1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/ConstraintSystem.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/InitializePasses.h" 26 #include "llvm/Pass.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/DebugCounter.h" 29 #include "llvm/Transforms/Scalar.h" 30 31 using namespace llvm; 32 using namespace PatternMatch; 33 34 #define DEBUG_TYPE "constraint-elimination" 35 36 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 37 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 38 "Controls which conditions are eliminated"); 39 40 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 41 42 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The 43 // sum of the pairs equals \p V. The first pair is the constant-factor and X 44 // must be nullptr. If the expression cannot be decomposed, returns an empty 45 // vector. 46 static SmallVector<std::pair<int64_t, Value *>, 4> decompose(Value *V) { 47 if (auto *CI = dyn_cast<ConstantInt>(V)) { 48 if (CI->isNegative() || CI->uge(MaxConstraintValue)) 49 return {}; 50 return {{CI->getSExtValue(), nullptr}}; 51 } 52 auto *GEP = dyn_cast<GetElementPtrInst>(V); 53 if (GEP && GEP->getNumOperands() == 2) { 54 if (isa<ConstantInt>(GEP->getOperand(GEP->getNumOperands() - 1))) { 55 return {{cast<ConstantInt>(GEP->getOperand(GEP->getNumOperands() - 1)) 56 ->getSExtValue(), 57 nullptr}, 58 {1, GEP->getPointerOperand()}}; 59 } 60 return {{0, nullptr}, 61 {1, GEP->getPointerOperand()}, 62 {1, GEP->getOperand(GEP->getNumOperands() - 1)}}; 63 } 64 65 Value *Op0; 66 Value *Op1; 67 ConstantInt *CI; 68 if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI)))) 69 return {{CI->getSExtValue(), nullptr}, {1, Op0}}; 70 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) 71 return {{0, nullptr}, {1, Op0}, {1, Op1}}; 72 73 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI)))) 74 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 75 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 76 return {{0, nullptr}, {1, Op0}, {1, Op1}}; 77 78 return {{0, nullptr}, {1, V}}; 79 } 80 81 /// Turn a condition \p CmpI into a constraint vector, using indices from \p 82 /// Value2Index. If \p ShouldAdd is true, new indices are added for values not 83 /// yet in \p Value2Index. 84 static SmallVector<int64_t, 8> 85 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 86 DenseMap<Value *, unsigned> &Value2Index, bool ShouldAdd) { 87 int64_t Offset1 = 0; 88 int64_t Offset2 = 0; 89 90 auto TryToGetIndex = [ShouldAdd, 91 &Value2Index](Value *V) -> Optional<unsigned> { 92 if (ShouldAdd) { 93 Value2Index.insert({V, Value2Index.size() + 1}); 94 return Value2Index[V]; 95 } 96 auto I = Value2Index.find(V); 97 if (I == Value2Index.end()) 98 return None; 99 return I->second; 100 }; 101 102 if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE) 103 return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0, 104 Value2Index, ShouldAdd); 105 106 // Only ULE and ULT predicates are supported at the moment. 107 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT) 108 return {}; 109 110 auto ADec = decompose(Op0); 111 auto BDec = decompose(Op1); 112 // Skip if decomposing either of the values failed. 113 if (ADec.empty() || BDec.empty()) 114 return {}; 115 116 // Skip trivial constraints without any variables. 117 if (ADec.size() == 1 && BDec.size() == 1) 118 return {}; 119 120 Offset1 = ADec[0].first; 121 Offset2 = BDec[0].first; 122 Offset1 *= -1; 123 124 // Create iterator ranges that skip the constant-factor. 125 auto VariablesA = make_range(std::next(ADec.begin()), ADec.end()); 126 auto VariablesB = make_range(std::next(BDec.begin()), BDec.end()); 127 128 // Check if each referenced value in the constraint is already in the system 129 // or can be added (if ShouldAdd is true). 130 for (const auto &KV : 131 concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB)) 132 if (!TryToGetIndex(KV.second)) 133 return {}; 134 135 // Build result constraint, by first adding all coefficients from A and then 136 // subtracting all coefficients from B. 137 SmallVector<int64_t, 8> R(Value2Index.size() + 1, 0); 138 for (const auto &KV : VariablesA) 139 R[Value2Index[KV.second]] += KV.first; 140 141 for (const auto &KV : VariablesB) 142 R[Value2Index[KV.second]] -= KV.first; 143 144 R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0); 145 return R; 146 } 147 148 static SmallVector<int64_t, 8> 149 getConstraint(CmpInst *Cmp, DenseMap<Value *, unsigned> &Value2Index, 150 bool ShouldAdd) { 151 return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0), 152 Cmp->getOperand(1), Value2Index, ShouldAdd); 153 } 154 155 namespace { 156 /// Represents either a condition that holds on entry to a block or a basic 157 /// block, with their respective Dominator DFS in and out numbers. 158 struct ConstraintOrBlock { 159 unsigned NumIn; 160 unsigned NumOut; 161 bool IsBlock; 162 bool Not; 163 union { 164 BasicBlock *BB; 165 CmpInst *Condition; 166 }; 167 168 ConstraintOrBlock(DomTreeNode *DTN) 169 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 170 BB(DTN->getBlock()) {} 171 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 172 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 173 Not(Not), Condition(Condition) {} 174 }; 175 176 struct StackEntry { 177 unsigned NumIn; 178 unsigned NumOut; 179 CmpInst *Condition; 180 bool IsNot; 181 182 StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot) 183 : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {} 184 }; 185 } // namespace 186 187 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 188 bool Changed = false; 189 DT.updateDFSNumbers(); 190 ConstraintSystem CS; 191 192 SmallVector<ConstraintOrBlock, 64> WorkList; 193 194 // First, collect conditions implied by branches and blocks with their 195 // Dominator DFS in and out numbers. 196 for (BasicBlock &BB : F) { 197 if (!DT.getNode(&BB)) 198 continue; 199 WorkList.emplace_back(DT.getNode(&BB)); 200 201 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 202 if (!Br || !Br->isConditional()) 203 continue; 204 205 // If the condition is an OR of 2 compares and the false successor only has 206 // the current block as predecessor, queue both negated conditions for the 207 // false successor. 208 if (match(Br->getCondition(), m_Or(m_Cmp(), m_Cmp()))) { 209 BasicBlock *FalseSuccessor = Br->getSuccessor(1); 210 if (FalseSuccessor->getSinglePredecessor()) { 211 auto *OrI = cast<Instruction>(Br->getCondition()); 212 WorkList.emplace_back(DT.getNode(FalseSuccessor), 213 cast<CmpInst>(OrI->getOperand(0)), true); 214 WorkList.emplace_back(DT.getNode(FalseSuccessor), 215 cast<CmpInst>(OrI->getOperand(1)), true); 216 } 217 continue; 218 } 219 220 // If the condition is an AND of 2 compares and the true successor only has 221 // the current block as predecessor, queue both conditions for the true 222 // successor. 223 if (match(Br->getCondition(), m_And(m_Cmp(), m_Cmp()))) { 224 BasicBlock *TrueSuccessor = Br->getSuccessor(0); 225 if (TrueSuccessor->getSinglePredecessor()) { 226 auto *AndI = cast<Instruction>(Br->getCondition()); 227 WorkList.emplace_back(DT.getNode(TrueSuccessor), 228 cast<CmpInst>(AndI->getOperand(0)), false); 229 WorkList.emplace_back(DT.getNode(TrueSuccessor), 230 cast<CmpInst>(AndI->getOperand(1)), false); 231 } 232 continue; 233 } 234 235 auto *CmpI = dyn_cast<CmpInst>(Br->getCondition()); 236 if (!CmpI) 237 continue; 238 if (Br->getSuccessor(0)->getSinglePredecessor()) 239 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 240 if (Br->getSuccessor(1)->getSinglePredecessor()) 241 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 242 } 243 244 // Next, sort worklist by dominance, so that dominating blocks and conditions 245 // come before blocks and conditions dominated by them. If a block and a 246 // condition have the same numbers, the condition comes before the block, as 247 // it holds on entry to the block. 248 sort(WorkList.begin(), WorkList.end(), 249 [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 250 return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); 251 }); 252 253 // Finally, process ordered worklist and eliminate implied conditions. 254 SmallVector<StackEntry, 16> DFSInStack; 255 DenseMap<Value *, unsigned> Value2Index; 256 for (ConstraintOrBlock &CB : WorkList) { 257 // First, pop entries from the stack that are out-of-scope for CB. Remove 258 // the corresponding entry from the constraint system. 259 while (!DFSInStack.empty()) { 260 auto &E = DFSInStack.back(); 261 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 262 << "\n"); 263 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 264 assert(E.NumIn <= CB.NumIn); 265 if (CB.NumOut <= E.NumOut) 266 break; 267 LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot 268 << "\n"); 269 DFSInStack.pop_back(); 270 CS.popLastConstraint(); 271 } 272 273 LLVM_DEBUG({ 274 dbgs() << "Processing "; 275 if (CB.IsBlock) 276 dbgs() << *CB.BB; 277 else 278 dbgs() << *CB.Condition; 279 dbgs() << "\n"; 280 }); 281 282 // For a block, check if any CmpInsts become known based on the current set 283 // of constraints. 284 if (CB.IsBlock) { 285 for (Instruction &I : *CB.BB) { 286 auto *Cmp = dyn_cast<CmpInst>(&I); 287 if (!Cmp) 288 continue; 289 auto R = getConstraint(Cmp, Value2Index, false); 290 if (R.empty() || R.size() == 1) 291 continue; 292 if (CS.isConditionImplied(R)) { 293 if (!DebugCounter::shouldExecute(EliminatedCounter)) 294 continue; 295 296 LLVM_DEBUG(dbgs() << "Condition " << *Cmp 297 << " implied by dominating constraints\n"); 298 LLVM_DEBUG({ 299 for (auto &E : reverse(DFSInStack)) 300 dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; 301 }); 302 Cmp->replaceAllUsesWith( 303 ConstantInt::getTrue(F.getParent()->getContext())); 304 NumCondsRemoved++; 305 Changed = true; 306 } 307 if (CS.isConditionImplied(ConstraintSystem::negate(R))) { 308 if (!DebugCounter::shouldExecute(EliminatedCounter)) 309 continue; 310 311 LLVM_DEBUG(dbgs() << "Condition !" << *Cmp 312 << " implied by dominating constraints\n"); 313 LLVM_DEBUG({ 314 for (auto &E : reverse(DFSInStack)) 315 dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; 316 }); 317 Cmp->replaceAllUsesWith( 318 ConstantInt::getFalse(F.getParent()->getContext())); 319 NumCondsRemoved++; 320 Changed = true; 321 } 322 } 323 continue; 324 } 325 326 // Otherwise, add the condition to the system and stack, if we can transform 327 // it into a constraint. 328 auto R = getConstraint(CB.Condition, Value2Index, true); 329 if (R.empty()) 330 continue; 331 332 LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n"); 333 if (CB.Not) 334 R = ConstraintSystem::negate(R); 335 336 CS.addVariableRowFill(R); 337 DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not); 338 } 339 340 return Changed; 341 } 342 343 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 344 FunctionAnalysisManager &AM) { 345 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 346 if (!eliminateConstraints(F, DT)) 347 return PreservedAnalyses::all(); 348 349 PreservedAnalyses PA; 350 PA.preserve<DominatorTreeAnalysis>(); 351 PA.preserve<GlobalsAA>(); 352 PA.preserveSet<CFGAnalyses>(); 353 return PA; 354 } 355 356 namespace { 357 358 class ConstraintElimination : public FunctionPass { 359 public: 360 static char ID; 361 362 ConstraintElimination() : FunctionPass(ID) { 363 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 364 } 365 366 bool runOnFunction(Function &F) override { 367 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 368 return eliminateConstraints(F, DT); 369 } 370 371 void getAnalysisUsage(AnalysisUsage &AU) const override { 372 AU.setPreservesCFG(); 373 AU.addRequired<DominatorTreeWrapperPass>(); 374 AU.addPreserved<GlobalsAAWrapperPass>(); 375 AU.addPreserved<DominatorTreeWrapperPass>(); 376 } 377 }; 378 379 } // end anonymous namespace 380 381 char ConstraintElimination::ID = 0; 382 383 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 384 "Constraint Elimination", false, false) 385 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 386 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 387 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 388 "Constraint Elimination", false, false) 389 390 FunctionPass *llvm::createConstraintEliminationPass() { 391 return new ConstraintElimination(); 392 } 393