xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 7f3ff9d3c0ba6a1ac2beb80adfe6d76e10f29da7)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/DebugCounter.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Scalar.h"
33 
34 #include <string>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "constraint-elimination"
40 
41 STATISTIC(NumCondsRemoved, "Number of instructions removed");
42 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
43               "Controls which conditions are eliminated");
44 
45 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
46 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
47 
48 namespace {
49 
50 class ConstraintInfo;
51 
52 struct StackEntry {
53   unsigned NumIn;
54   unsigned NumOut;
55   bool IsNot;
56   bool IsSigned = false;
57   /// Variables that can be removed from the system once the stack entry gets
58   /// removed.
59   SmallVector<Value *, 2> ValuesToRelease;
60 
61   StackEntry(unsigned NumIn, unsigned NumOut, bool IsNot, bool IsSigned,
62              SmallVector<Value *, 2> ValuesToRelease)
63       : NumIn(NumIn), NumOut(NumOut), IsNot(IsNot), IsSigned(IsSigned),
64         ValuesToRelease(ValuesToRelease) {}
65 };
66 
67 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
68 struct PreconditionTy {
69   CmpInst::Predicate Pred;
70   Value *Op0;
71   Value *Op1;
72 
73   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
74       : Pred(Pred), Op0(Op0), Op1(Op1) {}
75 };
76 
77 struct ConstraintTy {
78   SmallVector<int64_t, 8> Coefficients;
79   SmallVector<PreconditionTy, 2> Preconditions;
80 
81   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
82 
83   bool IsSigned = false;
84   bool IsEq = false;
85 
86   ConstraintTy() = default;
87 
88   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
89       : Coefficients(Coefficients), IsSigned(IsSigned) {}
90 
91   unsigned size() const { return Coefficients.size(); }
92 
93   unsigned empty() const { return Coefficients.empty(); }
94 
95   /// Returns true if all preconditions for this list of constraints are
96   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
97   bool isValid(const ConstraintInfo &Info) const;
98 };
99 
100 /// Wrapper encapsulating separate constraint systems and corresponding value
101 /// mappings for both unsigned and signed information. Facts are added to and
102 /// conditions are checked against the corresponding system depending on the
103 /// signed-ness of their predicates. While the information is kept separate
104 /// based on signed-ness, certain conditions can be transferred between the two
105 /// systems.
106 class ConstraintInfo {
107   DenseMap<Value *, unsigned> UnsignedValue2Index;
108   DenseMap<Value *, unsigned> SignedValue2Index;
109 
110   ConstraintSystem UnsignedCS;
111   ConstraintSystem SignedCS;
112 
113 public:
114   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
115     return Signed ? SignedValue2Index : UnsignedValue2Index;
116   }
117   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
118     return Signed ? SignedValue2Index : UnsignedValue2Index;
119   }
120 
121   ConstraintSystem &getCS(bool Signed) {
122     return Signed ? SignedCS : UnsignedCS;
123   }
124   const ConstraintSystem &getCS(bool Signed) const {
125     return Signed ? SignedCS : UnsignedCS;
126   }
127 
128   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
129   void popLastNVariables(bool Signed, unsigned N) {
130     getCS(Signed).popLastNVariables(N);
131   }
132 
133   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
134 
135   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated,
136                unsigned NumIn, unsigned NumOut,
137                SmallVectorImpl<StackEntry> &DFSInStack);
138 
139   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
140   /// constraints, using indices from the corresponding constraint system.
141   /// Additional indices for newly discovered values are added to \p NewIndices.
142   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
143                              DenseMap<Value *, unsigned> &NewIndices) const;
144 
145   /// Turn a condition \p CmpI into a vector of constraints, using indices from
146   /// the corresponding constraint system. Additional indices for newly
147   /// discovered values are added to \p NewIndices.
148   ConstraintTy getConstraint(CmpInst *Cmp,
149                              DenseMap<Value *, unsigned> &NewIndices) const {
150     return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
151                          Cmp->getOperand(1), NewIndices);
152   }
153 
154   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
155   /// system if \p Pred is signed/unsigned.
156   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
157                              bool IsNegated, unsigned NumIn, unsigned NumOut,
158                              SmallVectorImpl<StackEntry> &DFSInStack);
159 };
160 
161 /// Represents a (Coefficient * Variable) entry after IR decomposition.
162 struct DecompEntry {
163   int64_t Coefficient;
164   Value *Variable;
165   /// True if the variable is known positive in the current constraint.
166   bool IsKnownPositive;
167 
168   DecompEntry(int64_t Coefficient, Value *Variable,
169               bool IsKnownPositive = false)
170       : Coefficient(Coefficient), Variable(Variable),
171         IsKnownPositive(IsKnownPositive) {}
172 };
173 
174 } // namespace
175 
176 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable
177 // } where Coefficient * Variable. The sum of the pairs equals \p V.  The first
178 // pair is the constant-factor and X must be nullptr. If the expression cannot
179 // be decomposed, returns an empty vector.
180 static SmallVector<DecompEntry, 4>
181 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
182           bool IsSigned) {
183 
184   auto CanUseSExt = [](ConstantInt *CI) {
185     const APInt &Val = CI->getValue();
186     return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
187   };
188   // Decompose \p V used with a signed predicate.
189   if (IsSigned) {
190     if (auto *CI = dyn_cast<ConstantInt>(V)) {
191       if (CanUseSExt(CI))
192         return {{CI->getSExtValue(), nullptr}};
193     }
194 
195     return {{0, nullptr}, {1, V}};
196   }
197 
198   if (auto *CI = dyn_cast<ConstantInt>(V)) {
199     if (CI->uge(MaxConstraintValue))
200       return {};
201     return {{int64_t(CI->getZExtValue()), nullptr}};
202   }
203   auto *GEP = dyn_cast<GetElementPtrInst>(V);
204   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
205     Value *Op0, *Op1;
206     ConstantInt *CI;
207 
208     // If the index is zero-extended, it is guaranteed to be positive.
209     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
210               m_ZExt(m_Value(Op0)))) {
211       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) &&
212           CanUseSExt(CI))
213         return {{0, nullptr},
214                 {1, GEP->getPointerOperand()},
215                 {int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op1}};
216       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) &&
217           CanUseSExt(CI))
218         return {{CI->getSExtValue(), nullptr},
219                 {1, GEP->getPointerOperand()},
220                 {1, Op1}};
221       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0, true}};
222     }
223 
224     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
225         !CI->isNegative() && CanUseSExt(CI))
226       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
227 
228     SmallVector<DecompEntry, 4> Result;
229     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
230               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) &&
231         CanUseSExt(CI))
232       Result = {{0, nullptr},
233                 {1, GEP->getPointerOperand()},
234                 {int(std::pow(int64_t(2), CI->getSExtValue())), Op0}};
235     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
236                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
237              CanUseSExt(CI))
238       Result = {{CI->getSExtValue(), nullptr},
239                 {1, GEP->getPointerOperand()},
240                 {1, Op0}};
241     else {
242       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
243       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
244     }
245     // If Op0 is signed non-negative, the GEP is increasing monotonically and
246     // can be de-composed.
247     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
248                                ConstantInt::get(Op0->getType(), 0));
249     return Result;
250   }
251 
252   Value *Op0;
253   bool IsKnownPositive = false;
254   if (match(V, m_ZExt(m_Value(Op0)))) {
255     IsKnownPositive = true;
256     V = Op0;
257   }
258 
259   Value *Op1;
260   ConstantInt *CI;
261   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
262       !CI->uge(MaxConstraintValue)) {
263     auto Res = decompose(Op0, Preconditions, IsSigned);
264     Res[0].Coefficient += int(CI->getZExtValue());
265     return Res;
266   }
267   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
268       CanUseSExt(CI)) {
269     Preconditions.emplace_back(
270         CmpInst::ICMP_UGE, Op0,
271         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
272     auto Res = decompose(Op0, Preconditions, IsSigned);
273     Res[0].Coefficient += int(CI->getSExtValue());
274     return Res;
275   }
276   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
277     auto Res = decompose(Op0, Preconditions, IsSigned);
278     auto D1 = decompose(Op1, Preconditions, IsSigned);
279     Res[0].Coefficient += D1[0].Coefficient;
280     append_range(Res, drop_begin(D1));
281     return Res;
282   }
283 
284   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI))
285     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
286   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
287     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
288 
289   return {{0, nullptr}, {1, V, IsKnownPositive}};
290 }
291 
292 ConstraintTy
293 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
294                               DenseMap<Value *, unsigned> &NewIndices) const {
295   bool IsEq = false;
296   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
297   switch (Pred) {
298   case CmpInst::ICMP_UGT:
299   case CmpInst::ICMP_UGE:
300   case CmpInst::ICMP_SGT:
301   case CmpInst::ICMP_SGE: {
302     Pred = CmpInst::getSwappedPredicate(Pred);
303     std::swap(Op0, Op1);
304     break;
305   }
306   case CmpInst::ICMP_EQ:
307     if (match(Op1, m_Zero())) {
308       Pred = CmpInst::ICMP_ULE;
309     } else {
310       IsEq = true;
311       Pred = CmpInst::ICMP_ULE;
312     }
313     break;
314   case CmpInst::ICMP_NE:
315     if (!match(Op1, m_Zero()))
316       return {};
317     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
318     std::swap(Op0, Op1);
319     break;
320   default:
321     break;
322   }
323 
324   // Only ULE and ULT predicates are supported at the moment.
325   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
326       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
327     return {};
328 
329   SmallVector<PreconditionTy, 4> Preconditions;
330   bool IsSigned = CmpInst::isSigned(Pred);
331   auto &Value2Index = getValue2Index(IsSigned);
332   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
333                         Preconditions, IsSigned);
334   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
335                         Preconditions, IsSigned);
336   // Skip if decomposing either of the values failed.
337   if (ADec.empty() || BDec.empty())
338     return {};
339 
340   int64_t Offset1 = ADec[0].Coefficient;
341   int64_t Offset2 = BDec[0].Coefficient;
342   Offset1 *= -1;
343 
344   // Create iterator ranges that skip the constant-factor.
345   auto VariablesA = llvm::drop_begin(ADec);
346   auto VariablesB = llvm::drop_begin(BDec);
347 
348   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
349   // new entry to NewIndices.
350   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
351     auto V2I = Value2Index.find(V);
352     if (V2I != Value2Index.end())
353       return V2I->second;
354     auto Insert =
355         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
356     return Insert.first->second;
357   };
358 
359   // Make sure all variables have entries in Value2Index or NewIndices.
360   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
361     GetOrAddIndex(KV.Variable);
362 
363   // Build result constraint, by first adding all coefficients from A and then
364   // subtracting all coefficients from B.
365   ConstraintTy Res(
366       SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0),
367       IsSigned);
368   // Collect variables that are known to be positive in all uses in the
369   // constraint.
370   DenseMap<Value *, bool> KnownPositiveVariables;
371   Res.IsEq = IsEq;
372   auto &R = Res.Coefficients;
373   for (const auto &KV : VariablesA) {
374     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
375     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
376     I.first->second &= KV.IsKnownPositive;
377   }
378 
379   for (const auto &KV : VariablesB) {
380     R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient;
381     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
382     I.first->second &= KV.IsKnownPositive;
383   }
384 
385   int64_t OffsetSum;
386   if (AddOverflow(Offset1, Offset2, OffsetSum))
387     return {};
388   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
389     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
390       return {};
391   R[0] = OffsetSum;
392   Res.Preconditions = std::move(Preconditions);
393 
394   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for the
395   // new variables that need to be added to the system. Set NewIndexNeeded to
396   // true if any of the new variables has a non-zero coefficient.
397   bool NewIndexNeeded = false;
398   for (unsigned I = 0; I < NewIndices.size(); ++I) {
399     int64_t Last = R.back();
400     if (Last != 0) {
401       NewIndexNeeded = true;
402       break;
403     }
404     R.pop_back();
405   }
406   // All new variables had Coefficients of 0, so no new variables are needed.
407   if (!NewIndexNeeded)
408     NewIndices.clear();
409 
410   // Add extra constraints for variables that are known positive.
411   for (auto &KV : KnownPositiveVariables) {
412     if (!KV.second)
413       continue;
414     SmallVector<int64_t, 8> C(Value2Index.size() + NewIndices.size() + 1, 0);
415     C[GetOrAddIndex(KV.first)] = -1;
416     Res.ExtraInfo.push_back(C);
417   }
418   return Res;
419 }
420 
421 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
422   return Coefficients.size() > 0 &&
423          all_of(Preconditions, [&Info](const PreconditionTy &C) {
424            return Info.doesHold(C.Pred, C.Op0, C.Op1);
425          });
426 }
427 
428 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
429                               Value *B) const {
430   DenseMap<Value *, unsigned> NewIndices;
431   auto R = getConstraint(Pred, A, B, NewIndices);
432 
433   if (!NewIndices.empty())
434     return false;
435 
436   // TODO: properly check NewIndices.
437   return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq &&
438          !R.empty() &&
439          getCS(CmpInst::isSigned(Pred)).isConditionImplied(R.Coefficients);
440 }
441 
442 void ConstraintInfo::transferToOtherSystem(
443     CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn,
444     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
445   // Check if we can combine facts from the signed and unsigned systems to
446   // derive additional facts.
447   if (!A->getType()->isIntegerTy())
448     return;
449   // FIXME: This currently depends on the order we add facts. Ideally we
450   // would first add all known facts and only then try to add additional
451   // facts.
452   switch (Pred) {
453   default:
454     break;
455   case CmpInst::ICMP_ULT:
456     //  If B is a signed positive constant, A >=s 0 and A <s B.
457     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
458       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0),
459               IsNegated, NumIn, NumOut, DFSInStack);
460       addFact(CmpInst::ICMP_SLT, A, B, IsNegated, NumIn, NumOut, DFSInStack);
461     }
462     break;
463   case CmpInst::ICMP_SLT:
464     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
465       addFact(CmpInst::ICMP_ULT, A, B, IsNegated, NumIn, NumOut, DFSInStack);
466     break;
467   case CmpInst::ICMP_SGT:
468     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
469       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0),
470               IsNegated, NumIn, NumOut, DFSInStack);
471     break;
472   case CmpInst::ICMP_SGE:
473     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
474       addFact(CmpInst::ICMP_UGE, A, B, IsNegated, NumIn, NumOut, DFSInStack);
475     }
476     break;
477   }
478 }
479 
480 namespace {
481 /// Represents either a condition that holds on entry to a block or a basic
482 /// block, with their respective Dominator DFS in and out numbers.
483 struct ConstraintOrBlock {
484   unsigned NumIn;
485   unsigned NumOut;
486   bool IsBlock;
487   bool Not;
488   union {
489     BasicBlock *BB;
490     CmpInst *Condition;
491   };
492 
493   ConstraintOrBlock(DomTreeNode *DTN)
494       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
495         BB(DTN->getBlock()) {}
496   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
497       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
498         Not(Not), Condition(Condition) {}
499 };
500 
501 /// Keep state required to build worklist.
502 struct State {
503   DominatorTree &DT;
504   SmallVector<ConstraintOrBlock, 64> WorkList;
505 
506   State(DominatorTree &DT) : DT(DT) {}
507 
508   /// Process block \p BB and add known facts to work-list.
509   void addInfoFor(BasicBlock &BB);
510 
511   /// Returns true if we can add a known condition from BB to its successor
512   /// block Succ. Each predecessor of Succ can either be BB or be dominated
513   /// by Succ (e.g. the case when adding a condition from a pre-header to a
514   /// loop header).
515   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
516     if (BB.getSingleSuccessor()) {
517       assert(BB.getSingleSuccessor() == Succ);
518       return DT.properlyDominates(&BB, Succ);
519     }
520     return any_of(successors(&BB),
521                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
522            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
523              return Pred == &BB || DT.dominates(Succ, Pred);
524            });
525   }
526 };
527 
528 } // namespace
529 
530 #ifndef NDEBUG
531 static void dumpWithNames(const ConstraintSystem &CS,
532                           DenseMap<Value *, unsigned> &Value2Index) {
533   SmallVector<std::string> Names(Value2Index.size(), "");
534   for (auto &KV : Value2Index) {
535     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
536   }
537   CS.dump(Names);
538 }
539 
540 static void dumpWithNames(ArrayRef<int64_t> C,
541                           DenseMap<Value *, unsigned> &Value2Index) {
542   ConstraintSystem CS;
543   CS.addVariableRowFill(C);
544   dumpWithNames(CS, Value2Index);
545 }
546 #endif
547 
548 void State::addInfoFor(BasicBlock &BB) {
549   WorkList.emplace_back(DT.getNode(&BB));
550 
551   // True as long as long as the current instruction is guaranteed to execute.
552   bool GuaranteedToExecute = true;
553   // Scan BB for assume calls.
554   // TODO: also use this scan to queue conditions to simplify, so we can
555   // interleave facts from assumes and conditions to simplify in a single
556   // basic block. And to skip another traversal of each basic block when
557   // simplifying.
558   for (Instruction &I : BB) {
559     Value *Cond;
560     // For now, just handle assumes with a single compare as condition.
561     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
562         isa<ICmpInst>(Cond)) {
563       if (GuaranteedToExecute) {
564         // The assume is guaranteed to execute when BB is entered, hence Cond
565         // holds on entry to BB.
566         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
567       } else {
568         // Otherwise the condition only holds in the successors.
569         for (BasicBlock *Succ : successors(&BB)) {
570           if (!canAddSuccessor(BB, Succ))
571             continue;
572           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
573         }
574       }
575     }
576     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
577   }
578 
579   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
580   if (!Br || !Br->isConditional())
581     return;
582 
583   // If the condition is an OR of 2 compares and the false successor only has
584   // the current block as predecessor, queue both negated conditions for the
585   // false successor.
586   Value *Op0, *Op1;
587   if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
588       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
589     BasicBlock *FalseSuccessor = Br->getSuccessor(1);
590     if (canAddSuccessor(BB, FalseSuccessor)) {
591       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0),
592                             true);
593       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1),
594                             true);
595     }
596     return;
597   }
598 
599   // If the condition is an AND of 2 compares and the true successor only has
600   // the current block as predecessor, queue both conditions for the true
601   // successor.
602   if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
603       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
604     BasicBlock *TrueSuccessor = Br->getSuccessor(0);
605     if (canAddSuccessor(BB, TrueSuccessor)) {
606       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0),
607                             false);
608       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1),
609                             false);
610     }
611     return;
612   }
613 
614   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
615   if (!CmpI)
616     return;
617   if (canAddSuccessor(BB, Br->getSuccessor(0)))
618     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
619   if (canAddSuccessor(BB, Br->getSuccessor(1)))
620     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
621 }
622 
623 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
624                              bool IsNegated, unsigned NumIn, unsigned NumOut,
625                              SmallVectorImpl<StackEntry> &DFSInStack) {
626   // If the constraint has a pre-condition, skip the constraint if it does not
627   // hold.
628   DenseMap<Value *, unsigned> NewIndices;
629   auto R = getConstraint(Pred, A, B, NewIndices);
630   if (!R.isValid(*this))
631     return;
632 
633   //LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n");
634   bool Added = false;
635   assert(CmpInst::isSigned(Pred) == R.IsSigned &&
636          "condition and constraint signs must match");
637   auto &CSToUse = getCS(R.IsSigned);
638   if (R.Coefficients.empty())
639     return;
640 
641   Added |= CSToUse.addVariableRowFill(R.Coefficients);
642 
643   // If R has been added to the system, queue it for removal once it goes
644   // out-of-scope.
645   if (Added) {
646     SmallVector<Value *, 2> ValuesToRelease;
647     for (auto &KV : NewIndices) {
648       getValue2Index(R.IsSigned).insert(KV);
649       ValuesToRelease.push_back(KV.first);
650     }
651 
652     LLVM_DEBUG({
653       dbgs() << "  constraint: ";
654       dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
655     });
656 
657     DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned,
658                             ValuesToRelease);
659 
660     if (R.IsEq) {
661       // Also add the inverted constraint for equality constraints.
662       for (auto &Coeff : R.Coefficients)
663         Coeff *= -1;
664       CSToUse.addVariableRowFill(R.Coefficients);
665 
666       DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned,
667                               SmallVector<Value *, 2>());
668     }
669   }
670 }
671 
672 static void
673 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
674                           SmallVectorImpl<Instruction *> &ToRemove) {
675   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
676                               ConstraintInfo &Info) {
677     DenseMap<Value *, unsigned> NewIndices;
678     auto R = Info.getConstraint(Pred, A, B, NewIndices);
679     if (R.size() < 2 || !NewIndices.empty() || !R.isValid(Info))
680       return false;
681 
682     auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred));
683     return CSToUse.isConditionImplied(R.Coefficients);
684   };
685 
686   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
687     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
688     // can be simplified to a regular sub.
689     Value *A = II->getArgOperand(0);
690     Value *B = II->getArgOperand(1);
691     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
692         !DoesConditionHold(CmpInst::ICMP_SGE, B,
693                            ConstantInt::get(A->getType(), 0), Info))
694       return;
695 
696     IRBuilder<> Builder(II->getParent(), II->getIterator());
697     Value *Sub = nullptr;
698     for (User *U : make_early_inc_range(II->users())) {
699       if (match(U, m_ExtractValue<0>(m_Value()))) {
700         if (!Sub)
701           Sub = Builder.CreateSub(A, B);
702         U->replaceAllUsesWith(Sub);
703       } else if (match(U, m_ExtractValue<1>(m_Value())))
704         U->replaceAllUsesWith(Builder.getFalse());
705       else
706         continue;
707 
708       if (U->use_empty()) {
709         auto *I = cast<Instruction>(U);
710         ToRemove.push_back(I);
711         I->setOperand(0, PoisonValue::get(II->getType()));
712       }
713     }
714 
715     if (II->use_empty())
716       II->eraseFromParent();
717   }
718 }
719 
720 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
721   bool Changed = false;
722   DT.updateDFSNumbers();
723 
724   ConstraintInfo Info;
725   State S(DT);
726 
727   // First, collect conditions implied by branches and blocks with their
728   // Dominator DFS in and out numbers.
729   for (BasicBlock &BB : F) {
730     if (!DT.getNode(&BB))
731       continue;
732     S.addInfoFor(BB);
733   }
734 
735   // Next, sort worklist by dominance, so that dominating blocks and conditions
736   // come before blocks and conditions dominated by them. If a block and a
737   // condition have the same numbers, the condition comes before the block, as
738   // it holds on entry to the block.
739   stable_sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
740     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
741   });
742 
743   SmallVector<Instruction *> ToRemove;
744 
745   // Finally, process ordered worklist and eliminate implied conditions.
746   SmallVector<StackEntry, 16> DFSInStack;
747   for (ConstraintOrBlock &CB : S.WorkList) {
748     // First, pop entries from the stack that are out-of-scope for CB. Remove
749     // the corresponding entry from the constraint system.
750     while (!DFSInStack.empty()) {
751       auto &E = DFSInStack.back();
752       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
753                         << "\n");
754       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
755       assert(E.NumIn <= CB.NumIn);
756       if (CB.NumOut <= E.NumOut)
757         break;
758       LLVM_DEBUG({
759         dbgs() << "Removing ";
760         dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
761                       Info.getValue2Index(E.IsSigned));
762         dbgs() << "\n";
763       });
764 
765       Info.popLastConstraint(E.IsSigned);
766       // Remove variables in the system that went out of scope.
767       auto &Mapping = Info.getValue2Index(E.IsSigned);
768       for (Value *V : E.ValuesToRelease)
769         Mapping.erase(V);
770       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
771       DFSInStack.pop_back();
772     }
773 
774     LLVM_DEBUG({
775       dbgs() << "Processing ";
776       if (CB.IsBlock)
777         dbgs() << *CB.BB;
778       else
779         dbgs() << *CB.Condition;
780       dbgs() << "\n";
781     });
782 
783     // For a block, check if any CmpInsts become known based on the current set
784     // of constraints.
785     if (CB.IsBlock) {
786       for (Instruction &I : make_early_inc_range(*CB.BB)) {
787         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
788           tryToSimplifyOverflowMath(II, Info, ToRemove);
789           continue;
790         }
791         auto *Cmp = dyn_cast<ICmpInst>(&I);
792         if (!Cmp)
793           continue;
794 
795         DenseMap<Value *, unsigned> NewIndices;
796         auto R = Info.getConstraint(Cmp, NewIndices);
797         if (R.IsEq || R.empty() || !NewIndices.empty() || !R.isValid(Info))
798           continue;
799 
800         auto &CSToUse = Info.getCS(R.IsSigned);
801 
802         // If there was extra information collected during decomposition, apply
803         // it now and remove it immediately once we are done with reasoning
804         // about the constraint.
805         for (auto &Row : R.ExtraInfo)
806           CSToUse.addVariableRow(Row);
807         auto InfoRestorer = make_scope_exit([&]() {
808           for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
809             CSToUse.popLastConstraint();
810         });
811 
812         if (CSToUse.isConditionImplied(R.Coefficients)) {
813           if (!DebugCounter::shouldExecute(EliminatedCounter))
814             continue;
815 
816           LLVM_DEBUG({
817             dbgs() << "Condition " << *Cmp
818                    << " implied by dominating constraints\n";
819             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
820           });
821           Cmp->replaceUsesWithIf(
822               ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
823                 // Conditions in an assume trivially simplify to true. Skip uses
824                 // in assume calls to not destroy the available information.
825                 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
826                 return !II || II->getIntrinsicID() != Intrinsic::assume;
827               });
828           NumCondsRemoved++;
829           Changed = true;
830         }
831         if (CSToUse.isConditionImplied(
832                 ConstraintSystem::negate(R.Coefficients))) {
833           if (!DebugCounter::shouldExecute(EliminatedCounter))
834             continue;
835 
836           LLVM_DEBUG({
837             dbgs() << "Condition !" << *Cmp
838                    << " implied by dominating constraints\n";
839             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
840           });
841           Cmp->replaceAllUsesWith(
842               ConstantInt::getFalse(F.getParent()->getContext()));
843           NumCondsRemoved++;
844           Changed = true;
845         }
846       }
847       continue;
848     }
849 
850     // Set up a function to restore the predicate at the end of the scope if it
851     // has been negated. Negate the predicate in-place, if required.
852     auto *CI = dyn_cast<ICmpInst>(CB.Condition);
853     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
854       if (CB.Not && CI)
855         CI->setPredicate(CI->getInversePredicate());
856     });
857     if (CB.Not) {
858       if (CI) {
859         CI->setPredicate(CI->getInversePredicate());
860       } else {
861         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
862         continue;
863       }
864     }
865 
866     ICmpInst::Predicate Pred;
867     Value *A, *B;
868     if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
869       // Otherwise, add the condition to the system and stack, if we can
870       // transform it into a constraint.
871       Info.addFact(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, DFSInStack);
872       Info.transferToOtherSystem(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut,
873                                  DFSInStack);
874     }
875   }
876 
877 #ifndef NDEBUG
878   unsigned SignedEntries =
879       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
880   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
881          "updates to CS and DFSInStack are out of sync");
882   assert(Info.getCS(true).size() == SignedEntries &&
883          "updates to CS and DFSInStack are out of sync");
884 #endif
885 
886   for (Instruction *I : ToRemove)
887     I->eraseFromParent();
888   return Changed;
889 }
890 
891 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
892                                                  FunctionAnalysisManager &AM) {
893   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
894   if (!eliminateConstraints(F, DT))
895     return PreservedAnalyses::all();
896 
897   PreservedAnalyses PA;
898   PA.preserve<DominatorTreeAnalysis>();
899   PA.preserveSet<CFGAnalyses>();
900   return PA;
901 }
902 
903 namespace {
904 
905 class ConstraintElimination : public FunctionPass {
906 public:
907   static char ID;
908 
909   ConstraintElimination() : FunctionPass(ID) {
910     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
911   }
912 
913   bool runOnFunction(Function &F) override {
914     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
915     return eliminateConstraints(F, DT);
916   }
917 
918   void getAnalysisUsage(AnalysisUsage &AU) const override {
919     AU.setPreservesCFG();
920     AU.addRequired<DominatorTreeWrapperPass>();
921     AU.addPreserved<GlobalsAAWrapperPass>();
922     AU.addPreserved<DominatorTreeWrapperPass>();
923   }
924 };
925 
926 } // end anonymous namespace
927 
928 char ConstraintElimination::ID = 0;
929 
930 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
931                       "Constraint Elimination", false, false)
932 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
933 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
934 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
935                     "Constraint Elimination", false, false)
936 
937 FunctionPass *llvm::createConstraintEliminationPass() {
938   return new ConstraintElimination();
939 }
940