xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 7faa8c6ec6d4518663f49b0298c1762d90cb14f5)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GetElementPtrTypeIterator.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/DebugCounter.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/ValueMapper.h"
39 
40 #include <cmath>
41 #include <string>
42 
43 using namespace llvm;
44 using namespace PatternMatch;
45 
46 #define DEBUG_TYPE "constraint-elimination"
47 
48 STATISTIC(NumCondsRemoved, "Number of instructions removed");
49 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
50               "Controls which conditions are eliminated");
51 
52 static cl::opt<unsigned>
53     MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
54             cl::desc("Maximum number of rows to keep in constraint system"));
55 
56 static cl::opt<bool> DumpReproducers(
57     "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
58     cl::desc("Dump IR to reproduce successful transformations."));
59 
60 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
61 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
62 
63 // A helper to multiply 2 signed integers where overflowing is allowed.
64 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
65   int64_t Result;
66   MulOverflow(A, B, Result);
67   return Result;
68 }
69 
70 // A helper to add 2 signed integers where overflowing is allowed.
71 static int64_t addWithOverflow(int64_t A, int64_t B) {
72   int64_t Result;
73   AddOverflow(A, B, Result);
74   return Result;
75 }
76 
77 namespace {
78 
79 class ConstraintInfo;
80 
81 struct StackEntry {
82   unsigned NumIn;
83   unsigned NumOut;
84   bool IsSigned = false;
85   /// Variables that can be removed from the system once the stack entry gets
86   /// removed.
87   SmallVector<Value *, 2> ValuesToRelease;
88 
89   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
90              SmallVector<Value *, 2> ValuesToRelease)
91       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
92         ValuesToRelease(ValuesToRelease) {}
93 };
94 
95 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
96 struct PreconditionTy {
97   CmpInst::Predicate Pred;
98   Value *Op0;
99   Value *Op1;
100 
101   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
102       : Pred(Pred), Op0(Op0), Op1(Op1) {}
103 };
104 
105 struct ConstraintTy {
106   SmallVector<int64_t, 8> Coefficients;
107   SmallVector<PreconditionTy, 2> Preconditions;
108 
109   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
110 
111   bool IsSigned = false;
112   bool IsEq = false;
113 
114   ConstraintTy() = default;
115 
116   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
117       : Coefficients(Coefficients), IsSigned(IsSigned) {}
118 
119   unsigned size() const { return Coefficients.size(); }
120 
121   unsigned empty() const { return Coefficients.empty(); }
122 
123   /// Returns true if all preconditions for this list of constraints are
124   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
125   bool isValid(const ConstraintInfo &Info) const;
126 };
127 
128 /// Wrapper encapsulating separate constraint systems and corresponding value
129 /// mappings for both unsigned and signed information. Facts are added to and
130 /// conditions are checked against the corresponding system depending on the
131 /// signed-ness of their predicates. While the information is kept separate
132 /// based on signed-ness, certain conditions can be transferred between the two
133 /// systems.
134 class ConstraintInfo {
135 
136   ConstraintSystem UnsignedCS;
137   ConstraintSystem SignedCS;
138 
139   const DataLayout &DL;
140 
141 public:
142   ConstraintInfo(const DataLayout &DL) : DL(DL) {}
143 
144   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
145     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
146   }
147   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
148     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
149   }
150 
151   ConstraintSystem &getCS(bool Signed) {
152     return Signed ? SignedCS : UnsignedCS;
153   }
154   const ConstraintSystem &getCS(bool Signed) const {
155     return Signed ? SignedCS : UnsignedCS;
156   }
157 
158   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
159   void popLastNVariables(bool Signed, unsigned N) {
160     getCS(Signed).popLastNVariables(N);
161   }
162 
163   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
164 
165   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
166                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
167 
168   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
169   /// constraints, using indices from the corresponding constraint system.
170   /// New variables that need to be added to the system are collected in
171   /// \p NewVariables.
172   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
173                              SmallVectorImpl<Value *> &NewVariables) const;
174 
175   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
176   /// constraints using getConstraint. Returns an empty constraint if the result
177   /// cannot be used to query the existing constraint system, e.g. because it
178   /// would require adding new variables. Also tries to convert signed
179   /// predicates to unsigned ones if possible to allow using the unsigned system
180   /// which increases the effectiveness of the signed <-> unsigned transfer
181   /// logic.
182   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
183                                        Value *Op1) const;
184 
185   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
186   /// system if \p Pred is signed/unsigned.
187   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
188                              unsigned NumIn, unsigned NumOut,
189                              SmallVectorImpl<StackEntry> &DFSInStack);
190 };
191 
192 /// Represents a (Coefficient * Variable) entry after IR decomposition.
193 struct DecompEntry {
194   int64_t Coefficient;
195   Value *Variable;
196   /// True if the variable is known positive in the current constraint.
197   bool IsKnownNonNegative;
198 
199   DecompEntry(int64_t Coefficient, Value *Variable,
200               bool IsKnownNonNegative = false)
201       : Coefficient(Coefficient), Variable(Variable),
202         IsKnownNonNegative(IsKnownNonNegative) {}
203 };
204 
205 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
206 struct Decomposition {
207   int64_t Offset = 0;
208   SmallVector<DecompEntry, 3> Vars;
209 
210   Decomposition(int64_t Offset) : Offset(Offset) {}
211   Decomposition(Value *V, bool IsKnownNonNegative = false) {
212     Vars.emplace_back(1, V, IsKnownNonNegative);
213   }
214   Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
215       : Offset(Offset), Vars(Vars) {}
216 
217   void add(int64_t OtherOffset) {
218     Offset = addWithOverflow(Offset, OtherOffset);
219   }
220 
221   void add(const Decomposition &Other) {
222     add(Other.Offset);
223     append_range(Vars, Other.Vars);
224   }
225 
226   void mul(int64_t Factor) {
227     Offset = multiplyWithOverflow(Offset, Factor);
228     for (auto &Var : Vars)
229       Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
230   }
231 };
232 
233 } // namespace
234 
235 static Decomposition decompose(Value *V,
236                                SmallVectorImpl<PreconditionTy> &Preconditions,
237                                bool IsSigned, const DataLayout &DL);
238 
239 static bool canUseSExt(ConstantInt *CI) {
240   const APInt &Val = CI->getValue();
241   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
242 }
243 
244 static Decomposition
245 decomposeGEP(GetElementPtrInst &GEP,
246              SmallVectorImpl<PreconditionTy> &Preconditions, bool IsSigned,
247              const DataLayout &DL) {
248   // Do not reason about pointers where the index size is larger than 64 bits,
249   // as the coefficients used to encode constraints are 64 bit integers.
250   if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
251     return &GEP;
252 
253   if (!GEP.isInBounds())
254     return &GEP;
255 
256   assert(!IsSigned && "The logic below only supports decomposition for "
257                       "unsinged predicates at the moment.");
258   Type *PtrTy = GEP.getType()->getScalarType();
259   unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
260   MapVector<Value *, APInt> VariableOffsets;
261   APInt ConstantOffset(BitWidth, 0);
262   if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
263     return &GEP;
264 
265   // Handle the (gep (gep ....), C) case by incrementing the constant
266   // coefficient of the inner GEP, if C is a constant.
267   auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand());
268   if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) {
269     auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
270     Result.add(ConstantOffset.getSExtValue());
271 
272     if (ConstantOffset.isNegative()) {
273       unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType());
274       int64_t ConstantOffsetI = ConstantOffset.getSExtValue();
275       if (ConstantOffsetI % Scale != 0)
276         return &GEP;
277       // Add pre-condition ensuring the GEP is increasing monotonically and
278       // can be de-composed.
279       // Both sides are normalized by being divided by Scale.
280       Preconditions.emplace_back(
281           CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
282           ConstantInt::get(InnerGEP->getOperand(1)->getType(),
283                            -1 * (ConstantOffsetI / Scale)));
284     }
285     return Result;
286   }
287 
288   Decomposition Result(ConstantOffset.getSExtValue(),
289                        DecompEntry(1, GEP.getPointerOperand()));
290   for (auto [Index, Scale] : VariableOffsets) {
291     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
292     IdxResult.mul(Scale.getSExtValue());
293     Result.add(IdxResult);
294 
295     // If Op0 is signed non-negative, the GEP is increasing monotonically and
296     // can be de-composed.
297     if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
298       Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
299                                  ConstantInt::get(Index->getType(), 0));
300   }
301   return Result;
302 }
303 
304 // Decomposes \p V into a constant offset + list of pairs { Coefficient,
305 // Variable } where Coefficient * Variable. The sum of the constant offset and
306 // pairs equals \p V.
307 static Decomposition decompose(Value *V,
308                                SmallVectorImpl<PreconditionTy> &Preconditions,
309                                bool IsSigned, const DataLayout &DL) {
310 
311   auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
312                                                       bool IsSignedB) {
313     auto ResA = decompose(A, Preconditions, IsSigned, DL);
314     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
315     ResA.add(ResB);
316     return ResA;
317   };
318 
319   // Decompose \p V used with a signed predicate.
320   if (IsSigned) {
321     if (auto *CI = dyn_cast<ConstantInt>(V)) {
322       if (canUseSExt(CI))
323         return CI->getSExtValue();
324     }
325     Value *Op0;
326     Value *Op1;
327     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
328       return MergeResults(Op0, Op1, IsSigned);
329 
330     return V;
331   }
332 
333   if (auto *CI = dyn_cast<ConstantInt>(V)) {
334     if (CI->uge(MaxConstraintValue))
335       return V;
336     return int64_t(CI->getZExtValue());
337   }
338 
339   if (auto *GEP = dyn_cast<GetElementPtrInst>(V))
340     return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
341 
342   Value *Op0;
343   bool IsKnownNonNegative = false;
344   if (match(V, m_ZExt(m_Value(Op0)))) {
345     IsKnownNonNegative = true;
346     V = Op0;
347   }
348 
349   Value *Op1;
350   ConstantInt *CI;
351   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
352     return MergeResults(Op0, Op1, IsSigned);
353   }
354   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
355     if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
356       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
357                                  ConstantInt::get(Op0->getType(), 0));
358     if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
359       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
360                                  ConstantInt::get(Op1->getType(), 0));
361 
362     return MergeResults(Op0, Op1, IsSigned);
363   }
364 
365   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
366       canUseSExt(CI)) {
367     Preconditions.emplace_back(
368         CmpInst::ICMP_UGE, Op0,
369         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
370     return MergeResults(Op0, CI, true);
371   }
372 
373   // Decompose or as an add if there are no common bits between the operands.
374   if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) &&
375       haveNoCommonBitsSet(Op0, CI, DL)) {
376     return MergeResults(Op0, CI, IsSigned);
377   }
378 
379   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
380     if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
381       return {V, IsKnownNonNegative};
382     int64_t Mult = 1 << CI->getSExtValue();
383     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
384     Result.mul(Mult);
385     return Result;
386   }
387 
388   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
389       (!CI->isNegative())) {
390     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
391     Result.mul(CI->getSExtValue());
392     return Result;
393   }
394 
395   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI))
396     return {-1 * CI->getSExtValue(), {{1, Op0}}};
397   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
398     return {0, {{1, Op0}, {-1, Op1}}};
399 
400   return {V, IsKnownNonNegative};
401 }
402 
403 ConstraintTy
404 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
405                               SmallVectorImpl<Value *> &NewVariables) const {
406   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
407   bool IsEq = false;
408   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
409   switch (Pred) {
410   case CmpInst::ICMP_UGT:
411   case CmpInst::ICMP_UGE:
412   case CmpInst::ICMP_SGT:
413   case CmpInst::ICMP_SGE: {
414     Pred = CmpInst::getSwappedPredicate(Pred);
415     std::swap(Op0, Op1);
416     break;
417   }
418   case CmpInst::ICMP_EQ:
419     if (match(Op1, m_Zero())) {
420       Pred = CmpInst::ICMP_ULE;
421     } else {
422       IsEq = true;
423       Pred = CmpInst::ICMP_ULE;
424     }
425     break;
426   case CmpInst::ICMP_NE:
427     if (!match(Op1, m_Zero()))
428       return {};
429     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
430     std::swap(Op0, Op1);
431     break;
432   default:
433     break;
434   }
435 
436   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
437       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
438     return {};
439 
440   SmallVector<PreconditionTy, 4> Preconditions;
441   bool IsSigned = CmpInst::isSigned(Pred);
442   auto &Value2Index = getValue2Index(IsSigned);
443   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
444                         Preconditions, IsSigned, DL);
445   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
446                         Preconditions, IsSigned, DL);
447   int64_t Offset1 = ADec.Offset;
448   int64_t Offset2 = BDec.Offset;
449   Offset1 *= -1;
450 
451   auto &VariablesA = ADec.Vars;
452   auto &VariablesB = BDec.Vars;
453 
454   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
455   // new entry to NewVariables.
456   DenseMap<Value *, unsigned> NewIndexMap;
457   auto GetOrAddIndex = [&Value2Index, &NewVariables,
458                         &NewIndexMap](Value *V) -> unsigned {
459     auto V2I = Value2Index.find(V);
460     if (V2I != Value2Index.end())
461       return V2I->second;
462     auto Insert =
463         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
464     if (Insert.second)
465       NewVariables.push_back(V);
466     return Insert.first->second;
467   };
468 
469   // Make sure all variables have entries in Value2Index or NewVariables.
470   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
471     GetOrAddIndex(KV.Variable);
472 
473   // Build result constraint, by first adding all coefficients from A and then
474   // subtracting all coefficients from B.
475   ConstraintTy Res(
476       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
477       IsSigned);
478   // Collect variables that are known to be positive in all uses in the
479   // constraint.
480   DenseMap<Value *, bool> KnownNonNegativeVariables;
481   Res.IsEq = IsEq;
482   auto &R = Res.Coefficients;
483   for (const auto &KV : VariablesA) {
484     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
485     auto I =
486         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
487     I.first->second &= KV.IsKnownNonNegative;
488   }
489 
490   for (const auto &KV : VariablesB) {
491     R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient;
492     auto I =
493         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
494     I.first->second &= KV.IsKnownNonNegative;
495   }
496 
497   int64_t OffsetSum;
498   if (AddOverflow(Offset1, Offset2, OffsetSum))
499     return {};
500   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
501     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
502       return {};
503   R[0] = OffsetSum;
504   Res.Preconditions = std::move(Preconditions);
505 
506   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
507   // variables.
508   while (!NewVariables.empty()) {
509     int64_t Last = R.back();
510     if (Last != 0)
511       break;
512     R.pop_back();
513     Value *RemovedV = NewVariables.pop_back_val();
514     NewIndexMap.erase(RemovedV);
515   }
516 
517   // Add extra constraints for variables that are known positive.
518   for (auto &KV : KnownNonNegativeVariables) {
519     if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() &&
520                        NewIndexMap.find(KV.first) == NewIndexMap.end()))
521       continue;
522     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
523     C[GetOrAddIndex(KV.first)] = -1;
524     Res.ExtraInfo.push_back(C);
525   }
526   return Res;
527 }
528 
529 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
530                                                      Value *Op0,
531                                                      Value *Op1) const {
532   // If both operands are known to be non-negative, change signed predicates to
533   // unsigned ones. This increases the reasoning effectiveness in combination
534   // with the signed <-> unsigned transfer logic.
535   if (CmpInst::isSigned(Pred) &&
536       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
537       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
538     Pred = CmpInst::getUnsignedPredicate(Pred);
539 
540   SmallVector<Value *> NewVariables;
541   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
542   if (R.IsEq || !NewVariables.empty())
543     return {};
544   return R;
545 }
546 
547 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
548   return Coefficients.size() > 0 &&
549          all_of(Preconditions, [&Info](const PreconditionTy &C) {
550            return Info.doesHold(C.Pred, C.Op0, C.Op1);
551          });
552 }
553 
554 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
555                               Value *B) const {
556   auto R = getConstraintForSolving(Pred, A, B);
557   return R.Preconditions.empty() && !R.empty() &&
558          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
559 }
560 
561 void ConstraintInfo::transferToOtherSystem(
562     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
563     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
564   // Check if we can combine facts from the signed and unsigned systems to
565   // derive additional facts.
566   if (!A->getType()->isIntegerTy())
567     return;
568   // FIXME: This currently depends on the order we add facts. Ideally we
569   // would first add all known facts and only then try to add additional
570   // facts.
571   switch (Pred) {
572   default:
573     break;
574   case CmpInst::ICMP_ULT:
575     //  If B is a signed positive constant, A >=s 0 and A <s B.
576     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
577       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
578               NumOut, DFSInStack);
579       addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack);
580     }
581     break;
582   case CmpInst::ICMP_SLT:
583     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
584       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
585     break;
586   case CmpInst::ICMP_SGT:
587     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
588       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
589               NumOut, DFSInStack);
590     break;
591   case CmpInst::ICMP_SGE:
592     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
593       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
594     }
595     break;
596   }
597 }
598 
599 namespace {
600 /// Represents either
601 ///  * a condition that holds on entry to a block (=conditional fact)
602 ///  * an assume (=assume fact)
603 ///  * an instruction to simplify.
604 /// It also tracks the Dominator DFS in and out numbers for each entry.
605 struct FactOrCheck {
606   Instruction *Inst;
607   unsigned NumIn;
608   unsigned NumOut;
609   bool IsCheck;
610   bool Not;
611 
612   FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool IsCheck, bool Not)
613       : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
614         IsCheck(IsCheck), Not(Not) {}
615 
616   static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst,
617                              bool Not = false) {
618     return FactOrCheck(DTN, Inst, false, Not);
619   }
620 
621   static FactOrCheck getCheck(DomTreeNode *DTN, Instruction *Inst) {
622     return FactOrCheck(DTN, Inst, true, false);
623   }
624 
625   bool isAssumeFact() const {
626     if (!IsCheck && isa<IntrinsicInst>(Inst)) {
627       assert(match(Inst, m_Intrinsic<Intrinsic::assume>()));
628       return true;
629     }
630     return false;
631   }
632 
633   bool isConditionFact() const { return !IsCheck && isa<CmpInst>(Inst); }
634 };
635 
636 /// Keep state required to build worklist.
637 struct State {
638   DominatorTree &DT;
639   SmallVector<FactOrCheck, 64> WorkList;
640 
641   State(DominatorTree &DT) : DT(DT) {}
642 
643   /// Process block \p BB and add known facts to work-list.
644   void addInfoFor(BasicBlock &BB);
645 
646   /// Returns true if we can add a known condition from BB to its successor
647   /// block Succ.
648   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
649     return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
650   }
651 };
652 
653 } // namespace
654 
655 #ifndef NDEBUG
656 
657 static void dumpConstraint(ArrayRef<int64_t> C,
658                            const DenseMap<Value *, unsigned> &Value2Index) {
659   ConstraintSystem CS(Value2Index);
660   CS.addVariableRowFill(C);
661   CS.dump();
662 }
663 #endif
664 
665 void State::addInfoFor(BasicBlock &BB) {
666   // True as long as long as the current instruction is guaranteed to execute.
667   bool GuaranteedToExecute = true;
668   // Queue conditions and assumes.
669   for (Instruction &I : BB) {
670     if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
671       WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), Cmp));
672       continue;
673     }
674 
675     if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) {
676       WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), &I));
677       continue;
678     }
679 
680     Value *Cond;
681     // For now, just handle assumes with a single compare as condition.
682     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
683         isa<ICmpInst>(Cond)) {
684       if (GuaranteedToExecute) {
685         // The assume is guaranteed to execute when BB is entered, hence Cond
686         // holds on entry to BB.
687         WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()),
688                                                    cast<Instruction>(Cond)));
689       } else {
690         WorkList.emplace_back(
691             FactOrCheck::getFact(DT.getNode(I.getParent()), &I));
692       }
693     }
694     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
695   }
696 
697   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
698   if (!Br || !Br->isConditional())
699     return;
700 
701   Value *Cond = Br->getCondition();
702 
703   // If the condition is a chain of ORs/AND and the successor only has the
704   // current block as predecessor, queue conditions for the successor.
705   Value *Op0, *Op1;
706   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
707       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
708     bool IsOr = match(Cond, m_LogicalOr());
709     bool IsAnd = match(Cond, m_LogicalAnd());
710     // If there's a select that matches both AND and OR, we need to commit to
711     // one of the options. Arbitrarily pick OR.
712     if (IsOr && IsAnd)
713       IsAnd = false;
714 
715     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
716     if (canAddSuccessor(BB, Successor)) {
717       SmallVector<Value *> CondWorkList;
718       SmallPtrSet<Value *, 8> SeenCond;
719       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
720         if (SeenCond.insert(V).second)
721           CondWorkList.push_back(V);
722       };
723       QueueValue(Op1);
724       QueueValue(Op0);
725       while (!CondWorkList.empty()) {
726         Value *Cur = CondWorkList.pop_back_val();
727         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
728           WorkList.emplace_back(
729               FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr));
730           continue;
731         }
732         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
733           QueueValue(Op1);
734           QueueValue(Op0);
735           continue;
736         }
737         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
738           QueueValue(Op1);
739           QueueValue(Op0);
740           continue;
741         }
742       }
743     }
744     return;
745   }
746 
747   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
748   if (!CmpI)
749     return;
750   if (canAddSuccessor(BB, Br->getSuccessor(0)))
751     WorkList.emplace_back(
752         FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI));
753   if (canAddSuccessor(BB, Br->getSuccessor(1)))
754     WorkList.emplace_back(
755         FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true));
756 }
757 
758 namespace {
759 /// Helper to keep track of a condition and if it should be treated as negated
760 /// for reproducer construction.
761 struct ReproducerEntry {
762   CmpInst *Cond;
763   bool IsNot;
764 
765   ReproducerEntry(CmpInst *Cond, bool IsNot) : Cond(Cond), IsNot(IsNot) {}
766 };
767 } // namespace
768 
769 /// Helper function to generate a reproducer function for simplifying \p Cond.
770 /// The reproducer function contains a series of @llvm.assume calls, one for
771 /// each condition in \p Stack. For each condition, the operand instruction are
772 /// cloned until we reach operands that have an entry in \p Value2Index. Those
773 /// will then be added as function arguments. \p DT is used to order cloned
774 /// instructions. The reproducer function will get added to \p M, if it is
775 /// non-null. Otherwise no reproducer function is generated.
776 static void generateReproducer(CmpInst *Cond, Module *M,
777                                ArrayRef<ReproducerEntry> Stack,
778                                ConstraintInfo &Info, DominatorTree &DT) {
779   if (!M)
780     return;
781 
782   LLVMContext &Ctx = Cond->getContext();
783 
784   LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
785 
786   ValueToValueMapTy Old2New;
787   SmallVector<Value *> Args;
788   SmallPtrSet<Value *, 8> Seen;
789   // Traverse Cond and its operands recursively until we reach a value that's in
790   // Value2Index or not an instruction, or not a operation that
791   // ConstraintElimination can decompose. Such values will be considered as
792   // external inputs to the reproducer, they are collected and added as function
793   // arguments later.
794   auto CollectArguments = [&](CmpInst *Cond) {
795     if (!Cond)
796       return;
797     auto &Value2Index =
798         Info.getValue2Index(CmpInst::isSigned(Cond->getPredicate()));
799     SmallVector<Value *, 4> WorkList;
800     WorkList.push_back(Cond);
801     while (!WorkList.empty()) {
802       Value *V = WorkList.pop_back_val();
803       if (!Seen.insert(V).second)
804         continue;
805       if (Old2New.find(V) != Old2New.end())
806         continue;
807       if (isa<Constant>(V))
808         continue;
809 
810       auto *I = dyn_cast<Instruction>(V);
811       if (Value2Index.find(V) != Value2Index.end() || !I ||
812           !isa<CmpInst, BinaryOperator, GetElementPtrInst, CastInst>(V)) {
813         Old2New[V] = V;
814         Args.push_back(V);
815         LLVM_DEBUG(dbgs() << "  found external input " << *V << "\n");
816       } else {
817         append_range(WorkList, I->operands());
818       }
819     }
820   };
821 
822   for (auto &Entry : Stack)
823     CollectArguments(Entry.Cond);
824   CollectArguments(Cond);
825 
826   SmallVector<Type *> ParamTys;
827   for (auto *P : Args)
828     ParamTys.push_back(P->getType());
829 
830   FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
831                                         /*isVarArg=*/false);
832   Function *F = Function::Create(FTy, Function::ExternalLinkage,
833                                  Cond->getModule()->getName() +
834                                      Cond->getFunction()->getName() + "repro",
835                                  M);
836   // Add arguments to the reproducer function for each external value collected.
837   for (unsigned I = 0; I < Args.size(); ++I) {
838     F->getArg(I)->setName(Args[I]->getName());
839     Old2New[Args[I]] = F->getArg(I);
840   }
841 
842   BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
843   IRBuilder<> Builder(Entry);
844   Builder.CreateRet(Builder.getTrue());
845   Builder.SetInsertPoint(Entry->getTerminator());
846 
847   // Clone instructions in \p Ops and their operands recursively until reaching
848   // an value in Value2Index (external input to the reproducer). Update Old2New
849   // mapping for the original and cloned instructions. Sort instructions to
850   // clone by dominance, then insert the cloned instructions in the function.
851   auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
852     SmallVector<Value *, 4> WorkList(Ops);
853     SmallVector<Instruction *> ToClone;
854     auto &Value2Index = Info.getValue2Index(IsSigned);
855     while (!WorkList.empty()) {
856       Value *V = WorkList.pop_back_val();
857       if (Old2New.find(V) != Old2New.end())
858         continue;
859 
860       auto *I = dyn_cast<Instruction>(V);
861       if (Value2Index.find(V) == Value2Index.end() && I) {
862         Old2New[V] = nullptr;
863         ToClone.push_back(I);
864         append_range(WorkList, I->operands());
865       }
866     }
867 
868     sort(ToClone,
869          [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
870     for (Instruction *I : ToClone) {
871       Instruction *Cloned = I->clone();
872       Old2New[I] = Cloned;
873       Old2New[I]->setName(I->getName());
874       Cloned->insertBefore(&*Builder.GetInsertPoint());
875       Cloned->dropUnknownNonDebugMetadata();
876       Cloned->setDebugLoc({});
877     }
878   };
879 
880   // Materialize the assumptions for the reproducer using the entries in Stack.
881   // That is, first clone the operands of the condition recursively until we
882   // reach an external input to the reproducer and add them to the reproducer
883   // function. Then add an ICmp for the condition (with the inverse predicate if
884   // the entry is negated) and an assert using the ICmp.
885   for (auto &Entry : Stack) {
886     if (!Entry.Cond)
887       continue;
888 
889     LLVM_DEBUG(dbgs() << "  Materializing assumption " << *Entry.Cond << "\n");
890     CmpInst::Predicate Pred = Entry.Cond->getPredicate();
891     if (Entry.IsNot)
892       Pred = CmpInst::getInversePredicate(Pred);
893 
894     CloneInstructions({Entry.Cond->getOperand(0), Entry.Cond->getOperand(1)},
895                       CmpInst::isSigned(Entry.Cond->getPredicate()));
896 
897     auto *Cmp = Builder.CreateICmp(Pred, Entry.Cond->getOperand(0),
898                                    Entry.Cond->getOperand(1));
899     Builder.CreateAssumption(Cmp);
900   }
901 
902   // Finally, clone the condition to reproduce and remap instruction operands in
903   // the reproducer using Old2New.
904   CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
905   Entry->getTerminator()->setOperand(0, Cond);
906   remapInstructionsInBlocks({Entry}, Old2New);
907 
908   assert(!verifyFunction(*F, &dbgs()));
909 }
910 
911 static bool checkAndReplaceCondition(
912     CmpInst *Cmp, ConstraintInfo &Info, Module *ReproducerModule,
913     ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT) {
914   LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
915 
916   CmpInst::Predicate Pred = Cmp->getPredicate();
917   Value *A = Cmp->getOperand(0);
918   Value *B = Cmp->getOperand(1);
919 
920   auto R = Info.getConstraintForSolving(Pred, A, B);
921   if (R.empty() || !R.isValid(Info)){
922     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
923     return false;
924   }
925 
926   auto &CSToUse = Info.getCS(R.IsSigned);
927 
928   // If there was extra information collected during decomposition, apply
929   // it now and remove it immediately once we are done with reasoning
930   // about the constraint.
931   for (auto &Row : R.ExtraInfo)
932     CSToUse.addVariableRow(Row);
933   auto InfoRestorer = make_scope_exit([&]() {
934     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
935       CSToUse.popLastConstraint();
936   });
937 
938   bool Changed = false;
939   if (CSToUse.isConditionImplied(R.Coefficients)) {
940     if (!DebugCounter::shouldExecute(EliminatedCounter))
941       return false;
942 
943     LLVM_DEBUG({
944       dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n";
945       CSToUse.dump();
946     });
947     generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
948     Constant *TrueC =
949         ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType()));
950     Cmp->replaceUsesWithIf(TrueC, [](Use &U) {
951       // Conditions in an assume trivially simplify to true. Skip uses
952       // in assume calls to not destroy the available information.
953       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
954       return !II || II->getIntrinsicID() != Intrinsic::assume;
955     });
956     NumCondsRemoved++;
957     Changed = true;
958   }
959   if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) {
960     if (!DebugCounter::shouldExecute(EliminatedCounter))
961       return false;
962 
963     LLVM_DEBUG({
964       dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n";
965       CSToUse.dump();
966     });
967     generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
968     Constant *FalseC =
969         ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType()));
970     Cmp->replaceAllUsesWith(FalseC);
971     NumCondsRemoved++;
972     Changed = true;
973   }
974   return Changed;
975 }
976 
977 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
978                              unsigned NumIn, unsigned NumOut,
979                              SmallVectorImpl<StackEntry> &DFSInStack) {
980   // If the constraint has a pre-condition, skip the constraint if it does not
981   // hold.
982   SmallVector<Value *> NewVariables;
983   auto R = getConstraint(Pred, A, B, NewVariables);
984   if (!R.isValid(*this))
985     return;
986 
987   LLVM_DEBUG(dbgs() << "Adding '" << Pred << " ";
988              A->printAsOperand(dbgs(), false); dbgs() << ", ";
989              B->printAsOperand(dbgs(), false); dbgs() << "'\n");
990   bool Added = false;
991   auto &CSToUse = getCS(R.IsSigned);
992   if (R.Coefficients.empty())
993     return;
994 
995   Added |= CSToUse.addVariableRowFill(R.Coefficients);
996 
997   // If R has been added to the system, add the new variables and queue it for
998   // removal once it goes out-of-scope.
999   if (Added) {
1000     SmallVector<Value *, 2> ValuesToRelease;
1001     auto &Value2Index = getValue2Index(R.IsSigned);
1002     for (Value *V : NewVariables) {
1003       Value2Index.insert({V, Value2Index.size() + 1});
1004       ValuesToRelease.push_back(V);
1005     }
1006 
1007     LLVM_DEBUG({
1008       dbgs() << "  constraint: ";
1009       dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1010       dbgs() << "\n";
1011     });
1012 
1013     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1014                             std::move(ValuesToRelease));
1015 
1016     if (R.IsEq) {
1017       // Also add the inverted constraint for equality constraints.
1018       for (auto &Coeff : R.Coefficients)
1019         Coeff *= -1;
1020       CSToUse.addVariableRowFill(R.Coefficients);
1021 
1022       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1023                               SmallVector<Value *, 2>());
1024     }
1025   }
1026 }
1027 
1028 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
1029                                    SmallVectorImpl<Instruction *> &ToRemove) {
1030   bool Changed = false;
1031   IRBuilder<> Builder(II->getParent(), II->getIterator());
1032   Value *Sub = nullptr;
1033   for (User *U : make_early_inc_range(II->users())) {
1034     if (match(U, m_ExtractValue<0>(m_Value()))) {
1035       if (!Sub)
1036         Sub = Builder.CreateSub(A, B);
1037       U->replaceAllUsesWith(Sub);
1038       Changed = true;
1039     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
1040       U->replaceAllUsesWith(Builder.getFalse());
1041       Changed = true;
1042     } else
1043       continue;
1044 
1045     if (U->use_empty()) {
1046       auto *I = cast<Instruction>(U);
1047       ToRemove.push_back(I);
1048       I->setOperand(0, PoisonValue::get(II->getType()));
1049       Changed = true;
1050     }
1051   }
1052 
1053   if (II->use_empty()) {
1054     II->eraseFromParent();
1055     Changed = true;
1056   }
1057   return Changed;
1058 }
1059 
1060 static bool
1061 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
1062                           SmallVectorImpl<Instruction *> &ToRemove) {
1063   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1064                               ConstraintInfo &Info) {
1065     auto R = Info.getConstraintForSolving(Pred, A, B);
1066     if (R.size() < 2 || !R.isValid(Info))
1067       return false;
1068 
1069     auto &CSToUse = Info.getCS(R.IsSigned);
1070     return CSToUse.isConditionImplied(R.Coefficients);
1071   };
1072 
1073   bool Changed = false;
1074   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1075     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1076     // can be simplified to a regular sub.
1077     Value *A = II->getArgOperand(0);
1078     Value *B = II->getArgOperand(1);
1079     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1080         !DoesConditionHold(CmpInst::ICMP_SGE, B,
1081                            ConstantInt::get(A->getType(), 0), Info))
1082       return false;
1083     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
1084   }
1085   return Changed;
1086 }
1087 
1088 static bool eliminateConstraints(Function &F, DominatorTree &DT,
1089                                  OptimizationRemarkEmitter &ORE) {
1090   bool Changed = false;
1091   DT.updateDFSNumbers();
1092 
1093   ConstraintInfo Info(F.getParent()->getDataLayout());
1094   State S(DT);
1095   std::unique_ptr<Module> ReproducerModule(
1096       DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1097 
1098   // First, collect conditions implied by branches and blocks with their
1099   // Dominator DFS in and out numbers.
1100   for (BasicBlock &BB : F) {
1101     if (!DT.getNode(&BB))
1102       continue;
1103     S.addInfoFor(BB);
1104   }
1105 
1106   // Next, sort worklist by dominance, so that dominating conditions to check
1107   // and facts come before conditions and facts dominated by them. If a
1108   // condition to check and a fact have the same numbers, conditional facts come
1109   // first. Assume facts and checks are ordered according to their relative
1110   // order in the containing basic block. Also make sure conditions with
1111   // constant operands come before conditions without constant operands. This
1112   // increases the effectiveness of the current signed <-> unsigned fact
1113   // transfer logic.
1114   stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1115     auto HasNoConstOp = [](const FactOrCheck &B) {
1116       return !isa<ConstantInt>(B.Inst->getOperand(0)) &&
1117              !isa<ConstantInt>(B.Inst->getOperand(1));
1118     };
1119     // If both entries have the same In numbers, conditional facts come first.
1120     // Otherwise use the relative order in the basic block.
1121     if (A.NumIn == B.NumIn) {
1122       if (A.isConditionFact() && B.isConditionFact()) {
1123         bool NoConstOpA = HasNoConstOp(A);
1124         bool NoConstOpB = HasNoConstOp(B);
1125         return NoConstOpA < NoConstOpB;
1126       }
1127       if (A.isConditionFact())
1128         return true;
1129       if (B.isConditionFact())
1130         return false;
1131       return A.Inst->comesBefore(B.Inst);
1132     }
1133     return A.NumIn < B.NumIn;
1134   });
1135 
1136   SmallVector<Instruction *> ToRemove;
1137 
1138   // Finally, process ordered worklist and eliminate implied conditions.
1139   SmallVector<StackEntry, 16> DFSInStack;
1140   SmallVector<ReproducerEntry> ReproducerCondStack;
1141   for (FactOrCheck &CB : S.WorkList) {
1142     // First, pop entries from the stack that are out-of-scope for CB. Remove
1143     // the corresponding entry from the constraint system.
1144     while (!DFSInStack.empty()) {
1145       auto &E = DFSInStack.back();
1146       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1147                         << "\n");
1148       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1149       assert(E.NumIn <= CB.NumIn);
1150       if (CB.NumOut <= E.NumOut)
1151         break;
1152       LLVM_DEBUG({
1153         dbgs() << "Removing ";
1154         dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1155                        Info.getValue2Index(E.IsSigned));
1156         dbgs() << "\n";
1157       });
1158 
1159       Info.popLastConstraint(E.IsSigned);
1160       // Remove variables in the system that went out of scope.
1161       auto &Mapping = Info.getValue2Index(E.IsSigned);
1162       for (Value *V : E.ValuesToRelease)
1163         Mapping.erase(V);
1164       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1165       DFSInStack.pop_back();
1166       if (ReproducerModule)
1167         ReproducerCondStack.pop_back();
1168     }
1169 
1170     LLVM_DEBUG({
1171       dbgs() << "Processing ";
1172       if (CB.IsCheck)
1173         dbgs() << "condition to simplify: " << *CB.Inst;
1174       else
1175         dbgs() << "fact to add to the system: " << *CB.Inst;
1176       dbgs() << "\n";
1177     });
1178 
1179     // For a block, check if any CmpInsts become known based on the current set
1180     // of constraints.
1181     if (CB.IsCheck) {
1182       if (auto *II = dyn_cast<WithOverflowInst>(CB.Inst)) {
1183         Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1184       } else if (auto *Cmp = dyn_cast<ICmpInst>(CB.Inst)) {
1185         Changed |= checkAndReplaceCondition(Cmp, Info, ReproducerModule.get(),
1186                                             ReproducerCondStack, S.DT);
1187       }
1188       continue;
1189     }
1190 
1191     ICmpInst::Predicate Pred;
1192     Value *A, *B;
1193     Value *Cmp = CB.Inst;
1194     match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp)));
1195     if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
1196       if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1197         LLVM_DEBUG(
1198             dbgs()
1199             << "Skip adding constraint because system has too many rows.\n");
1200         continue;
1201       }
1202 
1203       // Use the inverse predicate if required.
1204       if (CB.Not)
1205         Pred = CmpInst::getInversePredicate(Pred);
1206 
1207       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1208       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1209         ReproducerCondStack.emplace_back(cast<CmpInst>(Cmp), CB.Not);
1210 
1211       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1212       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
1213         // Add dummy entries to ReproducerCondStack to keep it in sync with
1214         // DFSInStack.
1215         for (unsigned I = 0,
1216                       E = (DFSInStack.size() - ReproducerCondStack.size());
1217              I < E; ++I) {
1218           ReproducerCondStack.emplace_back(nullptr, false);
1219         }
1220       }
1221     }
1222   }
1223 
1224   if (ReproducerModule && !ReproducerModule->functions().empty()) {
1225     std::string S;
1226     raw_string_ostream StringS(S);
1227     ReproducerModule->print(StringS, nullptr);
1228     StringS.flush();
1229     OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
1230     Rem << ore::NV("module") << S;
1231     ORE.emit(Rem);
1232   }
1233 
1234 #ifndef NDEBUG
1235   unsigned SignedEntries =
1236       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1237   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
1238          "updates to CS and DFSInStack are out of sync");
1239   assert(Info.getCS(true).size() == SignedEntries &&
1240          "updates to CS and DFSInStack are out of sync");
1241 #endif
1242 
1243   for (Instruction *I : ToRemove)
1244     I->eraseFromParent();
1245   return Changed;
1246 }
1247 
1248 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1249                                                  FunctionAnalysisManager &AM) {
1250   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1251   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1252   if (!eliminateConstraints(F, DT, ORE))
1253     return PreservedAnalyses::all();
1254 
1255   PreservedAnalyses PA;
1256   PA.preserve<DominatorTreeAnalysis>();
1257   PA.preserveSet<CFGAnalyses>();
1258   return PA;
1259 }
1260