1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DebugCounter.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Scalar.h" 33 34 #include <string> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "constraint-elimination" 40 41 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 42 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 43 "Controls which conditions are eliminated"); 44 45 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 46 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 47 48 namespace { 49 50 class ConstraintInfo; 51 52 struct StackEntry { 53 unsigned NumIn; 54 unsigned NumOut; 55 bool IsNot; 56 bool IsSigned = false; 57 /// Variables that can be removed from the system once the stack entry gets 58 /// removed. 59 SmallVector<Value *, 2> ValuesToRelease; 60 61 StackEntry(unsigned NumIn, unsigned NumOut, bool IsNot, bool IsSigned, 62 SmallVector<Value *, 2> ValuesToRelease) 63 : NumIn(NumIn), NumOut(NumOut), IsNot(IsNot), IsSigned(IsSigned), 64 ValuesToRelease(ValuesToRelease) {} 65 }; 66 67 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 68 struct PreconditionTy { 69 CmpInst::Predicate Pred; 70 Value *Op0; 71 Value *Op1; 72 73 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 74 : Pred(Pred), Op0(Op0), Op1(Op1) {} 75 }; 76 77 struct ConstraintTy { 78 SmallVector<int64_t, 8> Coefficients; 79 SmallVector<PreconditionTy, 2> Preconditions; 80 81 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 82 83 bool IsSigned = false; 84 bool IsEq = false; 85 86 ConstraintTy() = default; 87 88 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 89 : Coefficients(Coefficients), IsSigned(IsSigned) {} 90 91 unsigned size() const { return Coefficients.size(); } 92 93 unsigned empty() const { return Coefficients.empty(); } 94 95 /// Returns true if all preconditions for this list of constraints are 96 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 97 bool isValid(const ConstraintInfo &Info) const; 98 }; 99 100 /// Wrapper encapsulating separate constraint systems and corresponding value 101 /// mappings for both unsigned and signed information. Facts are added to and 102 /// conditions are checked against the corresponding system depending on the 103 /// signed-ness of their predicates. While the information is kept separate 104 /// based on signed-ness, certain conditions can be transferred between the two 105 /// systems. 106 class ConstraintInfo { 107 DenseMap<Value *, unsigned> UnsignedValue2Index; 108 DenseMap<Value *, unsigned> SignedValue2Index; 109 110 ConstraintSystem UnsignedCS; 111 ConstraintSystem SignedCS; 112 113 public: 114 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 115 return Signed ? SignedValue2Index : UnsignedValue2Index; 116 } 117 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 118 return Signed ? SignedValue2Index : UnsignedValue2Index; 119 } 120 121 ConstraintSystem &getCS(bool Signed) { 122 return Signed ? SignedCS : UnsignedCS; 123 } 124 const ConstraintSystem &getCS(bool Signed) const { 125 return Signed ? SignedCS : UnsignedCS; 126 } 127 128 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 129 void popLastNVariables(bool Signed, unsigned N) { 130 getCS(Signed).popLastNVariables(N); 131 } 132 133 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 134 135 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, 136 unsigned NumIn, unsigned NumOut, 137 SmallVectorImpl<StackEntry> &DFSInStack); 138 139 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 140 /// constraints, using indices from the corresponding constraint system. 141 /// Additional indices for newly discovered values are added to \p NewIndices. 142 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 143 DenseMap<Value *, unsigned> &NewIndices) const; 144 145 /// Turn a condition \p CmpI into a vector of constraints, using indices from 146 /// the corresponding constraint system. Additional indices for newly 147 /// discovered values are added to \p NewIndices. 148 ConstraintTy getConstraint(CmpInst *Cmp, 149 DenseMap<Value *, unsigned> &NewIndices) const { 150 return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0), 151 Cmp->getOperand(1), NewIndices); 152 } 153 154 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 155 /// system if \p Pred is signed/unsigned. 156 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 157 bool IsNegated, unsigned NumIn, unsigned NumOut, 158 SmallVectorImpl<StackEntry> &DFSInStack); 159 }; 160 161 /// Represents a (Coefficient * Variable) entry after IR decomposition. 162 struct DecompEntry { 163 int64_t Coefficient; 164 Value *Variable; 165 /// True if the variable is known positive in the current constraint. 166 bool IsKnownPositive; 167 168 DecompEntry(int64_t Coefficient, Value *Variable, 169 bool IsKnownPositive = false) 170 : Coefficient(Coefficient), Variable(Variable), 171 IsKnownPositive(IsKnownPositive) {} 172 }; 173 174 } // namespace 175 176 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable 177 // } where Coefficient * Variable. The sum of the pairs equals \p V. The first 178 // pair is the constant-factor and X must be nullptr. If the expression cannot 179 // be decomposed, returns an empty vector. 180 static SmallVector<DecompEntry, 4> 181 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 182 bool IsSigned) { 183 184 auto CanUseSExt = [](ConstantInt *CI) { 185 const APInt &Val = CI->getValue(); 186 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 187 }; 188 // Decompose \p V used with a signed predicate. 189 if (IsSigned) { 190 if (auto *CI = dyn_cast<ConstantInt>(V)) { 191 if (CanUseSExt(CI)) 192 return {{CI->getSExtValue(), nullptr}}; 193 } 194 195 return {{0, nullptr}, {1, V}}; 196 } 197 198 if (auto *CI = dyn_cast<ConstantInt>(V)) { 199 if (CI->uge(MaxConstraintValue)) 200 return {}; 201 return {{int64_t(CI->getZExtValue()), nullptr}}; 202 } 203 auto *GEP = dyn_cast<GetElementPtrInst>(V); 204 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 205 Value *Op0, *Op1; 206 ConstantInt *CI; 207 208 // If the index is zero-extended, it is guaranteed to be positive. 209 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 210 m_ZExt(m_Value(Op0)))) { 211 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && 212 CanUseSExt(CI)) 213 return {{0, nullptr}, 214 {1, GEP->getPointerOperand()}, 215 {int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op1}}; 216 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) && 217 CanUseSExt(CI)) 218 return {{CI->getSExtValue(), nullptr}, 219 {1, GEP->getPointerOperand()}, 220 {1, Op1}}; 221 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0, true}}; 222 } 223 224 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 225 !CI->isNegative() && CanUseSExt(CI)) 226 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 227 228 SmallVector<DecompEntry, 4> Result; 229 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 230 m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) && 231 CanUseSExt(CI)) 232 Result = {{0, nullptr}, 233 {1, GEP->getPointerOperand()}, 234 {int(std::pow(int64_t(2), CI->getSExtValue())), Op0}}; 235 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 236 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) && 237 CanUseSExt(CI)) 238 Result = {{CI->getSExtValue(), nullptr}, 239 {1, GEP->getPointerOperand()}, 240 {1, Op0}}; 241 else { 242 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 243 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 244 } 245 // If Op0 is signed non-negative, the GEP is increasing monotonically and 246 // can be de-composed. 247 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 248 ConstantInt::get(Op0->getType(), 0)); 249 return Result; 250 } 251 252 Value *Op0; 253 bool IsKnownPositive = false; 254 if (match(V, m_ZExt(m_Value(Op0)))) { 255 IsKnownPositive = true; 256 V = Op0; 257 } 258 259 Value *Op1; 260 ConstantInt *CI; 261 if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) && 262 !CI->uge(MaxConstraintValue)) { 263 auto Res = decompose(Op0, Preconditions, IsSigned); 264 Res[0].Coefficient += int(CI->getZExtValue()); 265 return Res; 266 } 267 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 268 CanUseSExt(CI)) { 269 Preconditions.emplace_back( 270 CmpInst::ICMP_UGE, Op0, 271 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 272 auto Res = decompose(Op0, Preconditions, IsSigned); 273 Res[0].Coefficient += int(CI->getSExtValue()); 274 return Res; 275 } 276 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 277 auto Res = decompose(Op0, Preconditions, IsSigned); 278 auto D1 = decompose(Op1, Preconditions, IsSigned); 279 Res[0].Coefficient += D1[0].Coefficient; 280 append_range(Res, drop_begin(D1)); 281 return Res; 282 } 283 284 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI)) 285 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 286 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 287 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 288 289 return {{0, nullptr}, {1, V, IsKnownPositive}}; 290 } 291 292 ConstraintTy 293 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 294 DenseMap<Value *, unsigned> &NewIndices) const { 295 bool IsEq = false; 296 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 297 switch (Pred) { 298 case CmpInst::ICMP_UGT: 299 case CmpInst::ICMP_UGE: 300 case CmpInst::ICMP_SGT: 301 case CmpInst::ICMP_SGE: { 302 Pred = CmpInst::getSwappedPredicate(Pred); 303 std::swap(Op0, Op1); 304 break; 305 } 306 case CmpInst::ICMP_EQ: 307 if (match(Op1, m_Zero())) { 308 Pred = CmpInst::ICMP_ULE; 309 } else { 310 IsEq = true; 311 Pred = CmpInst::ICMP_ULE; 312 } 313 break; 314 case CmpInst::ICMP_NE: 315 if (!match(Op1, m_Zero())) 316 return {}; 317 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 318 std::swap(Op0, Op1); 319 break; 320 default: 321 break; 322 } 323 324 // Only ULE and ULT predicates are supported at the moment. 325 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 326 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 327 return {}; 328 329 SmallVector<PreconditionTy, 4> Preconditions; 330 bool IsSigned = CmpInst::isSigned(Pred); 331 auto &Value2Index = getValue2Index(IsSigned); 332 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 333 Preconditions, IsSigned); 334 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 335 Preconditions, IsSigned); 336 // Skip if decomposing either of the values failed. 337 if (ADec.empty() || BDec.empty()) 338 return {}; 339 340 int64_t Offset1 = ADec[0].Coefficient; 341 int64_t Offset2 = BDec[0].Coefficient; 342 Offset1 *= -1; 343 344 // Create iterator ranges that skip the constant-factor. 345 auto VariablesA = llvm::drop_begin(ADec); 346 auto VariablesB = llvm::drop_begin(BDec); 347 348 // First try to look up \p V in Value2Index and NewIndices. Otherwise add a 349 // new entry to NewIndices. 350 auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned { 351 auto V2I = Value2Index.find(V); 352 if (V2I != Value2Index.end()) 353 return V2I->second; 354 auto Insert = 355 NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1}); 356 return Insert.first->second; 357 }; 358 359 // Make sure all variables have entries in Value2Index or NewIndices. 360 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 361 GetOrAddIndex(KV.Variable); 362 363 // Build result constraint, by first adding all coefficients from A and then 364 // subtracting all coefficients from B. 365 ConstraintTy Res( 366 SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0), 367 IsSigned); 368 // Collect variables that are known to be positive in all uses in the 369 // constraint. 370 DenseMap<Value *, bool> KnownPositiveVariables; 371 Res.IsEq = IsEq; 372 auto &R = Res.Coefficients; 373 for (const auto &KV : VariablesA) { 374 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 375 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 376 I.first->second &= KV.IsKnownPositive; 377 } 378 379 for (const auto &KV : VariablesB) { 380 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 381 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 382 I.first->second &= KV.IsKnownPositive; 383 } 384 385 int64_t OffsetSum; 386 if (AddOverflow(Offset1, Offset2, OffsetSum)) 387 return {}; 388 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 389 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 390 return {}; 391 R[0] = OffsetSum; 392 Res.Preconditions = std::move(Preconditions); 393 394 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for the 395 // new variables that need to be added to the system. Set NewIndexNeeded to 396 // true if any of the new variables has a non-zero coefficient. 397 bool NewIndexNeeded = false; 398 for (unsigned I = 0; I < NewIndices.size(); ++I) { 399 int64_t Last = R.back(); 400 if (Last != 0) { 401 NewIndexNeeded = true; 402 break; 403 } 404 R.pop_back(); 405 } 406 // All new variables had Coefficients of 0, so no new variables are needed. 407 if (!NewIndexNeeded) 408 NewIndices.clear(); 409 410 // Add extra constraints for variables that are known positive. 411 for (auto &KV : KnownPositiveVariables) { 412 if (!KV.second) 413 continue; 414 SmallVector<int64_t, 8> C(Value2Index.size() + NewIndices.size() + 1, 0); 415 C[GetOrAddIndex(KV.first)] = -1; 416 Res.ExtraInfo.push_back(C); 417 } 418 return Res; 419 } 420 421 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 422 return Coefficients.size() > 0 && 423 all_of(Preconditions, [&Info](const PreconditionTy &C) { 424 return Info.doesHold(C.Pred, C.Op0, C.Op1); 425 }); 426 } 427 428 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 429 Value *B) const { 430 DenseMap<Value *, unsigned> NewIndices; 431 auto R = getConstraint(Pred, A, B, NewIndices); 432 433 if (!NewIndices.empty()) 434 return false; 435 436 // TODO: properly check NewIndices. 437 return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq && 438 !R.empty() && 439 getCS(CmpInst::isSigned(Pred)).isConditionImplied(R.Coefficients); 440 } 441 442 void ConstraintInfo::transferToOtherSystem( 443 CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn, 444 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 445 // Check if we can combine facts from the signed and unsigned systems to 446 // derive additional facts. 447 if (!A->getType()->isIntegerTy()) 448 return; 449 // FIXME: This currently depends on the order we add facts. Ideally we 450 // would first add all known facts and only then try to add additional 451 // facts. 452 switch (Pred) { 453 default: 454 break; 455 case CmpInst::ICMP_ULT: 456 // If B is a signed positive constant, A >=s 0 and A <s B. 457 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 458 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), 459 IsNegated, NumIn, NumOut, DFSInStack); 460 addFact(CmpInst::ICMP_SLT, A, B, IsNegated, NumIn, NumOut, DFSInStack); 461 } 462 break; 463 case CmpInst::ICMP_SLT: 464 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 465 addFact(CmpInst::ICMP_ULT, A, B, IsNegated, NumIn, NumOut, DFSInStack); 466 break; 467 case CmpInst::ICMP_SGT: 468 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 469 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), 470 IsNegated, NumIn, NumOut, DFSInStack); 471 break; 472 case CmpInst::ICMP_SGE: 473 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 474 addFact(CmpInst::ICMP_UGE, A, B, IsNegated, NumIn, NumOut, DFSInStack); 475 } 476 break; 477 } 478 } 479 480 namespace { 481 /// Represents either a condition that holds on entry to a block or a basic 482 /// block, with their respective Dominator DFS in and out numbers. 483 struct ConstraintOrBlock { 484 unsigned NumIn; 485 unsigned NumOut; 486 bool IsBlock; 487 bool Not; 488 union { 489 BasicBlock *BB; 490 CmpInst *Condition; 491 }; 492 493 ConstraintOrBlock(DomTreeNode *DTN) 494 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 495 BB(DTN->getBlock()) {} 496 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 497 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 498 Not(Not), Condition(Condition) {} 499 }; 500 501 /// Keep state required to build worklist. 502 struct State { 503 DominatorTree &DT; 504 SmallVector<ConstraintOrBlock, 64> WorkList; 505 506 State(DominatorTree &DT) : DT(DT) {} 507 508 /// Process block \p BB and add known facts to work-list. 509 void addInfoFor(BasicBlock &BB); 510 511 /// Returns true if we can add a known condition from BB to its successor 512 /// block Succ. Each predecessor of Succ can either be BB or be dominated 513 /// by Succ (e.g. the case when adding a condition from a pre-header to a 514 /// loop header). 515 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 516 if (BB.getSingleSuccessor()) { 517 assert(BB.getSingleSuccessor() == Succ); 518 return DT.properlyDominates(&BB, Succ); 519 } 520 return any_of(successors(&BB), 521 [Succ](const BasicBlock *S) { return S != Succ; }) && 522 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 523 return Pred == &BB || DT.dominates(Succ, Pred); 524 }); 525 } 526 }; 527 528 } // namespace 529 530 #ifndef NDEBUG 531 static void dumpWithNames(const ConstraintSystem &CS, 532 DenseMap<Value *, unsigned> &Value2Index) { 533 SmallVector<std::string> Names(Value2Index.size(), ""); 534 for (auto &KV : Value2Index) { 535 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 536 } 537 CS.dump(Names); 538 } 539 540 static void dumpWithNames(ArrayRef<int64_t> C, 541 DenseMap<Value *, unsigned> &Value2Index) { 542 ConstraintSystem CS; 543 CS.addVariableRowFill(C); 544 dumpWithNames(CS, Value2Index); 545 } 546 #endif 547 548 void State::addInfoFor(BasicBlock &BB) { 549 WorkList.emplace_back(DT.getNode(&BB)); 550 551 // True as long as long as the current instruction is guaranteed to execute. 552 bool GuaranteedToExecute = true; 553 // Scan BB for assume calls. 554 // TODO: also use this scan to queue conditions to simplify, so we can 555 // interleave facts from assumes and conditions to simplify in a single 556 // basic block. And to skip another traversal of each basic block when 557 // simplifying. 558 for (Instruction &I : BB) { 559 Value *Cond; 560 // For now, just handle assumes with a single compare as condition. 561 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 562 isa<ICmpInst>(Cond)) { 563 if (GuaranteedToExecute) { 564 // The assume is guaranteed to execute when BB is entered, hence Cond 565 // holds on entry to BB. 566 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 567 } else { 568 // Otherwise the condition only holds in the successors. 569 for (BasicBlock *Succ : successors(&BB)) { 570 if (!canAddSuccessor(BB, Succ)) 571 continue; 572 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false); 573 } 574 } 575 } 576 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 577 } 578 579 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 580 if (!Br || !Br->isConditional()) 581 return; 582 583 // If the condition is an OR of 2 compares and the false successor only has 584 // the current block as predecessor, queue both negated conditions for the 585 // false successor. 586 Value *Op0, *Op1; 587 if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && 588 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 589 BasicBlock *FalseSuccessor = Br->getSuccessor(1); 590 if (canAddSuccessor(BB, FalseSuccessor)) { 591 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0), 592 true); 593 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1), 594 true); 595 } 596 return; 597 } 598 599 // If the condition is an AND of 2 compares and the true successor only has 600 // the current block as predecessor, queue both conditions for the true 601 // successor. 602 if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && 603 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 604 BasicBlock *TrueSuccessor = Br->getSuccessor(0); 605 if (canAddSuccessor(BB, TrueSuccessor)) { 606 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0), 607 false); 608 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1), 609 false); 610 } 611 return; 612 } 613 614 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 615 if (!CmpI) 616 return; 617 if (canAddSuccessor(BB, Br->getSuccessor(0))) 618 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 619 if (canAddSuccessor(BB, Br->getSuccessor(1))) 620 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 621 } 622 623 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 624 bool IsNegated, unsigned NumIn, unsigned NumOut, 625 SmallVectorImpl<StackEntry> &DFSInStack) { 626 // If the constraint has a pre-condition, skip the constraint if it does not 627 // hold. 628 DenseMap<Value *, unsigned> NewIndices; 629 auto R = getConstraint(Pred, A, B, NewIndices); 630 if (!R.isValid(*this)) 631 return; 632 633 //LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n"); 634 bool Added = false; 635 assert(CmpInst::isSigned(Pred) == R.IsSigned && 636 "condition and constraint signs must match"); 637 auto &CSToUse = getCS(R.IsSigned); 638 if (R.Coefficients.empty()) 639 return; 640 641 Added |= CSToUse.addVariableRowFill(R.Coefficients); 642 643 // If R has been added to the system, queue it for removal once it goes 644 // out-of-scope. 645 if (Added) { 646 SmallVector<Value *, 2> ValuesToRelease; 647 for (auto &KV : NewIndices) { 648 getValue2Index(R.IsSigned).insert(KV); 649 ValuesToRelease.push_back(KV.first); 650 } 651 652 LLVM_DEBUG({ 653 dbgs() << " constraint: "; 654 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 655 }); 656 657 DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned, 658 ValuesToRelease); 659 660 if (R.IsEq) { 661 // Also add the inverted constraint for equality constraints. 662 for (auto &Coeff : R.Coefficients) 663 Coeff *= -1; 664 CSToUse.addVariableRowFill(R.Coefficients); 665 666 DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned, 667 SmallVector<Value *, 2>()); 668 } 669 } 670 } 671 672 static void 673 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 674 SmallVectorImpl<Instruction *> &ToRemove) { 675 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 676 ConstraintInfo &Info) { 677 DenseMap<Value *, unsigned> NewIndices; 678 auto R = Info.getConstraint(Pred, A, B, NewIndices); 679 if (R.size() < 2 || !NewIndices.empty() || !R.isValid(Info)) 680 return false; 681 682 auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred)); 683 return CSToUse.isConditionImplied(R.Coefficients); 684 }; 685 686 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 687 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 688 // can be simplified to a regular sub. 689 Value *A = II->getArgOperand(0); 690 Value *B = II->getArgOperand(1); 691 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 692 !DoesConditionHold(CmpInst::ICMP_SGE, B, 693 ConstantInt::get(A->getType(), 0), Info)) 694 return; 695 696 IRBuilder<> Builder(II->getParent(), II->getIterator()); 697 Value *Sub = nullptr; 698 for (User *U : make_early_inc_range(II->users())) { 699 if (match(U, m_ExtractValue<0>(m_Value()))) { 700 if (!Sub) 701 Sub = Builder.CreateSub(A, B); 702 U->replaceAllUsesWith(Sub); 703 } else if (match(U, m_ExtractValue<1>(m_Value()))) 704 U->replaceAllUsesWith(Builder.getFalse()); 705 else 706 continue; 707 708 if (U->use_empty()) { 709 auto *I = cast<Instruction>(U); 710 ToRemove.push_back(I); 711 I->setOperand(0, PoisonValue::get(II->getType())); 712 } 713 } 714 715 if (II->use_empty()) 716 II->eraseFromParent(); 717 } 718 } 719 720 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 721 bool Changed = false; 722 DT.updateDFSNumbers(); 723 724 ConstraintInfo Info; 725 State S(DT); 726 727 // First, collect conditions implied by branches and blocks with their 728 // Dominator DFS in and out numbers. 729 for (BasicBlock &BB : F) { 730 if (!DT.getNode(&BB)) 731 continue; 732 S.addInfoFor(BB); 733 } 734 735 // Next, sort worklist by dominance, so that dominating blocks and conditions 736 // come before blocks and conditions dominated by them. If a block and a 737 // condition have the same numbers, the condition comes before the block, as 738 // it holds on entry to the block. 739 stable_sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 740 return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); 741 }); 742 743 SmallVector<Instruction *> ToRemove; 744 745 // Finally, process ordered worklist and eliminate implied conditions. 746 SmallVector<StackEntry, 16> DFSInStack; 747 for (ConstraintOrBlock &CB : S.WorkList) { 748 // First, pop entries from the stack that are out-of-scope for CB. Remove 749 // the corresponding entry from the constraint system. 750 while (!DFSInStack.empty()) { 751 auto &E = DFSInStack.back(); 752 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 753 << "\n"); 754 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 755 assert(E.NumIn <= CB.NumIn); 756 if (CB.NumOut <= E.NumOut) 757 break; 758 LLVM_DEBUG({ 759 dbgs() << "Removing "; 760 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 761 Info.getValue2Index(E.IsSigned)); 762 dbgs() << "\n"; 763 }); 764 765 Info.popLastConstraint(E.IsSigned); 766 // Remove variables in the system that went out of scope. 767 auto &Mapping = Info.getValue2Index(E.IsSigned); 768 for (Value *V : E.ValuesToRelease) 769 Mapping.erase(V); 770 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 771 DFSInStack.pop_back(); 772 } 773 774 LLVM_DEBUG({ 775 dbgs() << "Processing "; 776 if (CB.IsBlock) 777 dbgs() << *CB.BB; 778 else 779 dbgs() << *CB.Condition; 780 dbgs() << "\n"; 781 }); 782 783 // For a block, check if any CmpInsts become known based on the current set 784 // of constraints. 785 if (CB.IsBlock) { 786 for (Instruction &I : make_early_inc_range(*CB.BB)) { 787 if (auto *II = dyn_cast<WithOverflowInst>(&I)) { 788 tryToSimplifyOverflowMath(II, Info, ToRemove); 789 continue; 790 } 791 auto *Cmp = dyn_cast<ICmpInst>(&I); 792 if (!Cmp) 793 continue; 794 795 DenseMap<Value *, unsigned> NewIndices; 796 auto R = Info.getConstraint(Cmp, NewIndices); 797 if (R.IsEq || R.empty() || !NewIndices.empty() || !R.isValid(Info)) 798 continue; 799 800 auto &CSToUse = Info.getCS(R.IsSigned); 801 802 // If there was extra information collected during decomposition, apply 803 // it now and remove it immediately once we are done with reasoning 804 // about the constraint. 805 for (auto &Row : R.ExtraInfo) 806 CSToUse.addVariableRow(Row); 807 auto InfoRestorer = make_scope_exit([&]() { 808 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 809 CSToUse.popLastConstraint(); 810 }); 811 812 if (CSToUse.isConditionImplied(R.Coefficients)) { 813 if (!DebugCounter::shouldExecute(EliminatedCounter)) 814 continue; 815 816 LLVM_DEBUG({ 817 dbgs() << "Condition " << *Cmp 818 << " implied by dominating constraints\n"; 819 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 820 }); 821 Cmp->replaceUsesWithIf( 822 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 823 // Conditions in an assume trivially simplify to true. Skip uses 824 // in assume calls to not destroy the available information. 825 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 826 return !II || II->getIntrinsicID() != Intrinsic::assume; 827 }); 828 NumCondsRemoved++; 829 Changed = true; 830 } 831 if (CSToUse.isConditionImplied( 832 ConstraintSystem::negate(R.Coefficients))) { 833 if (!DebugCounter::shouldExecute(EliminatedCounter)) 834 continue; 835 836 LLVM_DEBUG({ 837 dbgs() << "Condition !" << *Cmp 838 << " implied by dominating constraints\n"; 839 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 840 }); 841 Cmp->replaceAllUsesWith( 842 ConstantInt::getFalse(F.getParent()->getContext())); 843 NumCondsRemoved++; 844 Changed = true; 845 } 846 } 847 continue; 848 } 849 850 // Set up a function to restore the predicate at the end of the scope if it 851 // has been negated. Negate the predicate in-place, if required. 852 auto *CI = dyn_cast<ICmpInst>(CB.Condition); 853 auto PredicateRestorer = make_scope_exit([CI, &CB]() { 854 if (CB.Not && CI) 855 CI->setPredicate(CI->getInversePredicate()); 856 }); 857 if (CB.Not) { 858 if (CI) { 859 CI->setPredicate(CI->getInversePredicate()); 860 } else { 861 LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n"); 862 continue; 863 } 864 } 865 866 ICmpInst::Predicate Pred; 867 Value *A, *B; 868 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 869 // Otherwise, add the condition to the system and stack, if we can 870 // transform it into a constraint. 871 Info.addFact(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, DFSInStack); 872 Info.transferToOtherSystem(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, 873 DFSInStack); 874 } 875 } 876 877 #ifndef NDEBUG 878 unsigned SignedEntries = 879 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 880 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 881 "updates to CS and DFSInStack are out of sync"); 882 assert(Info.getCS(true).size() == SignedEntries && 883 "updates to CS and DFSInStack are out of sync"); 884 #endif 885 886 for (Instruction *I : ToRemove) 887 I->eraseFromParent(); 888 return Changed; 889 } 890 891 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 892 FunctionAnalysisManager &AM) { 893 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 894 if (!eliminateConstraints(F, DT)) 895 return PreservedAnalyses::all(); 896 897 PreservedAnalyses PA; 898 PA.preserve<DominatorTreeAnalysis>(); 899 PA.preserveSet<CFGAnalyses>(); 900 return PA; 901 } 902 903 namespace { 904 905 class ConstraintElimination : public FunctionPass { 906 public: 907 static char ID; 908 909 ConstraintElimination() : FunctionPass(ID) { 910 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 911 } 912 913 bool runOnFunction(Function &F) override { 914 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 915 return eliminateConstraints(F, DT); 916 } 917 918 void getAnalysisUsage(AnalysisUsage &AU) const override { 919 AU.setPreservesCFG(); 920 AU.addRequired<DominatorTreeWrapperPass>(); 921 AU.addPreserved<GlobalsAAWrapperPass>(); 922 AU.addPreserved<DominatorTreeWrapperPass>(); 923 } 924 }; 925 926 } // end anonymous namespace 927 928 char ConstraintElimination::ID = 0; 929 930 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 931 "Constraint Elimination", false, false) 932 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 933 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 934 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 935 "Constraint Elimination", false, false) 936 937 FunctionPass *llvm::createConstraintEliminationPass() { 938 return new ConstraintElimination(); 939 } 940