 1093 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 1094 for (auto &Case : Switch->cases()) { 1095 BasicBlock *Succ = Case.getCaseSuccessor(); 1096 Value *V = Case.getCaseValue(); 1097 if (!canAddSuccessor(BB, Succ)) 1098 continue; 1099 WorkList.emplace_back(FactOrCheck::getConditionFact( 1100 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 1101 } 1102 return; 1103 } 1104 1105 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 1106 if (!Br || !Br->isConditional()) 1107 return; 1108 1109 Value *Cond = Br->getCondition(); 1110 1111 // If the condition is a chain of ORs/AND and the successor only has the 1112 // current block as predecessor, queue conditions for the successor. 1113 Value *Op0, *Op1; 1114 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 1115 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1116 bool IsOr = match(Cond, m_LogicalOr()); 1117 bool IsAnd = match(Cond, m_LogicalAnd()); 1118 // If there's a select that matches both AND and OR, we need to commit to 1119 // one of the options. Arbitrarily pick OR. 1120 if (IsOr && IsAnd) 1121 IsAnd = false; 1122 1123 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 1124 if (canAddSuccessor(BB, Successor)) { 1125 SmallVector<Value *> CondWorkList; 1126 SmallPtrSet<Value *, 8> SeenCond; 1127 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 1128 if (SeenCond.insert(V).second) 1129 CondWorkList.push_back(V); 1130 }; 1131 QueueValue(Op1); 1132 QueueValue(Op0); 1133 while (!CondWorkList.empty()) { 1134 Value *Cur = CondWorkList.pop_back_val(); 1135 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 1136 WorkList.emplace_back(FactOrCheck::getConditionFact( 1137 DT.getNode(Successor), 1138 IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate()) 1139 : Cmp->getPredicate(), 1140 Cmp->getOperand(0), Cmp->getOperand(1))); 1141 continue; 1142 } 1143 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 1144 QueueValue(Op1); 1145 QueueValue(Op0); 1146 continue; 1147 } 1148 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1149 QueueValue(Op1); 1150 QueueValue(Op0); 1151 continue; 1152 } 1153 } 1154 } 1155 return; 1156 } 1157 1158 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 1159 if (!CmpI) 1160 return; 1161 if (canAddSuccessor(BB, Br->getSuccessor(0))) 1162 WorkList.emplace_back(FactOrCheck::getConditionFact( 1163 DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(), 1164 CmpI->getOperand(0), CmpI->getOperand(1))); 1165 if (canAddSuccessor(BB, Br->getSuccessor(1))) 1166 WorkList.emplace_back(FactOrCheck::getConditionFact( 1167 DT.getNode(Br->getSuccessor(1)), 1168 CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0), 1169 CmpI->getOperand(1))); 1170 } 1171 1172 #ifndef NDEBUG 1173 static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred, 1174 Value *LHS, Value *RHS) { 1175 OS << "icmp " << Pred << ' '; 1176 LHS->printAsOperand(OS, /*PrintType=*/true); 1177 OS << ", "; 1178 RHS->printAsOperand(OS, /*PrintType=*/false); 1179 } 1180 #endif 1181 1182 namespace { 1183 /// Helper to keep track of a condition and if it should be treated as negated 1184 /// for reproducer construction. 1185 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 1186 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 1187 struct ReproducerEntry { 1188 ICmpInst::Predicate Pred; 1189 Value *LHS; 1190 Value *RHS; 1191 1192 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 1193 : Pred(Pred), LHS(LHS), RHS(RHS) {} 1194 }; 1195 } // namespace 1196 1197 /// Helper function to generate a reproducer function for simplifying \p Cond. 1198 /// The reproducer function contains a series of @llvm.assume calls, one for 1199 /// each condition in \p Stack. For each condition, the operand instruction are 1200 /// cloned until we reach operands that have an entry in \p Value2Index. Those 1201 /// will then be added as function arguments. \p DT is used to order cloned 1202 /// instructions. The reproducer function will get added to \p M, if it is 1203 /// non-null. Otherwise no reproducer function is generated. 1204 static void generateReproducer(CmpInst *Cond, Module *M, 1205 ArrayRef<ReproducerEntry> Stack, 1206 ConstraintInfo &Info, DominatorTree &DT) { 1207 if (!M) 1208 return; 1209 1210 LLVMContext &Ctx = Cond->getContext(); 1211 1212 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 1213 1214 ValueToValueMapTy Old2New; 1215 SmallVector<Value *> Args; 1216 SmallPtrSet<Value *, 8> Seen; 1217 // Traverse Cond and its operands recursively until we reach a value that's in 1218 // Value2Index or not an instruction, or not a operation that 1219 // ConstraintElimination can decompose. Such values will be considered as 1220 // external inputs to the reproducer, they are collected and added as function 1221 // arguments later. 1222 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1223 auto &Value2Index = Info.getValue2Index(IsSigned); 1224 SmallVector<Value *, 4> WorkList(Ops); 1225 while (!WorkList.empty()) { 1226 Value *V = WorkList.pop_back_val(); 1227 if (!Seen.insert(V).second) 1228 continue; 1229 if (Old2New.find(V) != Old2New.end()) 1230 continue; 1231 if (isa<Constant>(V)) 1232 continue; 1233 1234 auto *I = dyn_cast<Instruction>(V); 1235 if (Value2Index.contains(V) || !I || 1236 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 1237 Old2New[V] = V; 1238 Args.push_back(V); 1239 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 1240 } else { 1241 append_range(WorkList, I->operands()); 1242 } 1243 } 1244 }; 1245 1246 for (auto &Entry : Stack) 1247 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 1248 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 1249 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 1250 1251 SmallVector<Type *> ParamTys; 1252 for (auto *P : Args) 1253 ParamTys.push_back(P->getType()); 1254 1255 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 1256 /*isVarArg=*/false); 1257 Function *F = Function::Create(FTy, Function::ExternalLinkage, 1258 Cond->getModule()->getName() + 1259 Cond->getFunction()->getName() + "repro", 1260 M); 1261 // Add arguments to the reproducer function for each external value collected. 1262 for (unsigned I = 0; I < Args.size(); ++I) { 1263 F->getArg(I)->setName(Args[I]->getName()); 1264 Old2New[Args[I]] = F->getArg(I); 1265 } 1266 1267 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 1268 IRBuilder<> Builder(Entry); 1269 Builder.CreateRet(Builder.getTrue()); 1270 Builder.SetInsertPoint(Entry->getTerminator()); 1271 1272 // Clone instructions in \p Ops and their operands recursively until reaching 1273 // an value in Value2Index (external input to the reproducer). Update Old2New 1274 // mapping for the original and cloned instructions. Sort instructions to 1275 // clone by dominance, then insert the cloned instructions in the function. 1276 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1277 SmallVector<Value *, 4> WorkList(Ops); 1278 SmallVector<Instruction *> ToClone; 1279 auto &Value2Index = Info.getValue2Index(IsSigned); 1280 while (!WorkList.empty()) { 1281 Value *V = WorkList.pop_back_val(); 1282 if (Old2New.find(V) != Old2New.end()) 1283 continue; 1284 1285 auto *I = dyn_cast<Instruction>(V); 1286 if (!Value2Index.contains(V) && I) { 1287 Old2New[V] = nullptr; 1288 ToClone.push_back(I); 1289 append_range(WorkList, I->operands()); 1290 } 1291 } 1292 1293 sort(ToClone, 1294 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 1295 for (Instruction *I : ToClone) { 1296 Instruction *Cloned = I->clone(); 1297 Old2New[I] = Cloned; 1298 Old2New[I]->setName(I->getName()); 1299 Cloned->insertBefore(&*Builder.GetInsertPoint()); 1300 Cloned->dropUnknownNonDebugMetadata(); 1301 Cloned->setDebugLoc({}); 1302 } 1303 }; 1304 1305 // Materialize the assumptions for the reproducer using the entries in Stack. 1306 // That is, first clone the operands of the condition recursively until we 1307 // reach an external input to the reproducer and add them to the reproducer 1308 // function. Then add an ICmp for the condition (with the inverse predicate if 1309 // the entry is negated) and an assert using the ICmp. 1310 for (auto &Entry : Stack) { 1311 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1312 continue; 1313 1314 LLVM_DEBUG(dbgs() << " Materializing assumption "; 1315 dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS); 1316 dbgs() << "\n"); 1317 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1318 1319 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1320 Builder.CreateAssumption(Cmp); 1321 } 1322 1323 // Finally, clone the condition to reproduce and remap instruction operands in 1324 // the reproducer using Old2New. 1325 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1326 Entry->getTerminator()->setOperand(0, Cond); 1327 remapInstructionsInBlocks({Entry}, Old2New); 1328 1329 assert(!verifyFunction(*F, &dbgs())); 1330 } 1331 1332 static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A, 1333 Value *B, Instruction *CheckInst, 1334 ConstraintInfo &Info) { 1335 LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n"); 1336 1337 auto R = Info.getConstraintForSolving(Pred, A, B); 1338 if (R.empty() || !R.isValid(Info)){ 1339 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1340 return std::nullopt; 1341 } 1342 1343 auto &CSToUse = Info.getCS(R.IsSigned); 1344 1345 // If there was extra information collected during decomposition, apply 1346 // it now and remove it immediately once we are done with reasoning 1347 // about the constraint. 1348 for (auto &Row : R.ExtraInfo) 1349 CSToUse.addVariableRow(Row); 1350 auto InfoRestorer = make_scope_exit([&]() { 1351 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1352 CSToUse.popLastConstraint(); 1353 }); 1354 1355 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1356 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1357 return std::nullopt; 1358 1359 LLVM_DEBUG({ 1360 dbgs() << "Condition "; 1361 dumpUnpackedICmp( 1362 dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred), 1363 A, B); 1364 dbgs() << " implied by dominating constraints\n"; 1365 CSToUse.dump(); 1366 }); 1367 return ImpliedCondition; 1368 } 1369 1370 return std::nullopt; 1371 } 1372 1373 static bool checkAndReplaceCondition( 1374 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1375 Instruction *ContextInst, Module *ReproducerModule, 1376 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1377 SmallVectorImpl<Instruction *> &ToRemove) { 1378 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1379 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1380 Constant *ConstantC = ConstantInt::getBool( 1381 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1382 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1383 ContextInst](Use &U) { 1384 auto *UserI = getContextInstForUse(U); 1385 auto *DTN = DT.getNode(UserI->getParent()); 1386 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1387 return false; 1388 if (UserI->getParent() == ContextInst->getParent() && 1389 UserI->comesBefore(ContextInst)) 1390 return false; 1391 1392 // Conditions in an assume trivially simplify to true. Skip uses 1393 // in assume calls to not destroy the available information. 1394 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1395 return !II || II->getIntrinsicID() != Intrinsic::assume; 1396 }); 1397 NumCondsRemoved++; 1398 if (Cmp->use_empty()) 1399 ToRemove.push_back(Cmp); 1400 return true; 1401 }; 1402 1403 if (auto ImpliedCondition = 1404 checkCondition(Cmp->getPredicate(), Cmp->getOperand(0), 1405 Cmp->getOperand(1), Cmp, Info)) 1406 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1407 return false; 1408 } 1409 1410 static bool checkAndReplaceMinMax(MinMaxIntrinsic *MinMax, ConstraintInfo &Info, 1411 SmallVectorImpl<Instruction *> &ToRemove) { 1412 auto ReplaceMinMaxWithOperand = [&](MinMaxIntrinsic *MinMax, bool UseLHS) { 1413 // TODO: generate reproducer for min/max. 1414 MinMax->replaceAllUsesWith(MinMax->getOperand(UseLHS ? 0 : 1)); 1415 ToRemove.push_back(MinMax); 1416 return true; 1417 }; 1418 1419 ICmpInst::Predicate Pred = 1420 ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1421 if (auto ImpliedCondition = checkCondition( 1422 Pred, MinMax->getOperand(0), MinMax->getOperand(1), MinMax, Info)) 1423 return ReplaceMinMaxWithOperand(MinMax, *ImpliedCondition); 1424 if (auto ImpliedCondition = checkCondition( 1425 Pred, MinMax->getOperand(1), MinMax->getOperand(0), MinMax, Info)) 1426 return ReplaceMinMaxWithOperand(MinMax, !*ImpliedCondition); 1427 return false; 1428 } 1429 1430 static void 1431 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1432 Module *ReproducerModule, 1433 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1434 SmallVectorImpl<StackEntry> &DFSInStack) { 1435 Info.popLastConstraint(E.IsSigned); 1436 // Remove variables in the system that went out of scope. 1437 auto &Mapping = Info.getValue2Index(E.IsSigned); 1438 for (Value *V : E.ValuesToRelease) 1439 Mapping.erase(V); 1440 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1441 DFSInStack.pop_back(); 1442 if (ReproducerModule) 1443 ReproducerCondStack.pop_back(); 1444 } 1445 1446 /// Check if either the first condition of an AND or OR is implied by the 1447 /// (negated in case of OR) second condition or vice versa. 1448 static bool checkOrAndOpImpliedByOther( 1449 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1450 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1451 SmallVectorImpl<StackEntry> &DFSInStack) { 1452 1453 CmpInst::Predicate Pred; 1454 Value *A, *B; 1455 Instruction *JoinOp = CB.getContextInst(); 1456 CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify()); 1457 unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0; 1458 1459 // Don't try to simplify the first condition of a select by the second, as 1460 // this may make the select more poisonous than the original one. 1461 // TODO: check if the first operand may be poison. 1462 if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp)) 1463 return false; 1464 1465 if (!match(JoinOp->getOperand(OtherOpIdx), 1466 m_ICmp(Pred, m_Value(A), m_Value(B)))) 1467 return false; 1468 1469 // For OR, check if the negated condition implies CmpToCheck. 1470 bool IsOr = match(JoinOp, m_LogicalOr()); 1471 if (IsOr) 1472 Pred = CmpInst::getInversePredicate(Pred); 1473 1474 // Optimistically add fact from first condition. 1475 unsigned OldSize = DFSInStack.size(); 1476 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1477 if (OldSize == DFSInStack.size()) 1478 return false; 1479 1480 bool Changed = false; 1481 // Check if the second condition can be simplified now. 1482 if (auto ImpliedCondition = 1483 checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0), 1484 CmpToCheck->getOperand(1), CmpToCheck, Info)) { 1485 if (IsOr && isa<SelectInst>(JoinOp)) { 1486 JoinOp->setOperand( 1487 OtherOpIdx == 0 ? 2 : 0, 1488 ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition)); 1489 } else 1490 JoinOp->setOperand( 1491 1 - OtherOpIdx, 1492 ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition)); 1493 1494 Changed = true; 1495 } 1496 1497 // Remove entries again. 1498 while (OldSize < DFSInStack.size()) { 1499 StackEntry E = DFSInStack.back(); 1500 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1501 DFSInStack); 1502 } 1503 return Changed; 1504 } 1505 1506 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1507 unsigned NumIn, unsigned NumOut, 1508 SmallVectorImpl<StackEntry> &DFSInStack) { 1509 // If the constraint has a pre-condition, skip the constraint if it does not 1510 // hold. 1511 SmallVector<Value *> NewVariables; 1512 auto R = getConstraint(Pred, A, B, NewVariables); 1513 1514 // TODO: Support non-equality for facts as well. 1515 if (!R.isValid(*this) || R.isNe()) 1516 return; 1517 1518 LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B); 1519 dbgs() << "'\n"); 1520 bool Added = false; 1521 auto &CSToUse = getCS(R.IsSigned); 1522 if (R.Coefficients.empty()) 1523 return; 1524 1525 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1526 1527 // If R has been added to the system, add the new variables and queue it for 1528 // removal once it goes out-of-scope. 1529 if (Added) { 1530 SmallVector<Value *, 2> ValuesToRelease; 1531 auto &Value2Index = getValue2Index(R.IsSigned); 1532 for (Value *V : NewVariables) { 1533 Value2Index.insert({V, Value2Index.size() + 1}); 1534 ValuesToRelease.push_back(V); 1535 } 1536 1537 LLVM_DEBUG({ 1538 dbgs() << " constraint: "; 1539 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1540 dbgs() << "\n"; 1541 }); 1542 1543 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1544 std::move(ValuesToRelease)); 1545 1546 if (!R.IsSigned) { 1547 for (Value *V : NewVariables) { 1548 ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0), 1549 false, false, false); 1550 VarPos.Coefficients[Value2Index[V]] = -1; 1551 CSToUse.addVariableRow(VarPos.Coefficients); 1552 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1553 SmallVector<Value *, 2>()); 1554 } 1555 } 1556 1557 if (R.isEq()) { 1558 // Also add the inverted constraint for equality constraints. 1559 for (auto &Coeff : R.Coefficients) 1560 Coeff *= -1; 1561 CSToUse.addVariableRowFill(R.Coefficients); 1562 1563 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1564 SmallVector<Value *, 2>()); 1565 } 1566 } 1567 } 1568 1569 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1570 SmallVectorImpl<Instruction *> &ToRemove) { 1571 bool Changed = false; 1572 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1573 Value *Sub = nullptr; 1574 for (User *U : make_early_inc_range(II->users())) { 1575 if (match(U, m_ExtractValue<0>(m_Value()))) { 1576 if (!Sub) 1577 Sub = Builder.CreateSub(A, B); 1578 U->replaceAllUsesWith(Sub); 1579 Changed = true; 1580 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1581 U->replaceAllUsesWith(Builder.getFalse()); 1582 Changed = true; 1583 } else 1584 continue; 1585 1586 if (U->use_empty()) { 1587 auto *I = cast<Instruction>(U); 1588 ToRemove.push_back(I); 1589 I->setOperand(0, PoisonValue::get(II->getType())); 1590 Changed = true; 1591 } 1592 } 1593 1594 if (II->use_empty()) { 1595 II->eraseFromParent(); 1596 Changed = true; 1597 } 1598 return Changed; 1599 } 1600 1601 static bool 1602 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1603 SmallVectorImpl<Instruction *> &ToRemove) { 1604 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1605 ConstraintInfo &Info) { 1606 auto R = Info.getConstraintForSolving(Pred, A, B); 1607 if (R.size() < 2 || !R.isValid(Info)) 1608 return false; 1609 1610 auto &CSToUse = Info.getCS(R.IsSigned); 1611 return CSToUse.isConditionImplied(R.Coefficients); 1612 }; 1613 1614 bool Changed = false; 1615 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1616 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1617 // can be simplified to a regular sub. 1618 Value *A = II->getArgOperand(0); 1619 Value *B = II->getArgOperand(1); 1620 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1621 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1622 ConstantInt::get(A->getType(), 0), Info)) 1623 return false; 1624 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1625 } 1626 return Changed; 1627 } 1628 1629 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI, 1630 ScalarEvolution &SE, 1631 OptimizationRemarkEmitter &ORE) { 1632 bool Changed = false; 1633 DT.updateDFSNumbers(); 1634 SmallVector<Value *> FunctionArgs; 1635 for (Value &Arg : F.args()) 1636 FunctionArgs.push_back(&Arg); 1637 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1638 State S(DT, LI, SE); 1639 std::unique_ptr<Module> ReproducerModule( 1640 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1641 1642 // First, collect conditions implied by branches and blocks with their 1643 // Dominator DFS in and out numbers. 1644 for (BasicBlock &BB : F) { 1645 if (!DT.getNode(&BB)) 1646 continue; 1647 S.addInfoFor(BB); 1648 } 1649 1650 // Next, sort worklist by dominance, so that dominating conditions to check 1651 // and facts come before conditions and facts dominated by them. If a 1652 // condition to check and a fact have the same numbers, conditional facts come 1653 // first. Assume facts and checks are ordered according to their relative 1654 // order in the containing basic block. Also make sure conditions with 1655 // constant operands come before conditions without constant operands. This 1656 // increases the effectiveness of the current signed <-> unsigned fact 1657 // transfer logic. 1658 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1659 auto HasNoConstOp = [](const FactOrCheck &B) { 1660 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 1661 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 1662 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1663 }; 1664 // If both entries have the same In numbers, conditional facts come first. 1665 // Otherwise use the relative order in the basic block. 1666 if (A.NumIn == B.NumIn) { 1667 if (A.isConditionFact() && B.isConditionFact()) { 1668 bool NoConstOpA = HasNoConstOp(A); 1669 bool NoConstOpB = HasNoConstOp(B); 1670 return NoConstOpA < NoConstOpB; 1671 } 1672 if (A.isConditionFact()) 1673 return true; 1674 if (B.isConditionFact()) 1675 return false; 1676 auto *InstA = A.getContextInst(); 1677 auto *InstB = B.getContextInst(); 1678 return InstA->comesBefore(InstB); 1679 } 1680 return A.NumIn < B.NumIn; 1681 }); 1682 1683 SmallVector<Instruction *> ToRemove; 1684 1685 // Finally, process ordered worklist and eliminate implied conditions. 1686 SmallVector<StackEntry, 16> DFSInStack; 1687 SmallVector<ReproducerEntry> ReproducerCondStack; 1688 for (FactOrCheck &CB : S.WorkList) { 1689 // First, pop entries from the stack that are out-of-scope for CB. Remove 1690 // the corresponding entry from the constraint system. 1691 while (!DFSInStack.empty()) { 1692 auto &E = DFSInStack.back(); 1693 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1694 << "\n"); 1695 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1696 assert(E.NumIn <= CB.NumIn); 1697 if (CB.NumOut <= E.NumOut) 1698 break; 1699 LLVM_DEBUG({ 1700 dbgs() << "Removing "; 1701 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1702 Info.getValue2Index(E.IsSigned)); 1703 dbgs() << "\n"; 1704 }); 1705 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1706 DFSInStack); 1707 } 1708 1709 // For a block, check if any CmpInsts become known based on the current set 1710 // of constraints. 1711 if (CB.isCheck()) { 1712 Instruction *Inst = CB.getInstructionToSimplify(); 1713 if (!Inst) 1714 continue; 1715 LLVM_DEBUG(dbgs() << "Processing condition to simplify: " << *Inst 1716 << "\n"); 1717 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1718 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1719 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1720 bool Simplified = checkAndReplaceCondition( 1721 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1722 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1723 if (!Simplified && 1724 match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) { 1725 Simplified = 1726 checkOrAndOpImpliedByOther(CB, Info, ReproducerModule.get(), 1727 ReproducerCondStack, DFSInStack); 1728 } 1729 Changed |= Simplified; 1730 } else if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Inst)) { 1731 Changed |= checkAndReplaceMinMax(MinMax, Info, ToRemove); 1732 } 1733 continue; 1734 } 1735 1736 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1737 LLVM_DEBUG(dbgs() << "Processing fact to add to the system: "; 1738 dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n"); 1739 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1740 LLVM_DEBUG( 1741 dbgs() 1742 << "Skip adding constraint because system has too many rows.\n"); 1743 return; 1744 } 1745 1746 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1747 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1748 ReproducerCondStack.emplace_back(Pred, A, B); 1749 1750 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1751 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1752 // Add dummy entries to ReproducerCondStack to keep it in sync with 1753 // DFSInStack. 1754 for (unsigned I = 0, 1755 E = (DFSInStack.size() - ReproducerCondStack.size()); 1756 I < E; ++I) { 1757 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1758 nullptr, nullptr); 1759 } 1760 } 1761 }; 1762 1763 ICmpInst::Predicate Pred; 1764 if (!CB.isConditionFact()) { 1765 Value *X; 1766 if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) { 1767 // If is_int_min_poison is true then we may assume llvm.abs >= 0. 1768 if (cast<ConstantInt>(CB.Inst->getOperand(1))->isOne()) 1769 AddFact(CmpInst::ICMP_SGE, CB.Inst, 1770 ConstantInt::get(CB.Inst->getType(), 0)); 1771 AddFact(CmpInst::ICMP_SGE, CB.Inst, X); 1772 continue; 1773 } 1774 1775 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1776 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1777 AddFact(Pred, MinMax, MinMax->getLHS()); 1778 AddFact(Pred, MinMax, MinMax->getRHS()); 1779 continue; 1780 } 1781 } 1782 1783 Value *A = nullptr, *B = nullptr; 1784 if (CB.isConditionFact()) { 1785 Pred = CB.Cond.Pred; 1786 A = CB.Cond.Op0; 1787 B = CB.Cond.Op1; 1788 if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE && 1789 !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) { 1790 LLVM_DEBUG({ 1791 dbgs() << "Not adding fact "; 1792 dumpUnpackedICmp(dbgs(), Pred, A, B); 1793 dbgs() << " because precondition "; 1794 dumpUnpackedICmp(dbgs(), CB.DoesHold.Pred, CB.DoesHold.Op0, 1795 CB.DoesHold.Op1); 1796 dbgs() << " does not hold.\n"; 1797 }); 1798 continue; 1799 } 1800 } else { 1801 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 1802 m_ICmp(Pred, m_Value(A), m_Value(B)))); 1803 (void)Matched; 1804 assert(Matched && "Must have an assume intrinsic with a icmp operand"); 1805 } 1806 AddFact(Pred, A, B); 1807 } 1808 1809 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1810 std::string S; 1811 raw_string_ostream StringS(S); 1812 ReproducerModule->print(StringS, nullptr); 1813 StringS.flush(); 1814 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1815 Rem << ore::NV("module") << S; 1816 ORE.emit(Rem); 1817 } 1818 1819 #ifndef NDEBUG 1820 unsigned SignedEntries = 1821 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1822 assert(Info.getCS(false).size() - FunctionArgs.size() == 1823 DFSInStack.size() - SignedEntries && 1824 "updates to CS and DFSInStack are out of sync"); 1825 assert(Info.getCS(true).size() == SignedEntries && 1826 "updates to CS and DFSInStack are out of sync"); 1827 #endif 1828 1829 for (Instruction *I : ToRemove) 1830 I->eraseFromParent(); 1831 return Changed; 1832 } 1833 1834 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1835 FunctionAnalysisManager &AM) { 1836 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1837 auto &LI = AM.getResult<LoopAnalysis>(F); 1838 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1839 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1840 if (!eliminateConstraints(F, DT, LI, SE, ORE)) 1841 return PreservedAnalyses::all(); 1842 1843 PreservedAnalyses PA; 1844 PA.preserve<DominatorTreeAnalysis>(); 1845 PA.preserve<LoopAnalysis>(); 1846 PA.preserve<ScalarEvolutionAnalysis>(); 1847 PA.preserveSet<CFGAnalyses>(); 1848 return PA; 1849 } 1850