1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/DebugCounter.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Transforms/Utils/Cloning.h" 41 #include "llvm/Transforms/Utils/ValueMapper.h" 42 43 #include <cmath> 44 #include <optional> 45 #include <string> 46 47 using namespace llvm; 48 using namespace PatternMatch; 49 50 #define DEBUG_TYPE "constraint-elimination" 51 52 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 53 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 54 "Controls which conditions are eliminated"); 55 56 static cl::opt<unsigned> 57 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 58 cl::desc("Maximum number of rows to keep in constraint system")); 59 60 static cl::opt<bool> DumpReproducers( 61 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 62 cl::desc("Dump IR to reproduce successful transformations.")); 63 64 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 65 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 66 67 // A helper to multiply 2 signed integers where overflowing is allowed. 68 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 69 int64_t Result; 70 MulOverflow(A, B, Result); 71 return Result; 72 } 73 74 // A helper to add 2 signed integers where overflowing is allowed. 75 static int64_t addWithOverflow(int64_t A, int64_t B) { 76 int64_t Result; 77 AddOverflow(A, B, Result); 78 return Result; 79 } 80 81 static Instruction *getContextInstForUse(Use &U) { 82 Instruction *UserI = cast<Instruction>(U.getUser()); 83 if (auto *Phi = dyn_cast<PHINode>(UserI)) 84 UserI = Phi->getIncomingBlock(U)->getTerminator(); 85 return UserI; 86 } 87 88 namespace { 89 /// Struct to express a condition of the form %Op0 Pred %Op1. 90 struct ConditionTy { 91 CmpInst::Predicate Pred; 92 Value *Op0; 93 Value *Op1; 94 95 ConditionTy() 96 : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {} 97 ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 98 : Pred(Pred), Op0(Op0), Op1(Op1) {} 99 }; 100 101 /// Represents either 102 /// * a condition that holds on entry to a block (=condition fact) 103 /// * an assume (=assume fact) 104 /// * a use of a compare instruction to simplify. 105 /// It also tracks the Dominator DFS in and out numbers for each entry. 106 struct FactOrCheck { 107 enum class EntryTy { 108 ConditionFact, /// A condition that holds on entry to a block. 109 InstFact, /// A fact that holds after Inst executed (e.g. an assume or 110 /// min/mix intrinsic. 111 InstCheck, /// An instruction to simplify (e.g. an overflow math 112 /// intrinsics). 113 UseCheck /// An use of a compare instruction to simplify. 114 }; 115 116 union { 117 Instruction *Inst; 118 Use *U; 119 ConditionTy Cond; 120 }; 121 122 /// A pre-condition that must hold for the current fact to be added to the 123 /// system. 124 ConditionTy DoesHold; 125 126 unsigned NumIn; 127 unsigned NumOut; 128 EntryTy Ty; 129 130 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 131 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 132 Ty(Ty) {} 133 134 FactOrCheck(DomTreeNode *DTN, Use *U) 135 : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr), 136 NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 137 Ty(EntryTy::UseCheck) {} 138 139 FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1, 140 ConditionTy Precond = ConditionTy()) 141 : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()), 142 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 143 144 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 145 Value *Op0, Value *Op1, 146 ConditionTy Precond = ConditionTy()) { 147 return FactOrCheck(DTN, Pred, Op0, Op1, Precond); 148 } 149 150 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 151 return FactOrCheck(EntryTy::InstFact, DTN, Inst); 152 } 153 154 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 155 return FactOrCheck(DTN, U); 156 } 157 158 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 159 return FactOrCheck(EntryTy::InstCheck, DTN, CI); 160 } 161 162 bool isCheck() const { 163 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 164 } 165 166 Instruction *getContextInst() const { 167 assert(!isConditionFact()); 168 if (Ty == EntryTy::UseCheck) 169 return getContextInstForUse(*U); 170 return Inst; 171 } 172 173 Instruction *getInstructionToSimplify() const { 174 assert(isCheck()); 175 if (Ty == EntryTy::InstCheck) 176 return Inst; 177 // The use may have been simplified to a constant already. 178 return dyn_cast<Instruction>(*U); 179 } 180 181 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 182 }; 183 184 /// Keep state required to build worklist. 185 struct State { 186 DominatorTree &DT; 187 LoopInfo &LI; 188 ScalarEvolution &SE; 189 SmallVector<FactOrCheck, 64> WorkList; 190 191 State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE) 192 : DT(DT), LI(LI), SE(SE) {} 193 194 /// Process block \p BB and add known facts to work-list. 195 void addInfoFor(BasicBlock &BB); 196 197 /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares 198 /// controlling the loop header. 199 void addInfoForInductions(BasicBlock &BB); 200 201 /// Returns true if we can add a known condition from BB to its successor 202 /// block Succ. 203 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 204 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 205 } 206 }; 207 208 class ConstraintInfo; 209 210 struct StackEntry { 211 unsigned NumIn; 212 unsigned NumOut; 213 bool IsSigned = false; 214 /// Variables that can be removed from the system once the stack entry gets 215 /// removed. 216 SmallVector<Value *, 2> ValuesToRelease; 217 218 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 219 SmallVector<Value *, 2> ValuesToRelease) 220 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 221 ValuesToRelease(ValuesToRelease) {} 222 }; 223 224 struct ConstraintTy { 225 SmallVector<int64_t, 8> Coefficients; 226 SmallVector<ConditionTy, 2> Preconditions; 227 228 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 229 230 bool IsSigned = false; 231 232 ConstraintTy() = default; 233 234 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 235 bool IsNe) 236 : Coefficients(std::move(Coefficients)), IsSigned(IsSigned), IsEq(IsEq), 237 IsNe(IsNe) {} 238 239 unsigned size() const { return Coefficients.size(); } 240 241 unsigned empty() const { return Coefficients.empty(); } 242 243 /// Returns true if all preconditions for this list of constraints are 244 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 245 bool isValid(const ConstraintInfo &Info) const; 246 247 bool isEq() const { return IsEq; } 248 249 bool isNe() const { return IsNe; } 250 251 /// Check if the current constraint is implied by the given ConstraintSystem. 252 /// 253 /// \return true or false if the constraint is proven to be respectively true, 254 /// or false. When the constraint cannot be proven to be either true or false, 255 /// std::nullopt is returned. 256 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 257 258 private: 259 bool IsEq = false; 260 bool IsNe = false; 261 }; 262 263 /// Wrapper encapsulating separate constraint systems and corresponding value 264 /// mappings for both unsigned and signed information. Facts are added to and 265 /// conditions are checked against the corresponding system depending on the 266 /// signed-ness of their predicates. While the information is kept separate 267 /// based on signed-ness, certain conditions can be transferred between the two 268 /// systems. 269 class ConstraintInfo { 270 271 ConstraintSystem UnsignedCS; 272 ConstraintSystem SignedCS; 273 274 const DataLayout &DL; 275 276 public: 277 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 278 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) { 279 auto &Value2Index = getValue2Index(false); 280 // Add Arg > -1 constraints to unsigned system for all function arguments. 281 for (Value *Arg : FunctionArgs) { 282 ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0), 283 false, false, false); 284 VarPos.Coefficients[Value2Index[Arg]] = -1; 285 UnsignedCS.addVariableRow(VarPos.Coefficients); 286 } 287 } 288 289 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 290 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 291 } 292 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 293 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 294 } 295 296 ConstraintSystem &getCS(bool Signed) { 297 return Signed ? SignedCS : UnsignedCS; 298 } 299 const ConstraintSystem &getCS(bool Signed) const { 300 return Signed ? SignedCS : UnsignedCS; 301 } 302 303 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 304 void popLastNVariables(bool Signed, unsigned N) { 305 getCS(Signed).popLastNVariables(N); 306 } 307 308 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 309 310 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 311 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 312 313 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 314 /// constraints, using indices from the corresponding constraint system. 315 /// New variables that need to be added to the system are collected in 316 /// \p NewVariables. 317 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 318 SmallVectorImpl<Value *> &NewVariables) const; 319 320 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 321 /// constraints using getConstraint. Returns an empty constraint if the result 322 /// cannot be used to query the existing constraint system, e.g. because it 323 /// would require adding new variables. Also tries to convert signed 324 /// predicates to unsigned ones if possible to allow using the unsigned system 325 /// which increases the effectiveness of the signed <-> unsigned transfer 326 /// logic. 327 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 328 Value *Op1) const; 329 330 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 331 /// system if \p Pred is signed/unsigned. 332 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 333 unsigned NumIn, unsigned NumOut, 334 SmallVectorImpl<StackEntry> &DFSInStack); 335 }; 336 337 /// Represents a (Coefficient * Variable) entry after IR decomposition. 338 struct DecompEntry { 339 int64_t Coefficient; 340 Value *Variable; 341 /// True if the variable is known positive in the current constraint. 342 bool IsKnownNonNegative; 343 344 DecompEntry(int64_t Coefficient, Value *Variable, 345 bool IsKnownNonNegative = false) 346 : Coefficient(Coefficient), Variable(Variable), 347 IsKnownNonNegative(IsKnownNonNegative) {} 348 }; 349 350 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 351 struct Decomposition { 352 int64_t Offset = 0; 353 SmallVector<DecompEntry, 3> Vars; 354 355 Decomposition(int64_t Offset) : Offset(Offset) {} 356 Decomposition(Value *V, bool IsKnownNonNegative = false) { 357 Vars.emplace_back(1, V, IsKnownNonNegative); 358 } 359 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 360 : Offset(Offset), Vars(Vars) {} 361 362 void add(int64_t OtherOffset) { 363 Offset = addWithOverflow(Offset, OtherOffset); 364 } 365 366 void add(const Decomposition &Other) { 367 add(Other.Offset); 368 append_range(Vars, Other.Vars); 369 } 370 371 void sub(const Decomposition &Other) { 372 Decomposition Tmp = Other; 373 Tmp.mul(-1); 374 add(Tmp.Offset); 375 append_range(Vars, Tmp.Vars); 376 } 377 378 void mul(int64_t Factor) { 379 Offset = multiplyWithOverflow(Offset, Factor); 380 for (auto &Var : Vars) 381 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 382 } 383 }; 384 385 // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr. 386 struct OffsetResult { 387 Value *BasePtr; 388 APInt ConstantOffset; 389 SmallMapVector<Value *, APInt, 4> VariableOffsets; 390 bool AllInbounds; 391 392 OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {} 393 394 OffsetResult(GEPOperator &GEP, const DataLayout &DL) 395 : BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) { 396 ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0); 397 } 398 }; 399 } // namespace 400 401 // Try to collect variable and constant offsets for \p GEP, partly traversing 402 // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting 403 // the offset fails. 404 static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) { 405 OffsetResult Result(GEP, DL); 406 unsigned BitWidth = Result.ConstantOffset.getBitWidth(); 407 if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets, 408 Result.ConstantOffset)) 409 return {}; 410 411 // If we have a nested GEP, check if we can combine the constant offset of the 412 // inner GEP with the outer GEP. 413 if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) { 414 SmallMapVector<Value *, APInt, 4> VariableOffsets2; 415 APInt ConstantOffset2(BitWidth, 0); 416 bool CanCollectInner = InnerGEP->collectOffset( 417 DL, BitWidth, VariableOffsets2, ConstantOffset2); 418 // TODO: Support cases with more than 1 variable offset. 419 if (!CanCollectInner || Result.VariableOffsets.size() > 1 || 420 VariableOffsets2.size() > 1 || 421 (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) { 422 // More than 1 variable index, use outer result. 423 return Result; 424 } 425 Result.BasePtr = InnerGEP->getPointerOperand(); 426 Result.ConstantOffset += ConstantOffset2; 427 if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1) 428 Result.VariableOffsets = VariableOffsets2; 429 Result.AllInbounds &= InnerGEP->isInBounds(); 430 } 431 return Result; 432 } 433 434 static Decomposition decompose(Value *V, 435 SmallVectorImpl<ConditionTy> &Preconditions, 436 bool IsSigned, const DataLayout &DL); 437 438 static bool canUseSExt(ConstantInt *CI) { 439 const APInt &Val = CI->getValue(); 440 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 441 } 442 443 static Decomposition decomposeGEP(GEPOperator &GEP, 444 SmallVectorImpl<ConditionTy> &Preconditions, 445 bool IsSigned, const DataLayout &DL) { 446 // Do not reason about pointers where the index size is larger than 64 bits, 447 // as the coefficients used to encode constraints are 64 bit integers. 448 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 449 return &GEP; 450 451 assert(!IsSigned && "The logic below only supports decomposition for " 452 "unsigned predicates at the moment."); 453 const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] = 454 collectOffsets(GEP, DL); 455 if (!BasePtr || !AllInbounds) 456 return &GEP; 457 458 Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr)); 459 for (auto [Index, Scale] : VariableOffsets) { 460 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 461 IdxResult.mul(Scale.getSExtValue()); 462 Result.add(IdxResult); 463 464 // If Op0 is signed non-negative, the GEP is increasing monotonically and 465 // can be de-composed. 466 if (!isKnownNonNegative(Index, DL)) 467 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 468 ConstantInt::get(Index->getType(), 0)); 469 } 470 return Result; 471 } 472 473 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 474 // Variable } where Coefficient * Variable. The sum of the constant offset and 475 // pairs equals \p V. 476 static Decomposition decompose(Value *V, 477 SmallVectorImpl<ConditionTy> &Preconditions, 478 bool IsSigned, const DataLayout &DL) { 479 480 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 481 bool IsSignedB) { 482 auto ResA = decompose(A, Preconditions, IsSigned, DL); 483 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 484 ResA.add(ResB); 485 return ResA; 486 }; 487 488 Type *Ty = V->getType()->getScalarType(); 489 if (Ty->isPointerTy() && !IsSigned) { 490 if (auto *GEP = dyn_cast<GEPOperator>(V)) 491 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 492 if (isa<ConstantPointerNull>(V)) 493 return int64_t(0); 494 495 return V; 496 } 497 498 // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so 499 // coefficient add/mul may wrap, while the operation in the full bit width 500 // would not. 501 if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64) 502 return V; 503 504 bool IsKnownNonNegative = false; 505 506 // Decompose \p V used with a signed predicate. 507 if (IsSigned) { 508 if (auto *CI = dyn_cast<ConstantInt>(V)) { 509 if (canUseSExt(CI)) 510 return CI->getSExtValue(); 511 } 512 Value *Op0; 513 Value *Op1; 514 515 if (match(V, m_SExt(m_Value(Op0)))) 516 V = Op0; 517 else if (match(V, m_NNegZExt(m_Value(Op0)))) { 518 V = Op0; 519 IsKnownNonNegative = true; 520 } 521 522 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 523 return MergeResults(Op0, Op1, IsSigned); 524 525 ConstantInt *CI; 526 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 527 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 528 Result.mul(CI->getSExtValue()); 529 return Result; 530 } 531 532 // (shl nsw x, shift) is (mul nsw x, (1<<shift)), with the exception of 533 // shift == bw-1. 534 if (match(V, m_NSWShl(m_Value(Op0), m_ConstantInt(CI)))) { 535 uint64_t Shift = CI->getValue().getLimitedValue(); 536 if (Shift < Ty->getIntegerBitWidth() - 1) { 537 assert(Shift < 64 && "Would overflow"); 538 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 539 Result.mul(int64_t(1) << Shift); 540 return Result; 541 } 542 } 543 544 return {V, IsKnownNonNegative}; 545 } 546 547 if (auto *CI = dyn_cast<ConstantInt>(V)) { 548 if (CI->uge(MaxConstraintValue)) 549 return V; 550 return int64_t(CI->getZExtValue()); 551 } 552 553 Value *Op0; 554 if (match(V, m_ZExt(m_Value(Op0)))) { 555 IsKnownNonNegative = true; 556 V = Op0; 557 } 558 559 if (match(V, m_SExt(m_Value(Op0)))) { 560 V = Op0; 561 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 562 ConstantInt::get(Op0->getType(), 0)); 563 } 564 565 Value *Op1; 566 ConstantInt *CI; 567 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 568 return MergeResults(Op0, Op1, IsSigned); 569 } 570 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 571 if (!isKnownNonNegative(Op0, DL)) 572 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 573 ConstantInt::get(Op0->getType(), 0)); 574 if (!isKnownNonNegative(Op1, DL)) 575 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 576 ConstantInt::get(Op1->getType(), 0)); 577 578 return MergeResults(Op0, Op1, IsSigned); 579 } 580 581 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 582 canUseSExt(CI)) { 583 Preconditions.emplace_back( 584 CmpInst::ICMP_UGE, Op0, 585 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 586 return MergeResults(Op0, CI, true); 587 } 588 589 // Decompose or as an add if there are no common bits between the operands. 590 if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI)))) 591 return MergeResults(Op0, CI, IsSigned); 592 593 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 594 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 595 return {V, IsKnownNonNegative}; 596 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 597 Result.mul(int64_t{1} << CI->getSExtValue()); 598 return Result; 599 } 600 601 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 602 (!CI->isNegative())) { 603 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 604 Result.mul(CI->getSExtValue()); 605 return Result; 606 } 607 608 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) { 609 auto ResA = decompose(Op0, Preconditions, IsSigned, DL); 610 auto ResB = decompose(Op1, Preconditions, IsSigned, DL); 611 ResA.sub(ResB); 612 return ResA; 613 } 614 615 return {V, IsKnownNonNegative}; 616 } 617 618 ConstraintTy 619 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 620 SmallVectorImpl<Value *> &NewVariables) const { 621 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 622 bool IsEq = false; 623 bool IsNe = false; 624 625 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 626 switch (Pred) { 627 case CmpInst::ICMP_UGT: 628 case CmpInst::ICMP_UGE: 629 case CmpInst::ICMP_SGT: 630 case CmpInst::ICMP_SGE: { 631 Pred = CmpInst::getSwappedPredicate(Pred); 632 std::swap(Op0, Op1); 633 break; 634 } 635 case CmpInst::ICMP_EQ: 636 if (match(Op1, m_Zero())) { 637 Pred = CmpInst::ICMP_ULE; 638 } else { 639 IsEq = true; 640 Pred = CmpInst::ICMP_ULE; 641 } 642 break; 643 case CmpInst::ICMP_NE: 644 if (match(Op1, m_Zero())) { 645 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 646 std::swap(Op0, Op1); 647 } else { 648 IsNe = true; 649 Pred = CmpInst::ICMP_ULE; 650 } 651 break; 652 default: 653 break; 654 } 655 656 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 657 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 658 return {}; 659 660 SmallVector<ConditionTy, 4> Preconditions; 661 bool IsSigned = CmpInst::isSigned(Pred); 662 auto &Value2Index = getValue2Index(IsSigned); 663 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 664 Preconditions, IsSigned, DL); 665 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 666 Preconditions, IsSigned, DL); 667 int64_t Offset1 = ADec.Offset; 668 int64_t Offset2 = BDec.Offset; 669 Offset1 *= -1; 670 671 auto &VariablesA = ADec.Vars; 672 auto &VariablesB = BDec.Vars; 673 674 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 675 // new entry to NewVariables. 676 SmallDenseMap<Value *, unsigned> NewIndexMap; 677 auto GetOrAddIndex = [&Value2Index, &NewVariables, 678 &NewIndexMap](Value *V) -> unsigned { 679 auto V2I = Value2Index.find(V); 680 if (V2I != Value2Index.end()) 681 return V2I->second; 682 auto Insert = 683 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 684 if (Insert.second) 685 NewVariables.push_back(V); 686 return Insert.first->second; 687 }; 688 689 // Make sure all variables have entries in Value2Index or NewVariables. 690 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 691 GetOrAddIndex(KV.Variable); 692 693 // Build result constraint, by first adding all coefficients from A and then 694 // subtracting all coefficients from B. 695 ConstraintTy Res( 696 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 697 IsSigned, IsEq, IsNe); 698 // Collect variables that are known to be positive in all uses in the 699 // constraint. 700 SmallDenseMap<Value *, bool> KnownNonNegativeVariables; 701 auto &R = Res.Coefficients; 702 for (const auto &KV : VariablesA) { 703 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 704 auto I = 705 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 706 I.first->second &= KV.IsKnownNonNegative; 707 } 708 709 for (const auto &KV : VariablesB) { 710 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 711 R[GetOrAddIndex(KV.Variable)])) 712 return {}; 713 auto I = 714 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 715 I.first->second &= KV.IsKnownNonNegative; 716 } 717 718 int64_t OffsetSum; 719 if (AddOverflow(Offset1, Offset2, OffsetSum)) 720 return {}; 721 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 722 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 723 return {}; 724 R[0] = OffsetSum; 725 Res.Preconditions = std::move(Preconditions); 726 727 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 728 // variables. 729 while (!NewVariables.empty()) { 730 int64_t Last = R.back(); 731 if (Last != 0) 732 break; 733 R.pop_back(); 734 Value *RemovedV = NewVariables.pop_back_val(); 735 NewIndexMap.erase(RemovedV); 736 } 737 738 // Add extra constraints for variables that are known positive. 739 for (auto &KV : KnownNonNegativeVariables) { 740 if (!KV.second || 741 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 742 continue; 743 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 744 C[GetOrAddIndex(KV.first)] = -1; 745 Res.ExtraInfo.push_back(C); 746 } 747 return Res; 748 } 749 750 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 751 Value *Op0, 752 Value *Op1) const { 753 Constant *NullC = Constant::getNullValue(Op0->getType()); 754 // Handle trivially true compares directly to avoid adding V UGE 0 constraints 755 // for all variables in the unsigned system. 756 if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) || 757 (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) { 758 auto &Value2Index = getValue2Index(false); 759 // Return constraint that's trivially true. 760 return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false, 761 false, false); 762 } 763 764 // If both operands are known to be non-negative, change signed predicates to 765 // unsigned ones. This increases the reasoning effectiveness in combination 766 // with the signed <-> unsigned transfer logic. 767 if (CmpInst::isSigned(Pred) && 768 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 769 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 770 Pred = CmpInst::getUnsignedPredicate(Pred); 771 772 SmallVector<Value *> NewVariables; 773 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 774 if (!NewVariables.empty()) 775 return {}; 776 return R; 777 } 778 779 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 780 return Coefficients.size() > 0 && 781 all_of(Preconditions, [&Info](const ConditionTy &C) { 782 return Info.doesHold(C.Pred, C.Op0, C.Op1); 783 }); 784 } 785 786 std::optional<bool> 787 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 788 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 789 790 if (IsEq || IsNe) { 791 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 792 bool IsNegatedOrEqualImplied = 793 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 794 795 // In order to check that `%a == %b` is true (equality), both conditions `%a 796 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 797 // is true), we return true if they both hold, false in the other cases. 798 if (IsConditionImplied && IsNegatedOrEqualImplied) 799 return IsEq; 800 801 auto Negated = ConstraintSystem::negate(Coefficients); 802 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 803 804 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 805 bool IsStrictLessThanImplied = 806 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 807 808 // In order to check that `%a != %b` is true (non-equality), either 809 // condition `%a > %b` or `%a < %b` must hold true. When checking for 810 // non-equality (`IsNe` is true), we return true if one of the two holds, 811 // false in the other cases. 812 if (IsNegatedImplied || IsStrictLessThanImplied) 813 return IsNe; 814 815 return std::nullopt; 816 } 817 818 if (IsConditionImplied) 819 return true; 820 821 auto Negated = ConstraintSystem::negate(Coefficients); 822 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 823 if (IsNegatedImplied) 824 return false; 825 826 // Neither the condition nor its negated holds, did not prove anything. 827 return std::nullopt; 828 } 829 830 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 831 Value *B) const { 832 auto R = getConstraintForSolving(Pred, A, B); 833 return R.isValid(*this) && 834 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 835 } 836 837 void ConstraintInfo::transferToOtherSystem( 838 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 839 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 840 auto IsKnownNonNegative = [this](Value *V) { 841 return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) || 842 isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1); 843 }; 844 // Check if we can combine facts from the signed and unsigned systems to 845 // derive additional facts. 846 if (!A->getType()->isIntegerTy()) 847 return; 848 // FIXME: This currently depends on the order we add facts. Ideally we 849 // would first add all known facts and only then try to add additional 850 // facts. 851 switch (Pred) { 852 default: 853 break; 854 case CmpInst::ICMP_ULT: 855 case CmpInst::ICMP_ULE: 856 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B. 857 if (IsKnownNonNegative(B)) { 858 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 859 NumOut, DFSInStack); 860 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 861 DFSInStack); 862 } 863 break; 864 case CmpInst::ICMP_UGE: 865 case CmpInst::ICMP_UGT: 866 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B. 867 if (IsKnownNonNegative(A)) { 868 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn, 869 NumOut, DFSInStack); 870 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 871 DFSInStack); 872 } 873 break; 874 case CmpInst::ICMP_SLT: 875 if (IsKnownNonNegative(A)) 876 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 877 break; 878 case CmpInst::ICMP_SGT: { 879 if (doesHold(CmpInst::ICMP_SGE, B, Constant::getAllOnesValue(B->getType()))) 880 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 881 NumOut, DFSInStack); 882 if (IsKnownNonNegative(B)) 883 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 884 885 break; 886 } 887 case CmpInst::ICMP_SGE: 888 if (IsKnownNonNegative(B)) 889 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 890 break; 891 } 892 } 893 894 #ifndef NDEBUG 895 896 static void dumpConstraint(ArrayRef<int64_t> C, 897 const DenseMap<Value *, unsigned> &Value2Index) { 898 ConstraintSystem CS(Value2Index); 899 CS.addVariableRowFill(C); 900 CS.dump(); 901 } 902 #endif 903 904 void State::addInfoForInductions(BasicBlock &BB) { 905 auto *L = LI.getLoopFor(&BB); 906 if (!L || L->getHeader() != &BB) 907 return; 908 909 Value *A; 910 Value *B; 911 CmpInst::Predicate Pred; 912 913 if (!match(BB.getTerminator(), 914 m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value()))) 915 return; 916 PHINode *PN = dyn_cast<PHINode>(A); 917 if (!PN) { 918 Pred = CmpInst::getSwappedPredicate(Pred); 919 std::swap(A, B); 920 PN = dyn_cast<PHINode>(A); 921 } 922 923 if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 || 924 !SE.isSCEVable(PN->getType())) 925 return; 926 927 BasicBlock *InLoopSucc = nullptr; 928 if (Pred == CmpInst::ICMP_NE) 929 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0); 930 else if (Pred == CmpInst::ICMP_EQ) 931 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1); 932 else 933 return; 934 935 if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB) 936 return; 937 938 auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN)); 939 BasicBlock *LoopPred = L->getLoopPredecessor(); 940 if (!AR || AR->getLoop() != L || !LoopPred) 941 return; 942 943 const SCEV *StartSCEV = AR->getStart(); 944 Value *StartValue = nullptr; 945 if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) { 946 StartValue = C->getValue(); 947 } else { 948 StartValue = PN->getIncomingValueForBlock(LoopPred); 949 assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value"); 950 } 951 952 DomTreeNode *DTN = DT.getNode(InLoopSucc); 953 auto IncUnsigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT); 954 auto IncSigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_SGT); 955 bool MonotonicallyIncreasingUnsigned = 956 IncUnsigned && *IncUnsigned == ScalarEvolution::MonotonicallyIncreasing; 957 bool MonotonicallyIncreasingSigned = 958 IncSigned && *IncSigned == ScalarEvolution::MonotonicallyIncreasing; 959 // If SCEV guarantees that AR does not wrap, PN >= StartValue can be added 960 // unconditionally. 961 if (MonotonicallyIncreasingUnsigned) 962 WorkList.push_back( 963 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue)); 964 if (MonotonicallyIncreasingSigned) 965 WorkList.push_back( 966 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_SGE, PN, StartValue)); 967 968 APInt StepOffset; 969 if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 970 StepOffset = C->getAPInt(); 971 else 972 return; 973 974 // Make sure the bound B is loop-invariant. 975 if (!L->isLoopInvariant(B)) 976 return; 977 978 // Handle negative steps. 979 if (StepOffset.isNegative()) { 980 // TODO: Extend to allow steps > -1. 981 if (!(-StepOffset).isOne()) 982 return; 983 984 // AR may wrap. 985 // Add StartValue >= PN conditional on B <= StartValue which guarantees that 986 // the loop exits before wrapping with a step of -1. 987 WorkList.push_back(FactOrCheck::getConditionFact( 988 DTN, CmpInst::ICMP_UGE, StartValue, PN, 989 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 990 WorkList.push_back(FactOrCheck::getConditionFact( 991 DTN, CmpInst::ICMP_SGE, StartValue, PN, 992 ConditionTy(CmpInst::ICMP_SLE, B, StartValue))); 993 // Add PN > B conditional on B <= StartValue which guarantees that the loop 994 // exits when reaching B with a step of -1. 995 WorkList.push_back(FactOrCheck::getConditionFact( 996 DTN, CmpInst::ICMP_UGT, PN, B, 997 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 998 WorkList.push_back(FactOrCheck::getConditionFact( 999 DTN, CmpInst::ICMP_SGT, PN, B, 1000 ConditionTy(CmpInst::ICMP_SLE, B, StartValue))); 1001 return; 1002 } 1003 1004 // Make sure AR either steps by 1 or that the value we compare against is a 1005 // GEP based on the same start value and all offsets are a multiple of the 1006 // step size, to guarantee that the induction will reach the value. 1007 if (StepOffset.isZero() || StepOffset.isNegative()) 1008 return; 1009 1010 if (!StepOffset.isOne()) { 1011 // Check whether B-Start is known to be a multiple of StepOffset. 1012 const SCEV *BMinusStart = SE.getMinusSCEV(SE.getSCEV(B), StartSCEV); 1013 if (isa<SCEVCouldNotCompute>(BMinusStart) || 1014 !SE.getConstantMultiple(BMinusStart).urem(StepOffset).isZero()) 1015 return; 1016 } 1017 1018 // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which 1019 // guarantees that the loop exits before wrapping in combination with the 1020 // restrictions on B and the step above. 1021 if (!MonotonicallyIncreasingUnsigned) 1022 WorkList.push_back(FactOrCheck::getConditionFact( 1023 DTN, CmpInst::ICMP_UGE, PN, StartValue, 1024 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 1025 if (!MonotonicallyIncreasingSigned) 1026 WorkList.push_back(FactOrCheck::getConditionFact( 1027 DTN, CmpInst::ICMP_SGE, PN, StartValue, 1028 ConditionTy(CmpInst::ICMP_SLE, StartValue, B))); 1029 1030 WorkList.push_back(FactOrCheck::getConditionFact( 1031 DTN, CmpInst::ICMP_ULT, PN, B, 1032 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 1033 WorkList.push_back(FactOrCheck::getConditionFact( 1034 DTN, CmpInst::ICMP_SLT, PN, B, 1035 ConditionTy(CmpInst::ICMP_SLE, StartValue, B))); 1036 1037 // Try to add condition from header to the exit blocks. When exiting either 1038 // with EQ or NE in the header, we know that the induction value must be u<= 1039 // B, as other exits may only exit earlier. 1040 assert(!StepOffset.isNegative() && "induction must be increasing"); 1041 assert((Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) && 1042 "unsupported predicate"); 1043 ConditionTy Precond = {CmpInst::ICMP_ULE, StartValue, B}; 1044 SmallVector<BasicBlock *> ExitBBs; 1045 L->getExitBlocks(ExitBBs); 1046 for (BasicBlock *EB : ExitBBs) { 1047 WorkList.emplace_back(FactOrCheck::getConditionFact( 1048 DT.getNode(EB), CmpInst::ICMP_ULE, A, B, Precond)); 1049 } 1050 } 1051 1052 void State::addInfoFor(BasicBlock &BB) { 1053 addInfoForInductions(BB); 1054 1055 // True as long as long as the current instruction is guaranteed to execute. 1056 bool GuaranteedToExecute = true; 1057 // Queue conditions and assumes. 1058 for (Instruction &I : BB) { 1059 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 1060 for (Use &U : Cmp->uses()) { 1061 auto *UserI = getContextInstForUse(U); 1062 auto *DTN = DT.getNode(UserI->getParent()); 1063 if (!DTN) 1064 continue; 1065 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 1066 } 1067 continue; 1068 } 1069 1070 auto *II = dyn_cast<IntrinsicInst>(&I); 1071 Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic; 1072 switch (ID) { 1073 case Intrinsic::assume: { 1074 Value *A, *B; 1075 CmpInst::Predicate Pred; 1076 if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1077 break; 1078 if (GuaranteedToExecute) { 1079 // The assume is guaranteed to execute when BB is entered, hence Cond 1080 // holds on entry to BB. 1081 WorkList.emplace_back(FactOrCheck::getConditionFact( 1082 DT.getNode(I.getParent()), Pred, A, B)); 1083 } else { 1084 WorkList.emplace_back( 1085 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 1086 } 1087 break; 1088 } 1089 // Enqueue ssub_with_overflow for simplification. 1090 case Intrinsic::ssub_with_overflow: 1091 case Intrinsic::ucmp: 1092 case Intrinsic::scmp: 1093 WorkList.push_back( 1094 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 1095 break; 1096 // Enqueue the intrinsics to add extra info. 1097 case Intrinsic::umin: 1098 case Intrinsic::umax: 1099 case Intrinsic::smin: 1100 case Intrinsic::smax: 1101 // TODO: handle llvm.abs as well 1102 WorkList.push_back( 1103 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 1104 // TODO: Check if it is possible to instead only added the min/max facts 1105 // when simplifying uses of the min/max intrinsics. 1106 if (!isGuaranteedNotToBePoison(&I)) 1107 break; 1108 [[fallthrough]]; 1109 case Intrinsic::abs: 1110 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 1111 break; 1112 } 1113 1114 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 1115 } 1116 1117 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 1118 for (auto &Case : Switch->cases()) { 1119 BasicBlock *Succ = Case.getCaseSuccessor(); 1120 Value *V = Case.getCaseValue(); 1121 if (!canAddSuccessor(BB, Succ)) 1122 continue; 1123 WorkList.emplace_back(FactOrCheck::getConditionFact( 1124 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 1125 } 1126 return; 1127 } 1128 1129 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 1130 if (!Br || !Br->isConditional()) 1131 return; 1132 1133 Value *Cond = Br->getCondition(); 1134 1135 // If the condition is a chain of ORs/AND and the successor only has the 1136 // current block as predecessor, queue conditions for the successor. 1137 Value *Op0, *Op1; 1138 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 1139 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1140 bool IsOr = match(Cond, m_LogicalOr()); 1141 bool IsAnd = match(Cond, m_LogicalAnd()); 1142 // If there's a select that matches both AND and OR, we need to commit to 1143 // one of the options. Arbitrarily pick OR. 1144 if (IsOr && IsAnd) 1145 IsAnd = false; 1146 1147 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 1148 if (canAddSuccessor(BB, Successor)) { 1149 SmallVector<Value *> CondWorkList; 1150 SmallPtrSet<Value *, 8> SeenCond; 1151 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 1152 if (SeenCond.insert(V).second) 1153 CondWorkList.push_back(V); 1154 }; 1155 QueueValue(Op1); 1156 QueueValue(Op0); 1157 while (!CondWorkList.empty()) { 1158 Value *Cur = CondWorkList.pop_back_val(); 1159 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 1160 WorkList.emplace_back(FactOrCheck::getConditionFact( 1161 DT.getNode(Successor), 1162 IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate()) 1163 : Cmp->getPredicate(), 1164 Cmp->getOperand(0), Cmp->getOperand(1))); 1165 continue; 1166 } 1167 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 1168 QueueValue(Op1); 1169 QueueValue(Op0); 1170 continue; 1171 } 1172 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1173 QueueValue(Op1); 1174 QueueValue(Op0); 1175 continue; 1176 } 1177 } 1178 } 1179 return; 1180 } 1181 1182 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 1183 if (!CmpI) 1184 return; 1185 if (canAddSuccessor(BB, Br->getSuccessor(0))) 1186 WorkList.emplace_back(FactOrCheck::getConditionFact( 1187 DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(), 1188 CmpI->getOperand(0), CmpI->getOperand(1))); 1189 if (canAddSuccessor(BB, Br->getSuccessor(1))) 1190 WorkList.emplace_back(FactOrCheck::getConditionFact( 1191 DT.getNode(Br->getSuccessor(1)), 1192 CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0), 1193 CmpI->getOperand(1))); 1194 } 1195 1196 #ifndef NDEBUG 1197 static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred, 1198 Value *LHS, Value *RHS) { 1199 OS << "icmp " << Pred << ' '; 1200 LHS->printAsOperand(OS, /*PrintType=*/true); 1201 OS << ", "; 1202 RHS->printAsOperand(OS, /*PrintType=*/false); 1203 } 1204 #endif 1205 1206 namespace { 1207 /// Helper to keep track of a condition and if it should be treated as negated 1208 /// for reproducer construction. 1209 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 1210 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 1211 struct ReproducerEntry { 1212 ICmpInst::Predicate Pred; 1213 Value *LHS; 1214 Value *RHS; 1215 1216 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 1217 : Pred(Pred), LHS(LHS), RHS(RHS) {} 1218 }; 1219 } // namespace 1220 1221 /// Helper function to generate a reproducer function for simplifying \p Cond. 1222 /// The reproducer function contains a series of @llvm.assume calls, one for 1223 /// each condition in \p Stack. For each condition, the operand instruction are 1224 /// cloned until we reach operands that have an entry in \p Value2Index. Those 1225 /// will then be added as function arguments. \p DT is used to order cloned 1226 /// instructions. The reproducer function will get added to \p M, if it is 1227 /// non-null. Otherwise no reproducer function is generated. 1228 static void generateReproducer(CmpInst *Cond, Module *M, 1229 ArrayRef<ReproducerEntry> Stack, 1230 ConstraintInfo &Info, DominatorTree &DT) { 1231 if (!M) 1232 return; 1233 1234 LLVMContext &Ctx = Cond->getContext(); 1235 1236 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 1237 1238 ValueToValueMapTy Old2New; 1239 SmallVector<Value *> Args; 1240 SmallPtrSet<Value *, 8> Seen; 1241 // Traverse Cond and its operands recursively until we reach a value that's in 1242 // Value2Index or not an instruction, or not a operation that 1243 // ConstraintElimination can decompose. Such values will be considered as 1244 // external inputs to the reproducer, they are collected and added as function 1245 // arguments later. 1246 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1247 auto &Value2Index = Info.getValue2Index(IsSigned); 1248 SmallVector<Value *, 4> WorkList(Ops); 1249 while (!WorkList.empty()) { 1250 Value *V = WorkList.pop_back_val(); 1251 if (!Seen.insert(V).second) 1252 continue; 1253 if (Old2New.find(V) != Old2New.end()) 1254 continue; 1255 if (isa<Constant>(V)) 1256 continue; 1257 1258 auto *I = dyn_cast<Instruction>(V); 1259 if (Value2Index.contains(V) || !I || 1260 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 1261 Old2New[V] = V; 1262 Args.push_back(V); 1263 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 1264 } else { 1265 append_range(WorkList, I->operands()); 1266 } 1267 } 1268 }; 1269 1270 for (auto &Entry : Stack) 1271 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 1272 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 1273 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 1274 1275 SmallVector<Type *> ParamTys; 1276 for (auto *P : Args) 1277 ParamTys.push_back(P->getType()); 1278 1279 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 1280 /*isVarArg=*/false); 1281 Function *F = Function::Create(FTy, Function::ExternalLinkage, 1282 Cond->getModule()->getName() + 1283 Cond->getFunction()->getName() + "repro", 1284 M); 1285 // Add arguments to the reproducer function for each external value collected. 1286 for (unsigned I = 0; I < Args.size(); ++I) { 1287 F->getArg(I)->setName(Args[I]->getName()); 1288 Old2New[Args[I]] = F->getArg(I); 1289 } 1290 1291 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 1292 IRBuilder<> Builder(Entry); 1293 Builder.CreateRet(Builder.getTrue()); 1294 Builder.SetInsertPoint(Entry->getTerminator()); 1295 1296 // Clone instructions in \p Ops and their operands recursively until reaching 1297 // an value in Value2Index (external input to the reproducer). Update Old2New 1298 // mapping for the original and cloned instructions. Sort instructions to 1299 // clone by dominance, then insert the cloned instructions in the function. 1300 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1301 SmallVector<Value *, 4> WorkList(Ops); 1302 SmallVector<Instruction *> ToClone; 1303 auto &Value2Index = Info.getValue2Index(IsSigned); 1304 while (!WorkList.empty()) { 1305 Value *V = WorkList.pop_back_val(); 1306 if (Old2New.find(V) != Old2New.end()) 1307 continue; 1308 1309 auto *I = dyn_cast<Instruction>(V); 1310 if (!Value2Index.contains(V) && I) { 1311 Old2New[V] = nullptr; 1312 ToClone.push_back(I); 1313 append_range(WorkList, I->operands()); 1314 } 1315 } 1316 1317 sort(ToClone, 1318 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 1319 for (Instruction *I : ToClone) { 1320 Instruction *Cloned = I->clone(); 1321 Old2New[I] = Cloned; 1322 Old2New[I]->setName(I->getName()); 1323 Cloned->insertBefore(&*Builder.GetInsertPoint()); 1324 Cloned->dropUnknownNonDebugMetadata(); 1325 Cloned->setDebugLoc({}); 1326 } 1327 }; 1328 1329 // Materialize the assumptions for the reproducer using the entries in Stack. 1330 // That is, first clone the operands of the condition recursively until we 1331 // reach an external input to the reproducer and add them to the reproducer 1332 // function. Then add an ICmp for the condition (with the inverse predicate if 1333 // the entry is negated) and an assert using the ICmp. 1334 for (auto &Entry : Stack) { 1335 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1336 continue; 1337 1338 LLVM_DEBUG(dbgs() << " Materializing assumption "; 1339 dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS); 1340 dbgs() << "\n"); 1341 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1342 1343 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1344 Builder.CreateAssumption(Cmp); 1345 } 1346 1347 // Finally, clone the condition to reproduce and remap instruction operands in 1348 // the reproducer using Old2New. 1349 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1350 Entry->getTerminator()->setOperand(0, Cond); 1351 remapInstructionsInBlocks({Entry}, Old2New); 1352 1353 assert(!verifyFunction(*F, &dbgs())); 1354 } 1355 1356 static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A, 1357 Value *B, Instruction *CheckInst, 1358 ConstraintInfo &Info) { 1359 LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n"); 1360 1361 auto R = Info.getConstraintForSolving(Pred, A, B); 1362 if (R.empty() || !R.isValid(Info)){ 1363 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1364 return std::nullopt; 1365 } 1366 1367 auto &CSToUse = Info.getCS(R.IsSigned); 1368 1369 // If there was extra information collected during decomposition, apply 1370 // it now and remove it immediately once we are done with reasoning 1371 // about the constraint. 1372 for (auto &Row : R.ExtraInfo) 1373 CSToUse.addVariableRow(Row); 1374 auto InfoRestorer = make_scope_exit([&]() { 1375 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1376 CSToUse.popLastConstraint(); 1377 }); 1378 1379 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1380 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1381 return std::nullopt; 1382 1383 LLVM_DEBUG({ 1384 dbgs() << "Condition "; 1385 dumpUnpackedICmp( 1386 dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred), 1387 A, B); 1388 dbgs() << " implied by dominating constraints\n"; 1389 CSToUse.dump(); 1390 }); 1391 return ImpliedCondition; 1392 } 1393 1394 return std::nullopt; 1395 } 1396 1397 static bool checkAndReplaceCondition( 1398 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1399 Instruction *ContextInst, Module *ReproducerModule, 1400 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1401 SmallVectorImpl<Instruction *> &ToRemove) { 1402 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1403 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1404 Constant *ConstantC = ConstantInt::getBool( 1405 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1406 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1407 ContextInst](Use &U) { 1408 auto *UserI = getContextInstForUse(U); 1409 auto *DTN = DT.getNode(UserI->getParent()); 1410 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1411 return false; 1412 if (UserI->getParent() == ContextInst->getParent() && 1413 UserI->comesBefore(ContextInst)) 1414 return false; 1415 1416 // Conditions in an assume trivially simplify to true. Skip uses 1417 // in assume calls to not destroy the available information. 1418 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1419 return !II || II->getIntrinsicID() != Intrinsic::assume; 1420 }); 1421 NumCondsRemoved++; 1422 if (Cmp->use_empty()) 1423 ToRemove.push_back(Cmp); 1424 return true; 1425 }; 1426 1427 if (auto ImpliedCondition = 1428 checkCondition(Cmp->getPredicate(), Cmp->getOperand(0), 1429 Cmp->getOperand(1), Cmp, Info)) 1430 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1431 return false; 1432 } 1433 1434 static bool checkAndReplaceMinMax(MinMaxIntrinsic *MinMax, ConstraintInfo &Info, 1435 SmallVectorImpl<Instruction *> &ToRemove) { 1436 auto ReplaceMinMaxWithOperand = [&](MinMaxIntrinsic *MinMax, bool UseLHS) { 1437 // TODO: generate reproducer for min/max. 1438 MinMax->replaceAllUsesWith(MinMax->getOperand(UseLHS ? 0 : 1)); 1439 ToRemove.push_back(MinMax); 1440 return true; 1441 }; 1442 1443 ICmpInst::Predicate Pred = 1444 ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1445 if (auto ImpliedCondition = checkCondition( 1446 Pred, MinMax->getOperand(0), MinMax->getOperand(1), MinMax, Info)) 1447 return ReplaceMinMaxWithOperand(MinMax, *ImpliedCondition); 1448 if (auto ImpliedCondition = checkCondition( 1449 Pred, MinMax->getOperand(1), MinMax->getOperand(0), MinMax, Info)) 1450 return ReplaceMinMaxWithOperand(MinMax, !*ImpliedCondition); 1451 return false; 1452 } 1453 1454 static bool checkAndReplaceCmp(CmpIntrinsic *I, ConstraintInfo &Info, 1455 SmallVectorImpl<Instruction *> &ToRemove) { 1456 Value *LHS = I->getOperand(0); 1457 Value *RHS = I->getOperand(1); 1458 if (checkCondition(I->getGTPredicate(), LHS, RHS, I, Info).value_or(false)) { 1459 I->replaceAllUsesWith(ConstantInt::get(I->getType(), 1)); 1460 ToRemove.push_back(I); 1461 return true; 1462 } 1463 if (checkCondition(I->getLTPredicate(), LHS, RHS, I, Info).value_or(false)) { 1464 I->replaceAllUsesWith(ConstantInt::getSigned(I->getType(), -1)); 1465 ToRemove.push_back(I); 1466 return true; 1467 } 1468 if (checkCondition(ICmpInst::ICMP_EQ, LHS, RHS, I, Info).value_or(false)) { 1469 I->replaceAllUsesWith(ConstantInt::get(I->getType(), 0)); 1470 ToRemove.push_back(I); 1471 return true; 1472 } 1473 return false; 1474 } 1475 1476 static void 1477 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1478 Module *ReproducerModule, 1479 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1480 SmallVectorImpl<StackEntry> &DFSInStack) { 1481 Info.popLastConstraint(E.IsSigned); 1482 // Remove variables in the system that went out of scope. 1483 auto &Mapping = Info.getValue2Index(E.IsSigned); 1484 for (Value *V : E.ValuesToRelease) 1485 Mapping.erase(V); 1486 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1487 DFSInStack.pop_back(); 1488 if (ReproducerModule) 1489 ReproducerCondStack.pop_back(); 1490 } 1491 1492 /// Check if either the first condition of an AND or OR is implied by the 1493 /// (negated in case of OR) second condition or vice versa. 1494 static bool checkOrAndOpImpliedByOther( 1495 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1496 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1497 SmallVectorImpl<StackEntry> &DFSInStack) { 1498 1499 CmpInst::Predicate Pred; 1500 Value *A, *B; 1501 Instruction *JoinOp = CB.getContextInst(); 1502 CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify()); 1503 unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0; 1504 1505 // Don't try to simplify the first condition of a select by the second, as 1506 // this may make the select more poisonous than the original one. 1507 // TODO: check if the first operand may be poison. 1508 if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp)) 1509 return false; 1510 1511 if (!match(JoinOp->getOperand(OtherOpIdx), 1512 m_ICmp(Pred, m_Value(A), m_Value(B)))) 1513 return false; 1514 1515 // For OR, check if the negated condition implies CmpToCheck. 1516 bool IsOr = match(JoinOp, m_LogicalOr()); 1517 if (IsOr) 1518 Pred = CmpInst::getInversePredicate(Pred); 1519 1520 // Optimistically add fact from first condition. 1521 unsigned OldSize = DFSInStack.size(); 1522 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1523 if (OldSize == DFSInStack.size()) 1524 return false; 1525 1526 bool Changed = false; 1527 // Check if the second condition can be simplified now. 1528 if (auto ImpliedCondition = 1529 checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0), 1530 CmpToCheck->getOperand(1), CmpToCheck, Info)) { 1531 if (IsOr && isa<SelectInst>(JoinOp)) { 1532 JoinOp->setOperand( 1533 OtherOpIdx == 0 ? 2 : 0, 1534 ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition)); 1535 } else 1536 JoinOp->setOperand( 1537 1 - OtherOpIdx, 1538 ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition)); 1539 1540 Changed = true; 1541 } 1542 1543 // Remove entries again. 1544 while (OldSize < DFSInStack.size()) { 1545 StackEntry E = DFSInStack.back(); 1546 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1547 DFSInStack); 1548 } 1549 return Changed; 1550 } 1551 1552 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1553 unsigned NumIn, unsigned NumOut, 1554 SmallVectorImpl<StackEntry> &DFSInStack) { 1555 // If the constraint has a pre-condition, skip the constraint if it does not 1556 // hold. 1557 SmallVector<Value *> NewVariables; 1558 auto R = getConstraint(Pred, A, B, NewVariables); 1559 1560 // TODO: Support non-equality for facts as well. 1561 if (!R.isValid(*this) || R.isNe()) 1562 return; 1563 1564 LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B); 1565 dbgs() << "'\n"); 1566 bool Added = false; 1567 auto &CSToUse = getCS(R.IsSigned); 1568 if (R.Coefficients.empty()) 1569 return; 1570 1571 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1572 1573 // If R has been added to the system, add the new variables and queue it for 1574 // removal once it goes out-of-scope. 1575 if (Added) { 1576 SmallVector<Value *, 2> ValuesToRelease; 1577 auto &Value2Index = getValue2Index(R.IsSigned); 1578 for (Value *V : NewVariables) { 1579 Value2Index.insert({V, Value2Index.size() + 1}); 1580 ValuesToRelease.push_back(V); 1581 } 1582 1583 LLVM_DEBUG({ 1584 dbgs() << " constraint: "; 1585 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1586 dbgs() << "\n"; 1587 }); 1588 1589 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1590 std::move(ValuesToRelease)); 1591 1592 if (!R.IsSigned) { 1593 for (Value *V : NewVariables) { 1594 ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0), 1595 false, false, false); 1596 VarPos.Coefficients[Value2Index[V]] = -1; 1597 CSToUse.addVariableRow(VarPos.Coefficients); 1598 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1599 SmallVector<Value *, 2>()); 1600 } 1601 } 1602 1603 if (R.isEq()) { 1604 // Also add the inverted constraint for equality constraints. 1605 for (auto &Coeff : R.Coefficients) 1606 Coeff *= -1; 1607 CSToUse.addVariableRowFill(R.Coefficients); 1608 1609 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1610 SmallVector<Value *, 2>()); 1611 } 1612 } 1613 } 1614 1615 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1616 SmallVectorImpl<Instruction *> &ToRemove) { 1617 bool Changed = false; 1618 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1619 Value *Sub = nullptr; 1620 for (User *U : make_early_inc_range(II->users())) { 1621 if (match(U, m_ExtractValue<0>(m_Value()))) { 1622 if (!Sub) 1623 Sub = Builder.CreateSub(A, B); 1624 U->replaceAllUsesWith(Sub); 1625 Changed = true; 1626 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1627 U->replaceAllUsesWith(Builder.getFalse()); 1628 Changed = true; 1629 } else 1630 continue; 1631 1632 if (U->use_empty()) { 1633 auto *I = cast<Instruction>(U); 1634 ToRemove.push_back(I); 1635 I->setOperand(0, PoisonValue::get(II->getType())); 1636 Changed = true; 1637 } 1638 } 1639 1640 if (II->use_empty()) { 1641 II->eraseFromParent(); 1642 Changed = true; 1643 } 1644 return Changed; 1645 } 1646 1647 static bool 1648 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1649 SmallVectorImpl<Instruction *> &ToRemove) { 1650 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1651 ConstraintInfo &Info) { 1652 auto R = Info.getConstraintForSolving(Pred, A, B); 1653 if (R.size() < 2 || !R.isValid(Info)) 1654 return false; 1655 1656 auto &CSToUse = Info.getCS(R.IsSigned); 1657 return CSToUse.isConditionImplied(R.Coefficients); 1658 }; 1659 1660 bool Changed = false; 1661 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1662 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1663 // can be simplified to a regular sub. 1664 Value *A = II->getArgOperand(0); 1665 Value *B = II->getArgOperand(1); 1666 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1667 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1668 ConstantInt::get(A->getType(), 0), Info)) 1669 return false; 1670 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1671 } 1672 return Changed; 1673 } 1674 1675 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI, 1676 ScalarEvolution &SE, 1677 OptimizationRemarkEmitter &ORE) { 1678 bool Changed = false; 1679 DT.updateDFSNumbers(); 1680 SmallVector<Value *> FunctionArgs; 1681 for (Value &Arg : F.args()) 1682 FunctionArgs.push_back(&Arg); 1683 ConstraintInfo Info(F.getDataLayout(), FunctionArgs); 1684 State S(DT, LI, SE); 1685 std::unique_ptr<Module> ReproducerModule( 1686 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1687 1688 // First, collect conditions implied by branches and blocks with their 1689 // Dominator DFS in and out numbers. 1690 for (BasicBlock &BB : F) { 1691 if (!DT.getNode(&BB)) 1692 continue; 1693 S.addInfoFor(BB); 1694 } 1695 1696 // Next, sort worklist by dominance, so that dominating conditions to check 1697 // and facts come before conditions and facts dominated by them. If a 1698 // condition to check and a fact have the same numbers, conditional facts come 1699 // first. Assume facts and checks are ordered according to their relative 1700 // order in the containing basic block. Also make sure conditions with 1701 // constant operands come before conditions without constant operands. This 1702 // increases the effectiveness of the current signed <-> unsigned fact 1703 // transfer logic. 1704 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1705 auto HasNoConstOp = [](const FactOrCheck &B) { 1706 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 1707 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 1708 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1709 }; 1710 // If both entries have the same In numbers, conditional facts come first. 1711 // Otherwise use the relative order in the basic block. 1712 if (A.NumIn == B.NumIn) { 1713 if (A.isConditionFact() && B.isConditionFact()) { 1714 bool NoConstOpA = HasNoConstOp(A); 1715 bool NoConstOpB = HasNoConstOp(B); 1716 return NoConstOpA < NoConstOpB; 1717 } 1718 if (A.isConditionFact()) 1719 return true; 1720 if (B.isConditionFact()) 1721 return false; 1722 auto *InstA = A.getContextInst(); 1723 auto *InstB = B.getContextInst(); 1724 return InstA->comesBefore(InstB); 1725 } 1726 return A.NumIn < B.NumIn; 1727 }); 1728 1729 SmallVector<Instruction *> ToRemove; 1730 1731 // Finally, process ordered worklist and eliminate implied conditions. 1732 SmallVector<StackEntry, 16> DFSInStack; 1733 SmallVector<ReproducerEntry> ReproducerCondStack; 1734 for (FactOrCheck &CB : S.WorkList) { 1735 // First, pop entries from the stack that are out-of-scope for CB. Remove 1736 // the corresponding entry from the constraint system. 1737 while (!DFSInStack.empty()) { 1738 auto &E = DFSInStack.back(); 1739 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1740 << "\n"); 1741 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1742 assert(E.NumIn <= CB.NumIn); 1743 if (CB.NumOut <= E.NumOut) 1744 break; 1745 LLVM_DEBUG({ 1746 dbgs() << "Removing "; 1747 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1748 Info.getValue2Index(E.IsSigned)); 1749 dbgs() << "\n"; 1750 }); 1751 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1752 DFSInStack); 1753 } 1754 1755 // For a block, check if any CmpInsts become known based on the current set 1756 // of constraints. 1757 if (CB.isCheck()) { 1758 Instruction *Inst = CB.getInstructionToSimplify(); 1759 if (!Inst) 1760 continue; 1761 LLVM_DEBUG(dbgs() << "Processing condition to simplify: " << *Inst 1762 << "\n"); 1763 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1764 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1765 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1766 bool Simplified = checkAndReplaceCondition( 1767 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1768 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1769 if (!Simplified && 1770 match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) { 1771 Simplified = 1772 checkOrAndOpImpliedByOther(CB, Info, ReproducerModule.get(), 1773 ReproducerCondStack, DFSInStack); 1774 } 1775 Changed |= Simplified; 1776 } else if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Inst)) { 1777 Changed |= checkAndReplaceMinMax(MinMax, Info, ToRemove); 1778 } else if (auto *CmpIntr = dyn_cast<CmpIntrinsic>(Inst)) { 1779 Changed |= checkAndReplaceCmp(CmpIntr, Info, ToRemove); 1780 } 1781 continue; 1782 } 1783 1784 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1785 LLVM_DEBUG(dbgs() << "Processing fact to add to the system: "; 1786 dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n"); 1787 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1788 LLVM_DEBUG( 1789 dbgs() 1790 << "Skip adding constraint because system has too many rows.\n"); 1791 return; 1792 } 1793 1794 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1795 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1796 ReproducerCondStack.emplace_back(Pred, A, B); 1797 1798 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1799 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1800 // Add dummy entries to ReproducerCondStack to keep it in sync with 1801 // DFSInStack. 1802 for (unsigned I = 0, 1803 E = (DFSInStack.size() - ReproducerCondStack.size()); 1804 I < E; ++I) { 1805 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1806 nullptr, nullptr); 1807 } 1808 } 1809 }; 1810 1811 ICmpInst::Predicate Pred; 1812 if (!CB.isConditionFact()) { 1813 Value *X; 1814 if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) { 1815 // If is_int_min_poison is true then we may assume llvm.abs >= 0. 1816 if (cast<ConstantInt>(CB.Inst->getOperand(1))->isOne()) 1817 AddFact(CmpInst::ICMP_SGE, CB.Inst, 1818 ConstantInt::get(CB.Inst->getType(), 0)); 1819 AddFact(CmpInst::ICMP_SGE, CB.Inst, X); 1820 continue; 1821 } 1822 1823 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1824 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1825 AddFact(Pred, MinMax, MinMax->getLHS()); 1826 AddFact(Pred, MinMax, MinMax->getRHS()); 1827 continue; 1828 } 1829 } 1830 1831 Value *A = nullptr, *B = nullptr; 1832 if (CB.isConditionFact()) { 1833 Pred = CB.Cond.Pred; 1834 A = CB.Cond.Op0; 1835 B = CB.Cond.Op1; 1836 if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE && 1837 !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) { 1838 LLVM_DEBUG({ 1839 dbgs() << "Not adding fact "; 1840 dumpUnpackedICmp(dbgs(), Pred, A, B); 1841 dbgs() << " because precondition "; 1842 dumpUnpackedICmp(dbgs(), CB.DoesHold.Pred, CB.DoesHold.Op0, 1843 CB.DoesHold.Op1); 1844 dbgs() << " does not hold.\n"; 1845 }); 1846 continue; 1847 } 1848 } else { 1849 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 1850 m_ICmp(Pred, m_Value(A), m_Value(B)))); 1851 (void)Matched; 1852 assert(Matched && "Must have an assume intrinsic with a icmp operand"); 1853 } 1854 AddFact(Pred, A, B); 1855 } 1856 1857 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1858 std::string S; 1859 raw_string_ostream StringS(S); 1860 ReproducerModule->print(StringS, nullptr); 1861 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1862 Rem << ore::NV("module") << S; 1863 ORE.emit(Rem); 1864 } 1865 1866 #ifndef NDEBUG 1867 unsigned SignedEntries = 1868 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1869 assert(Info.getCS(false).size() - FunctionArgs.size() == 1870 DFSInStack.size() - SignedEntries && 1871 "updates to CS and DFSInStack are out of sync"); 1872 assert(Info.getCS(true).size() == SignedEntries && 1873 "updates to CS and DFSInStack are out of sync"); 1874 #endif 1875 1876 for (Instruction *I : ToRemove) 1877 I->eraseFromParent(); 1878 return Changed; 1879 } 1880 1881 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1882 FunctionAnalysisManager &AM) { 1883 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1884 auto &LI = AM.getResult<LoopAnalysis>(F); 1885 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1886 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1887 if (!eliminateConstraints(F, DT, LI, SE, ORE)) 1888 return PreservedAnalyses::all(); 1889 1890 PreservedAnalyses PA; 1891 PA.preserve<DominatorTreeAnalysis>(); 1892 PA.preserve<LoopAnalysis>(); 1893 PA.preserve<ScalarEvolutionAnalysis>(); 1894 PA.preserveSet<CFGAnalyses>(); 1895 return PA; 1896 } 1897