1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Verifier.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/DebugCounter.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 #include "llvm/Transforms/Utils/ValueMapper.h" 41 42 #include <cmath> 43 #include <optional> 44 #include <string> 45 46 using namespace llvm; 47 using namespace PatternMatch; 48 49 #define DEBUG_TYPE "constraint-elimination" 50 51 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 52 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 53 "Controls which conditions are eliminated"); 54 55 static cl::opt<unsigned> 56 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 57 cl::desc("Maximum number of rows to keep in constraint system")); 58 59 static cl::opt<bool> DumpReproducers( 60 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 61 cl::desc("Dump IR to reproduce successful transformations.")); 62 63 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 64 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 65 66 // A helper to multiply 2 signed integers where overflowing is allowed. 67 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 68 int64_t Result; 69 MulOverflow(A, B, Result); 70 return Result; 71 } 72 73 // A helper to add 2 signed integers where overflowing is allowed. 74 static int64_t addWithOverflow(int64_t A, int64_t B) { 75 int64_t Result; 76 AddOverflow(A, B, Result); 77 return Result; 78 } 79 80 static Instruction *getContextInstForUse(Use &U) { 81 Instruction *UserI = cast<Instruction>(U.getUser()); 82 if (auto *Phi = dyn_cast<PHINode>(UserI)) 83 UserI = Phi->getIncomingBlock(U)->getTerminator(); 84 return UserI; 85 } 86 87 namespace { 88 /// Struct to express a condition of the form %Op0 Pred %Op1. 89 struct ConditionTy { 90 CmpInst::Predicate Pred; 91 Value *Op0; 92 Value *Op1; 93 94 ConditionTy() 95 : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {} 96 ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 97 : Pred(Pred), Op0(Op0), Op1(Op1) {} 98 }; 99 100 /// Represents either 101 /// * a condition that holds on entry to a block (=condition fact) 102 /// * an assume (=assume fact) 103 /// * a use of a compare instruction to simplify. 104 /// It also tracks the Dominator DFS in and out numbers for each entry. 105 struct FactOrCheck { 106 enum class EntryTy { 107 ConditionFact, /// A condition that holds on entry to a block. 108 InstFact, /// A fact that holds after Inst executed (e.g. an assume or 109 /// min/mix intrinsic. 110 InstCheck, /// An instruction to simplify (e.g. an overflow math 111 /// intrinsics). 112 UseCheck /// An use of a compare instruction to simplify. 113 }; 114 115 union { 116 Instruction *Inst; 117 Use *U; 118 ConditionTy Cond; 119 }; 120 121 /// A pre-condition that must hold for the current fact to be added to the 122 /// system. 123 ConditionTy DoesHold; 124 125 unsigned NumIn; 126 unsigned NumOut; 127 EntryTy Ty; 128 129 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 130 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 131 Ty(Ty) {} 132 133 FactOrCheck(DomTreeNode *DTN, Use *U) 134 : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr), 135 NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 136 Ty(EntryTy::UseCheck) {} 137 138 FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1, 139 ConditionTy Precond = ConditionTy()) 140 : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()), 141 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 142 143 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 144 Value *Op0, Value *Op1, 145 ConditionTy Precond = ConditionTy()) { 146 return FactOrCheck(DTN, Pred, Op0, Op1, Precond); 147 } 148 149 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 150 return FactOrCheck(EntryTy::InstFact, DTN, Inst); 151 } 152 153 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 154 return FactOrCheck(DTN, U); 155 } 156 157 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 158 return FactOrCheck(EntryTy::InstCheck, DTN, CI); 159 } 160 161 bool isCheck() const { 162 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 163 } 164 165 Instruction *getContextInst() const { 166 if (Ty == EntryTy::UseCheck) 167 return getContextInstForUse(*U); 168 return Inst; 169 } 170 171 Instruction *getInstructionToSimplify() const { 172 assert(isCheck()); 173 if (Ty == EntryTy::InstCheck) 174 return Inst; 175 // The use may have been simplified to a constant already. 176 return dyn_cast<Instruction>(*U); 177 } 178 179 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 180 }; 181 182 /// Keep state required to build worklist. 183 struct State { 184 DominatorTree &DT; 185 LoopInfo &LI; 186 ScalarEvolution &SE; 187 SmallVector<FactOrCheck, 64> WorkList; 188 189 State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE) 190 : DT(DT), LI(LI), SE(SE) {} 191 192 /// Process block \p BB and add known facts to work-list. 193 void addInfoFor(BasicBlock &BB); 194 195 /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares 196 /// controlling the loop header. 197 void addInfoForInductions(BasicBlock &BB); 198 199 /// Returns true if we can add a known condition from BB to its successor 200 /// block Succ. 201 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 202 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 203 } 204 }; 205 206 class ConstraintInfo; 207 208 struct StackEntry { 209 unsigned NumIn; 210 unsigned NumOut; 211 bool IsSigned = false; 212 /// Variables that can be removed from the system once the stack entry gets 213 /// removed. 214 SmallVector<Value *, 2> ValuesToRelease; 215 216 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 217 SmallVector<Value *, 2> ValuesToRelease) 218 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 219 ValuesToRelease(ValuesToRelease) {} 220 }; 221 222 struct ConstraintTy { 223 SmallVector<int64_t, 8> Coefficients; 224 SmallVector<ConditionTy, 2> Preconditions; 225 226 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 227 228 bool IsSigned = false; 229 230 ConstraintTy() = default; 231 232 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 233 bool IsNe) 234 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 235 } 236 237 unsigned size() const { return Coefficients.size(); } 238 239 unsigned empty() const { return Coefficients.empty(); } 240 241 /// Returns true if all preconditions for this list of constraints are 242 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 243 bool isValid(const ConstraintInfo &Info) const; 244 245 bool isEq() const { return IsEq; } 246 247 bool isNe() const { return IsNe; } 248 249 /// Check if the current constraint is implied by the given ConstraintSystem. 250 /// 251 /// \return true or false if the constraint is proven to be respectively true, 252 /// or false. When the constraint cannot be proven to be either true or false, 253 /// std::nullopt is returned. 254 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 255 256 private: 257 bool IsEq = false; 258 bool IsNe = false; 259 }; 260 261 /// Wrapper encapsulating separate constraint systems and corresponding value 262 /// mappings for both unsigned and signed information. Facts are added to and 263 /// conditions are checked against the corresponding system depending on the 264 /// signed-ness of their predicates. While the information is kept separate 265 /// based on signed-ness, certain conditions can be transferred between the two 266 /// systems. 267 class ConstraintInfo { 268 269 ConstraintSystem UnsignedCS; 270 ConstraintSystem SignedCS; 271 272 const DataLayout &DL; 273 274 public: 275 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 276 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 277 278 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 279 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 280 } 281 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 282 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 283 } 284 285 ConstraintSystem &getCS(bool Signed) { 286 return Signed ? SignedCS : UnsignedCS; 287 } 288 const ConstraintSystem &getCS(bool Signed) const { 289 return Signed ? SignedCS : UnsignedCS; 290 } 291 292 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 293 void popLastNVariables(bool Signed, unsigned N) { 294 getCS(Signed).popLastNVariables(N); 295 } 296 297 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 298 299 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 300 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 301 302 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 303 /// constraints, using indices from the corresponding constraint system. 304 /// New variables that need to be added to the system are collected in 305 /// \p NewVariables. 306 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 307 SmallVectorImpl<Value *> &NewVariables) const; 308 309 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 310 /// constraints using getConstraint. Returns an empty constraint if the result 311 /// cannot be used to query the existing constraint system, e.g. because it 312 /// would require adding new variables. Also tries to convert signed 313 /// predicates to unsigned ones if possible to allow using the unsigned system 314 /// which increases the effectiveness of the signed <-> unsigned transfer 315 /// logic. 316 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 317 Value *Op1) const; 318 319 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 320 /// system if \p Pred is signed/unsigned. 321 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 322 unsigned NumIn, unsigned NumOut, 323 SmallVectorImpl<StackEntry> &DFSInStack); 324 }; 325 326 /// Represents a (Coefficient * Variable) entry after IR decomposition. 327 struct DecompEntry { 328 int64_t Coefficient; 329 Value *Variable; 330 /// True if the variable is known positive in the current constraint. 331 bool IsKnownNonNegative; 332 333 DecompEntry(int64_t Coefficient, Value *Variable, 334 bool IsKnownNonNegative = false) 335 : Coefficient(Coefficient), Variable(Variable), 336 IsKnownNonNegative(IsKnownNonNegative) {} 337 }; 338 339 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 340 struct Decomposition { 341 int64_t Offset = 0; 342 SmallVector<DecompEntry, 3> Vars; 343 344 Decomposition(int64_t Offset) : Offset(Offset) {} 345 Decomposition(Value *V, bool IsKnownNonNegative = false) { 346 Vars.emplace_back(1, V, IsKnownNonNegative); 347 } 348 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 349 : Offset(Offset), Vars(Vars) {} 350 351 void add(int64_t OtherOffset) { 352 Offset = addWithOverflow(Offset, OtherOffset); 353 } 354 355 void add(const Decomposition &Other) { 356 add(Other.Offset); 357 append_range(Vars, Other.Vars); 358 } 359 360 void mul(int64_t Factor) { 361 Offset = multiplyWithOverflow(Offset, Factor); 362 for (auto &Var : Vars) 363 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 364 } 365 }; 366 367 // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr. 368 struct OffsetResult { 369 Value *BasePtr; 370 APInt ConstantOffset; 371 MapVector<Value *, APInt> VariableOffsets; 372 bool AllInbounds; 373 374 OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {} 375 376 OffsetResult(GEPOperator &GEP, const DataLayout &DL) 377 : BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) { 378 ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0); 379 } 380 }; 381 } // namespace 382 383 // Try to collect variable and constant offsets for \p GEP, partly traversing 384 // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting 385 // the offset fails. 386 static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) { 387 OffsetResult Result(GEP, DL); 388 unsigned BitWidth = Result.ConstantOffset.getBitWidth(); 389 if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets, 390 Result.ConstantOffset)) 391 return {}; 392 393 // If we have a nested GEP, check if we can combine the constant offset of the 394 // inner GEP with the outer GEP. 395 if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) { 396 MapVector<Value *, APInt> VariableOffsets2; 397 APInt ConstantOffset2(BitWidth, 0); 398 bool CanCollectInner = InnerGEP->collectOffset( 399 DL, BitWidth, VariableOffsets2, ConstantOffset2); 400 // TODO: Support cases with more than 1 variable offset. 401 if (!CanCollectInner || Result.VariableOffsets.size() > 1 || 402 VariableOffsets2.size() > 1 || 403 (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) { 404 // More than 1 variable index, use outer result. 405 return Result; 406 } 407 Result.BasePtr = InnerGEP->getPointerOperand(); 408 Result.ConstantOffset += ConstantOffset2; 409 if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1) 410 Result.VariableOffsets = VariableOffsets2; 411 Result.AllInbounds &= InnerGEP->isInBounds(); 412 } 413 return Result; 414 } 415 416 static Decomposition decompose(Value *V, 417 SmallVectorImpl<ConditionTy> &Preconditions, 418 bool IsSigned, const DataLayout &DL); 419 420 static bool canUseSExt(ConstantInt *CI) { 421 const APInt &Val = CI->getValue(); 422 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 423 } 424 425 static Decomposition decomposeGEP(GEPOperator &GEP, 426 SmallVectorImpl<ConditionTy> &Preconditions, 427 bool IsSigned, const DataLayout &DL) { 428 // Do not reason about pointers where the index size is larger than 64 bits, 429 // as the coefficients used to encode constraints are 64 bit integers. 430 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 431 return &GEP; 432 433 assert(!IsSigned && "The logic below only supports decomposition for " 434 "unsigned predicates at the moment."); 435 const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] = 436 collectOffsets(GEP, DL); 437 if (!BasePtr || !AllInbounds) 438 return &GEP; 439 440 Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr)); 441 for (auto [Index, Scale] : VariableOffsets) { 442 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 443 IdxResult.mul(Scale.getSExtValue()); 444 Result.add(IdxResult); 445 446 // If Op0 is signed non-negative, the GEP is increasing monotonically and 447 // can be de-composed. 448 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 449 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 450 ConstantInt::get(Index->getType(), 0)); 451 } 452 return Result; 453 } 454 455 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 456 // Variable } where Coefficient * Variable. The sum of the constant offset and 457 // pairs equals \p V. 458 static Decomposition decompose(Value *V, 459 SmallVectorImpl<ConditionTy> &Preconditions, 460 bool IsSigned, const DataLayout &DL) { 461 462 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 463 bool IsSignedB) { 464 auto ResA = decompose(A, Preconditions, IsSigned, DL); 465 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 466 ResA.add(ResB); 467 return ResA; 468 }; 469 470 Type *Ty = V->getType()->getScalarType(); 471 if (Ty->isPointerTy() && !IsSigned) { 472 if (auto *GEP = dyn_cast<GEPOperator>(V)) 473 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 474 if (isa<ConstantPointerNull>(V)) 475 return int64_t(0); 476 477 return V; 478 } 479 480 // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so 481 // coefficient add/mul may wrap, while the operation in the full bit width 482 // would not. 483 if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64) 484 return V; 485 486 // Decompose \p V used with a signed predicate. 487 if (IsSigned) { 488 if (auto *CI = dyn_cast<ConstantInt>(V)) { 489 if (canUseSExt(CI)) 490 return CI->getSExtValue(); 491 } 492 Value *Op0; 493 Value *Op1; 494 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 495 return MergeResults(Op0, Op1, IsSigned); 496 497 ConstantInt *CI; 498 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 499 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 500 Result.mul(CI->getSExtValue()); 501 return Result; 502 } 503 504 return V; 505 } 506 507 if (auto *CI = dyn_cast<ConstantInt>(V)) { 508 if (CI->uge(MaxConstraintValue)) 509 return V; 510 return int64_t(CI->getZExtValue()); 511 } 512 513 Value *Op0; 514 bool IsKnownNonNegative = false; 515 if (match(V, m_ZExt(m_Value(Op0)))) { 516 IsKnownNonNegative = true; 517 V = Op0; 518 } 519 520 Value *Op1; 521 ConstantInt *CI; 522 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 523 return MergeResults(Op0, Op1, IsSigned); 524 } 525 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 526 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 527 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 528 ConstantInt::get(Op0->getType(), 0)); 529 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 530 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 531 ConstantInt::get(Op1->getType(), 0)); 532 533 return MergeResults(Op0, Op1, IsSigned); 534 } 535 536 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 537 canUseSExt(CI)) { 538 Preconditions.emplace_back( 539 CmpInst::ICMP_UGE, Op0, 540 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 541 return MergeResults(Op0, CI, true); 542 } 543 544 // Decompose or as an add if there are no common bits between the operands. 545 if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI)))) 546 return MergeResults(Op0, CI, IsSigned); 547 548 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 549 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 550 return {V, IsKnownNonNegative}; 551 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 552 Result.mul(int64_t{1} << CI->getSExtValue()); 553 return Result; 554 } 555 556 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 557 (!CI->isNegative())) { 558 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 559 Result.mul(CI->getSExtValue()); 560 return Result; 561 } 562 563 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 564 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 565 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 566 return {0, {{1, Op0}, {-1, Op1}}}; 567 568 return {V, IsKnownNonNegative}; 569 } 570 571 ConstraintTy 572 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 573 SmallVectorImpl<Value *> &NewVariables) const { 574 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 575 bool IsEq = false; 576 bool IsNe = false; 577 578 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 579 switch (Pred) { 580 case CmpInst::ICMP_UGT: 581 case CmpInst::ICMP_UGE: 582 case CmpInst::ICMP_SGT: 583 case CmpInst::ICMP_SGE: { 584 Pred = CmpInst::getSwappedPredicate(Pred); 585 std::swap(Op0, Op1); 586 break; 587 } 588 case CmpInst::ICMP_EQ: 589 if (match(Op1, m_Zero())) { 590 Pred = CmpInst::ICMP_ULE; 591 } else { 592 IsEq = true; 593 Pred = CmpInst::ICMP_ULE; 594 } 595 break; 596 case CmpInst::ICMP_NE: 597 if (match(Op1, m_Zero())) { 598 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 599 std::swap(Op0, Op1); 600 } else { 601 IsNe = true; 602 Pred = CmpInst::ICMP_ULE; 603 } 604 break; 605 default: 606 break; 607 } 608 609 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 610 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 611 return {}; 612 613 SmallVector<ConditionTy, 4> Preconditions; 614 bool IsSigned = CmpInst::isSigned(Pred); 615 auto &Value2Index = getValue2Index(IsSigned); 616 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 617 Preconditions, IsSigned, DL); 618 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 619 Preconditions, IsSigned, DL); 620 int64_t Offset1 = ADec.Offset; 621 int64_t Offset2 = BDec.Offset; 622 Offset1 *= -1; 623 624 auto &VariablesA = ADec.Vars; 625 auto &VariablesB = BDec.Vars; 626 627 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 628 // new entry to NewVariables. 629 DenseMap<Value *, unsigned> NewIndexMap; 630 auto GetOrAddIndex = [&Value2Index, &NewVariables, 631 &NewIndexMap](Value *V) -> unsigned { 632 auto V2I = Value2Index.find(V); 633 if (V2I != Value2Index.end()) 634 return V2I->second; 635 auto Insert = 636 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 637 if (Insert.second) 638 NewVariables.push_back(V); 639 return Insert.first->second; 640 }; 641 642 // Make sure all variables have entries in Value2Index or NewVariables. 643 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 644 GetOrAddIndex(KV.Variable); 645 646 // Build result constraint, by first adding all coefficients from A and then 647 // subtracting all coefficients from B. 648 ConstraintTy Res( 649 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 650 IsSigned, IsEq, IsNe); 651 // Collect variables that are known to be positive in all uses in the 652 // constraint. 653 DenseMap<Value *, bool> KnownNonNegativeVariables; 654 auto &R = Res.Coefficients; 655 for (const auto &KV : VariablesA) { 656 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 657 auto I = 658 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 659 I.first->second &= KV.IsKnownNonNegative; 660 } 661 662 for (const auto &KV : VariablesB) { 663 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 664 R[GetOrAddIndex(KV.Variable)])) 665 return {}; 666 auto I = 667 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 668 I.first->second &= KV.IsKnownNonNegative; 669 } 670 671 int64_t OffsetSum; 672 if (AddOverflow(Offset1, Offset2, OffsetSum)) 673 return {}; 674 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 675 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 676 return {}; 677 R[0] = OffsetSum; 678 Res.Preconditions = std::move(Preconditions); 679 680 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 681 // variables. 682 while (!NewVariables.empty()) { 683 int64_t Last = R.back(); 684 if (Last != 0) 685 break; 686 R.pop_back(); 687 Value *RemovedV = NewVariables.pop_back_val(); 688 NewIndexMap.erase(RemovedV); 689 } 690 691 // Add extra constraints for variables that are known positive. 692 for (auto &KV : KnownNonNegativeVariables) { 693 if (!KV.second || 694 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 695 continue; 696 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 697 C[GetOrAddIndex(KV.first)] = -1; 698 Res.ExtraInfo.push_back(C); 699 } 700 return Res; 701 } 702 703 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 704 Value *Op0, 705 Value *Op1) const { 706 Constant *NullC = Constant::getNullValue(Op0->getType()); 707 // Handle trivially true compares directly to avoid adding V UGE 0 constraints 708 // for all variables in the unsigned system. 709 if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) || 710 (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) { 711 auto &Value2Index = getValue2Index(false); 712 // Return constraint that's trivially true. 713 return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false, 714 false, false); 715 } 716 717 // If both operands are known to be non-negative, change signed predicates to 718 // unsigned ones. This increases the reasoning effectiveness in combination 719 // with the signed <-> unsigned transfer logic. 720 if (CmpInst::isSigned(Pred) && 721 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 722 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 723 Pred = CmpInst::getUnsignedPredicate(Pred); 724 725 SmallVector<Value *> NewVariables; 726 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 727 if (!NewVariables.empty()) 728 return {}; 729 return R; 730 } 731 732 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 733 return Coefficients.size() > 0 && 734 all_of(Preconditions, [&Info](const ConditionTy &C) { 735 return Info.doesHold(C.Pred, C.Op0, C.Op1); 736 }); 737 } 738 739 std::optional<bool> 740 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 741 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 742 743 if (IsEq || IsNe) { 744 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 745 bool IsNegatedOrEqualImplied = 746 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 747 748 // In order to check that `%a == %b` is true (equality), both conditions `%a 749 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 750 // is true), we return true if they both hold, false in the other cases. 751 if (IsConditionImplied && IsNegatedOrEqualImplied) 752 return IsEq; 753 754 auto Negated = ConstraintSystem::negate(Coefficients); 755 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 756 757 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 758 bool IsStrictLessThanImplied = 759 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 760 761 // In order to check that `%a != %b` is true (non-equality), either 762 // condition `%a > %b` or `%a < %b` must hold true. When checking for 763 // non-equality (`IsNe` is true), we return true if one of the two holds, 764 // false in the other cases. 765 if (IsNegatedImplied || IsStrictLessThanImplied) 766 return IsNe; 767 768 return std::nullopt; 769 } 770 771 if (IsConditionImplied) 772 return true; 773 774 auto Negated = ConstraintSystem::negate(Coefficients); 775 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 776 if (IsNegatedImplied) 777 return false; 778 779 // Neither the condition nor its negated holds, did not prove anything. 780 return std::nullopt; 781 } 782 783 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 784 Value *B) const { 785 auto R = getConstraintForSolving(Pred, A, B); 786 return R.isValid(*this) && 787 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 788 } 789 790 void ConstraintInfo::transferToOtherSystem( 791 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 792 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 793 auto IsKnownNonNegative = [this](Value *V) { 794 return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) || 795 isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1); 796 }; 797 // Check if we can combine facts from the signed and unsigned systems to 798 // derive additional facts. 799 if (!A->getType()->isIntegerTy()) 800 return; 801 // FIXME: This currently depends on the order we add facts. Ideally we 802 // would first add all known facts and only then try to add additional 803 // facts. 804 switch (Pred) { 805 default: 806 break; 807 case CmpInst::ICMP_ULT: 808 case CmpInst::ICMP_ULE: 809 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B. 810 if (IsKnownNonNegative(B)) { 811 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 812 NumOut, DFSInStack); 813 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 814 DFSInStack); 815 } 816 break; 817 case CmpInst::ICMP_UGE: 818 case CmpInst::ICMP_UGT: 819 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B. 820 if (IsKnownNonNegative(A)) { 821 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn, 822 NumOut, DFSInStack); 823 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 824 DFSInStack); 825 } 826 break; 827 case CmpInst::ICMP_SLT: 828 if (IsKnownNonNegative(A)) 829 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 830 break; 831 case CmpInst::ICMP_SGT: { 832 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 833 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 834 NumOut, DFSInStack); 835 if (IsKnownNonNegative(B)) 836 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 837 838 break; 839 } 840 case CmpInst::ICMP_SGE: 841 if (IsKnownNonNegative(B)) 842 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 843 break; 844 } 845 } 846 847 #ifndef NDEBUG 848 849 static void dumpConstraint(ArrayRef<int64_t> C, 850 const DenseMap<Value *, unsigned> &Value2Index) { 851 ConstraintSystem CS(Value2Index); 852 CS.addVariableRowFill(C); 853 CS.dump(); 854 } 855 #endif 856 857 void State::addInfoForInductions(BasicBlock &BB) { 858 auto *L = LI.getLoopFor(&BB); 859 if (!L || L->getHeader() != &BB) 860 return; 861 862 Value *A; 863 Value *B; 864 CmpInst::Predicate Pred; 865 866 if (!match(BB.getTerminator(), 867 m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value()))) 868 return; 869 PHINode *PN = dyn_cast<PHINode>(A); 870 if (!PN) { 871 Pred = CmpInst::getSwappedPredicate(Pred); 872 std::swap(A, B); 873 PN = dyn_cast<PHINode>(A); 874 } 875 876 if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 || 877 !SE.isSCEVable(PN->getType())) 878 return; 879 880 BasicBlock *InLoopSucc = nullptr; 881 if (Pred == CmpInst::ICMP_NE) 882 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0); 883 else if (Pred == CmpInst::ICMP_EQ) 884 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1); 885 else 886 return; 887 888 if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB) 889 return; 890 891 auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN)); 892 BasicBlock *LoopPred = L->getLoopPredecessor(); 893 if (!AR || AR->getLoop() != L || !LoopPred) 894 return; 895 896 const SCEV *StartSCEV = AR->getStart(); 897 Value *StartValue = nullptr; 898 if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) { 899 StartValue = C->getValue(); 900 } else { 901 StartValue = PN->getIncomingValueForBlock(LoopPred); 902 assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value"); 903 } 904 905 DomTreeNode *DTN = DT.getNode(InLoopSucc); 906 auto Inc = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT); 907 bool MonotonicallyIncreasing = 908 Inc && *Inc == ScalarEvolution::MonotonicallyIncreasing; 909 if (MonotonicallyIncreasing) { 910 // SCEV guarantees that AR does not wrap, so PN >= StartValue can be added 911 // unconditionally. 912 WorkList.push_back( 913 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue)); 914 } 915 916 APInt StepOffset; 917 if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 918 StepOffset = C->getAPInt(); 919 else 920 return; 921 922 // Make sure the bound B is loop-invariant. 923 if (!L->isLoopInvariant(B)) 924 return; 925 926 // Handle negative steps. 927 if (StepOffset.isNegative()) { 928 // TODO: Extend to allow steps > -1. 929 if (!(-StepOffset).isOne()) 930 return; 931 932 // AR may wrap. 933 // Add StartValue >= PN conditional on B <= StartValue which guarantees that 934 // the loop exits before wrapping with a step of -1. 935 WorkList.push_back(FactOrCheck::getConditionFact( 936 DTN, CmpInst::ICMP_UGE, StartValue, PN, 937 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 938 // Add PN > B conditional on B <= StartValue which guarantees that the loop 939 // exits when reaching B with a step of -1. 940 WorkList.push_back(FactOrCheck::getConditionFact( 941 DTN, CmpInst::ICMP_UGT, PN, B, 942 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 943 return; 944 } 945 946 // Make sure AR either steps by 1 or that the value we compare against is a 947 // GEP based on the same start value and all offsets are a multiple of the 948 // step size, to guarantee that the induction will reach the value. 949 if (StepOffset.isZero() || StepOffset.isNegative()) 950 return; 951 952 if (!StepOffset.isOne()) { 953 auto *UpperGEP = dyn_cast<GetElementPtrInst>(B); 954 if (!UpperGEP || UpperGEP->getPointerOperand() != StartValue || 955 !UpperGEP->isInBounds()) 956 return; 957 958 MapVector<Value *, APInt> UpperVariableOffsets; 959 APInt UpperConstantOffset(StepOffset.getBitWidth(), 0); 960 const DataLayout &DL = BB.getModule()->getDataLayout(); 961 if (!UpperGEP->collectOffset(DL, StepOffset.getBitWidth(), 962 UpperVariableOffsets, UpperConstantOffset)) 963 return; 964 // All variable offsets and the constant offset have to be a multiple of the 965 // step. 966 if (!UpperConstantOffset.urem(StepOffset).isZero() || 967 any_of(UpperVariableOffsets, [&StepOffset](const auto &P) { 968 return !P.second.urem(StepOffset).isZero(); 969 })) 970 return; 971 } 972 973 // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which 974 // guarantees that the loop exits before wrapping in combination with the 975 // restrictions on B and the step above. 976 if (!MonotonicallyIncreasing) { 977 WorkList.push_back(FactOrCheck::getConditionFact( 978 DTN, CmpInst::ICMP_UGE, PN, StartValue, 979 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 980 } 981 WorkList.push_back(FactOrCheck::getConditionFact( 982 DTN, CmpInst::ICMP_ULT, PN, B, 983 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 984 } 985 986 void State::addInfoFor(BasicBlock &BB) { 987 addInfoForInductions(BB); 988 989 // True as long as long as the current instruction is guaranteed to execute. 990 bool GuaranteedToExecute = true; 991 // Queue conditions and assumes. 992 for (Instruction &I : BB) { 993 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 994 for (Use &U : Cmp->uses()) { 995 auto *UserI = getContextInstForUse(U); 996 auto *DTN = DT.getNode(UserI->getParent()); 997 if (!DTN) 998 continue; 999 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 1000 } 1001 continue; 1002 } 1003 1004 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 1005 WorkList.push_back( 1006 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 1007 continue; 1008 } 1009 1010 if (isa<MinMaxIntrinsic>(&I)) { 1011 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 1012 continue; 1013 } 1014 1015 Value *A, *B; 1016 CmpInst::Predicate Pred; 1017 // For now, just handle assumes with a single compare as condition. 1018 if (match(&I, m_Intrinsic<Intrinsic::assume>( 1019 m_ICmp(Pred, m_Value(A), m_Value(B))))) { 1020 if (GuaranteedToExecute) { 1021 // The assume is guaranteed to execute when BB is entered, hence Cond 1022 // holds on entry to BB. 1023 WorkList.emplace_back(FactOrCheck::getConditionFact( 1024 DT.getNode(I.getParent()), Pred, A, B)); 1025 } else { 1026 WorkList.emplace_back( 1027 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 1028 } 1029 } 1030 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 1031 } 1032 1033 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 1034 for (auto &Case : Switch->cases()) { 1035 BasicBlock *Succ = Case.getCaseSuccessor(); 1036 Value *V = Case.getCaseValue(); 1037 if (!canAddSuccessor(BB, Succ)) 1038 continue; 1039 WorkList.emplace_back(FactOrCheck::getConditionFact( 1040 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 1041 } 1042 return; 1043 } 1044 1045 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 1046 if (!Br || !Br->isConditional()) 1047 return; 1048 1049 Value *Cond = Br->getCondition(); 1050 1051 // If the condition is a chain of ORs/AND and the successor only has the 1052 // current block as predecessor, queue conditions for the successor. 1053 Value *Op0, *Op1; 1054 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 1055 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1056 bool IsOr = match(Cond, m_LogicalOr()); 1057 bool IsAnd = match(Cond, m_LogicalAnd()); 1058 // If there's a select that matches both AND and OR, we need to commit to 1059 // one of the options. Arbitrarily pick OR. 1060 if (IsOr && IsAnd) 1061 IsAnd = false; 1062 1063 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 1064 if (canAddSuccessor(BB, Successor)) { 1065 SmallVector<Value *> CondWorkList; 1066 SmallPtrSet<Value *, 8> SeenCond; 1067 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 1068 if (SeenCond.insert(V).second) 1069 CondWorkList.push_back(V); 1070 }; 1071 QueueValue(Op1); 1072 QueueValue(Op0); 1073 while (!CondWorkList.empty()) { 1074 Value *Cur = CondWorkList.pop_back_val(); 1075 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 1076 WorkList.emplace_back(FactOrCheck::getConditionFact( 1077 DT.getNode(Successor), 1078 IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate()) 1079 : Cmp->getPredicate(), 1080 Cmp->getOperand(0), Cmp->getOperand(1))); 1081 continue; 1082 } 1083 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 1084 QueueValue(Op1); 1085 QueueValue(Op0); 1086 continue; 1087 } 1088 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1089 QueueValue(Op1); 1090 QueueValue(Op0); 1091 continue; 1092 } 1093 } 1094 } 1095 return; 1096 } 1097 1098 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 1099 if (!CmpI) 1100 return; 1101 if (canAddSuccessor(BB, Br->getSuccessor(0))) 1102 WorkList.emplace_back(FactOrCheck::getConditionFact( 1103 DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(), 1104 CmpI->getOperand(0), CmpI->getOperand(1))); 1105 if (canAddSuccessor(BB, Br->getSuccessor(1))) 1106 WorkList.emplace_back(FactOrCheck::getConditionFact( 1107 DT.getNode(Br->getSuccessor(1)), 1108 CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0), 1109 CmpI->getOperand(1))); 1110 } 1111 1112 #ifndef NDEBUG 1113 static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred, 1114 Value *LHS, Value *RHS) { 1115 OS << "icmp " << Pred << ' '; 1116 LHS->printAsOperand(OS, /*PrintType=*/true); 1117 OS << ", "; 1118 RHS->printAsOperand(OS, /*PrintType=*/false); 1119 } 1120 #endif 1121 1122 namespace { 1123 /// Helper to keep track of a condition and if it should be treated as negated 1124 /// for reproducer construction. 1125 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 1126 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 1127 struct ReproducerEntry { 1128 ICmpInst::Predicate Pred; 1129 Value *LHS; 1130 Value *RHS; 1131 1132 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 1133 : Pred(Pred), LHS(LHS), RHS(RHS) {} 1134 }; 1135 } // namespace 1136 1137 /// Helper function to generate a reproducer function for simplifying \p Cond. 1138 /// The reproducer function contains a series of @llvm.assume calls, one for 1139 /// each condition in \p Stack. For each condition, the operand instruction are 1140 /// cloned until we reach operands that have an entry in \p Value2Index. Those 1141 /// will then be added as function arguments. \p DT is used to order cloned 1142 /// instructions. The reproducer function will get added to \p M, if it is 1143 /// non-null. Otherwise no reproducer function is generated. 1144 static void generateReproducer(CmpInst *Cond, Module *M, 1145 ArrayRef<ReproducerEntry> Stack, 1146 ConstraintInfo &Info, DominatorTree &DT) { 1147 if (!M) 1148 return; 1149 1150 LLVMContext &Ctx = Cond->getContext(); 1151 1152 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 1153 1154 ValueToValueMapTy Old2New; 1155 SmallVector<Value *> Args; 1156 SmallPtrSet<Value *, 8> Seen; 1157 // Traverse Cond and its operands recursively until we reach a value that's in 1158 // Value2Index or not an instruction, or not a operation that 1159 // ConstraintElimination can decompose. Such values will be considered as 1160 // external inputs to the reproducer, they are collected and added as function 1161 // arguments later. 1162 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1163 auto &Value2Index = Info.getValue2Index(IsSigned); 1164 SmallVector<Value *, 4> WorkList(Ops); 1165 while (!WorkList.empty()) { 1166 Value *V = WorkList.pop_back_val(); 1167 if (!Seen.insert(V).second) 1168 continue; 1169 if (Old2New.find(V) != Old2New.end()) 1170 continue; 1171 if (isa<Constant>(V)) 1172 continue; 1173 1174 auto *I = dyn_cast<Instruction>(V); 1175 if (Value2Index.contains(V) || !I || 1176 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 1177 Old2New[V] = V; 1178 Args.push_back(V); 1179 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 1180 } else { 1181 append_range(WorkList, I->operands()); 1182 } 1183 } 1184 }; 1185 1186 for (auto &Entry : Stack) 1187 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 1188 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 1189 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 1190 1191 SmallVector<Type *> ParamTys; 1192 for (auto *P : Args) 1193 ParamTys.push_back(P->getType()); 1194 1195 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 1196 /*isVarArg=*/false); 1197 Function *F = Function::Create(FTy, Function::ExternalLinkage, 1198 Cond->getModule()->getName() + 1199 Cond->getFunction()->getName() + "repro", 1200 M); 1201 // Add arguments to the reproducer function for each external value collected. 1202 for (unsigned I = 0; I < Args.size(); ++I) { 1203 F->getArg(I)->setName(Args[I]->getName()); 1204 Old2New[Args[I]] = F->getArg(I); 1205 } 1206 1207 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 1208 IRBuilder<> Builder(Entry); 1209 Builder.CreateRet(Builder.getTrue()); 1210 Builder.SetInsertPoint(Entry->getTerminator()); 1211 1212 // Clone instructions in \p Ops and their operands recursively until reaching 1213 // an value in Value2Index (external input to the reproducer). Update Old2New 1214 // mapping for the original and cloned instructions. Sort instructions to 1215 // clone by dominance, then insert the cloned instructions in the function. 1216 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1217 SmallVector<Value *, 4> WorkList(Ops); 1218 SmallVector<Instruction *> ToClone; 1219 auto &Value2Index = Info.getValue2Index(IsSigned); 1220 while (!WorkList.empty()) { 1221 Value *V = WorkList.pop_back_val(); 1222 if (Old2New.find(V) != Old2New.end()) 1223 continue; 1224 1225 auto *I = dyn_cast<Instruction>(V); 1226 if (!Value2Index.contains(V) && I) { 1227 Old2New[V] = nullptr; 1228 ToClone.push_back(I); 1229 append_range(WorkList, I->operands()); 1230 } 1231 } 1232 1233 sort(ToClone, 1234 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 1235 for (Instruction *I : ToClone) { 1236 Instruction *Cloned = I->clone(); 1237 Old2New[I] = Cloned; 1238 Old2New[I]->setName(I->getName()); 1239 Cloned->insertBefore(&*Builder.GetInsertPoint()); 1240 Cloned->dropUnknownNonDebugMetadata(); 1241 Cloned->setDebugLoc({}); 1242 } 1243 }; 1244 1245 // Materialize the assumptions for the reproducer using the entries in Stack. 1246 // That is, first clone the operands of the condition recursively until we 1247 // reach an external input to the reproducer and add them to the reproducer 1248 // function. Then add an ICmp for the condition (with the inverse predicate if 1249 // the entry is negated) and an assert using the ICmp. 1250 for (auto &Entry : Stack) { 1251 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1252 continue; 1253 1254 LLVM_DEBUG(dbgs() << " Materializing assumption "; 1255 dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS); 1256 dbgs() << "\n"); 1257 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1258 1259 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1260 Builder.CreateAssumption(Cmp); 1261 } 1262 1263 // Finally, clone the condition to reproduce and remap instruction operands in 1264 // the reproducer using Old2New. 1265 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1266 Entry->getTerminator()->setOperand(0, Cond); 1267 remapInstructionsInBlocks({Entry}, Old2New); 1268 1269 assert(!verifyFunction(*F, &dbgs())); 1270 } 1271 1272 static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A, 1273 Value *B, Instruction *CheckInst, 1274 ConstraintInfo &Info, unsigned NumIn, 1275 unsigned NumOut, 1276 Instruction *ContextInst) { 1277 LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n"); 1278 1279 auto R = Info.getConstraintForSolving(Pred, A, B); 1280 if (R.empty() || !R.isValid(Info)){ 1281 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1282 return std::nullopt; 1283 } 1284 1285 auto &CSToUse = Info.getCS(R.IsSigned); 1286 1287 // If there was extra information collected during decomposition, apply 1288 // it now and remove it immediately once we are done with reasoning 1289 // about the constraint. 1290 for (auto &Row : R.ExtraInfo) 1291 CSToUse.addVariableRow(Row); 1292 auto InfoRestorer = make_scope_exit([&]() { 1293 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1294 CSToUse.popLastConstraint(); 1295 }); 1296 1297 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1298 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1299 return std::nullopt; 1300 1301 LLVM_DEBUG({ 1302 dbgs() << "Condition "; 1303 dumpUnpackedICmp( 1304 dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred), 1305 A, B); 1306 dbgs() << " implied by dominating constraints\n"; 1307 CSToUse.dump(); 1308 }); 1309 return ImpliedCondition; 1310 } 1311 1312 return std::nullopt; 1313 } 1314 1315 static bool checkAndReplaceCondition( 1316 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1317 Instruction *ContextInst, Module *ReproducerModule, 1318 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1319 SmallVectorImpl<Instruction *> &ToRemove) { 1320 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1321 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1322 Constant *ConstantC = ConstantInt::getBool( 1323 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1324 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1325 ContextInst](Use &U) { 1326 auto *UserI = getContextInstForUse(U); 1327 auto *DTN = DT.getNode(UserI->getParent()); 1328 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1329 return false; 1330 if (UserI->getParent() == ContextInst->getParent() && 1331 UserI->comesBefore(ContextInst)) 1332 return false; 1333 1334 // Conditions in an assume trivially simplify to true. Skip uses 1335 // in assume calls to not destroy the available information. 1336 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1337 return !II || II->getIntrinsicID() != Intrinsic::assume; 1338 }); 1339 NumCondsRemoved++; 1340 if (Cmp->use_empty()) 1341 ToRemove.push_back(Cmp); 1342 return true; 1343 }; 1344 1345 if (auto ImpliedCondition = checkCondition( 1346 Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1), Cmp, 1347 Info, NumIn, NumOut, ContextInst)) 1348 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1349 return false; 1350 } 1351 1352 static void 1353 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1354 Module *ReproducerModule, 1355 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1356 SmallVectorImpl<StackEntry> &DFSInStack) { 1357 Info.popLastConstraint(E.IsSigned); 1358 // Remove variables in the system that went out of scope. 1359 auto &Mapping = Info.getValue2Index(E.IsSigned); 1360 for (Value *V : E.ValuesToRelease) 1361 Mapping.erase(V); 1362 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1363 DFSInStack.pop_back(); 1364 if (ReproducerModule) 1365 ReproducerCondStack.pop_back(); 1366 } 1367 1368 /// Check if either the first condition of an AND is implied by the second or 1369 /// vice versa. 1370 static bool 1371 checkAndOpImpliedByOther(FactOrCheck &CB, ConstraintInfo &Info, 1372 Module *ReproducerModule, 1373 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1374 SmallVectorImpl<StackEntry> &DFSInStack) { 1375 1376 CmpInst::Predicate Pred; 1377 Value *A, *B; 1378 Instruction *And = CB.getContextInst(); 1379 CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify()); 1380 unsigned OtherOpIdx = And->getOperand(0) == CmpToCheck ? 1 : 0; 1381 1382 // Don't try to simplify the first condition of a select by the second, as 1383 // this may make the select more poisonous than the original one. 1384 // TODO: check if the first operand may be poison. 1385 if (OtherOpIdx != 0 && isa<SelectInst>(And)) 1386 return false; 1387 1388 if (!match(And->getOperand(OtherOpIdx), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1389 return false; 1390 1391 // Optimistically add fact from first condition. 1392 unsigned OldSize = DFSInStack.size(); 1393 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1394 if (OldSize == DFSInStack.size()) 1395 return false; 1396 1397 bool Changed = false; 1398 // Check if the second condition can be simplified now. 1399 if (auto ImpliedCondition = 1400 checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0), 1401 CmpToCheck->getOperand(1), CmpToCheck, Info, CB.NumIn, 1402 CB.NumOut, CB.getContextInst())) { 1403 And->setOperand(1 - OtherOpIdx, 1404 ConstantInt::getBool(And->getType(), *ImpliedCondition)); 1405 Changed = true; 1406 } 1407 1408 // Remove entries again. 1409 while (OldSize < DFSInStack.size()) { 1410 StackEntry E = DFSInStack.back(); 1411 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1412 DFSInStack); 1413 } 1414 return Changed; 1415 } 1416 1417 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1418 unsigned NumIn, unsigned NumOut, 1419 SmallVectorImpl<StackEntry> &DFSInStack) { 1420 // If the constraint has a pre-condition, skip the constraint if it does not 1421 // hold. 1422 SmallVector<Value *> NewVariables; 1423 auto R = getConstraint(Pred, A, B, NewVariables); 1424 1425 // TODO: Support non-equality for facts as well. 1426 if (!R.isValid(*this) || R.isNe()) 1427 return; 1428 1429 LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B); 1430 dbgs() << "'\n"); 1431 bool Added = false; 1432 auto &CSToUse = getCS(R.IsSigned); 1433 if (R.Coefficients.empty()) 1434 return; 1435 1436 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1437 1438 // If R has been added to the system, add the new variables and queue it for 1439 // removal once it goes out-of-scope. 1440 if (Added) { 1441 SmallVector<Value *, 2> ValuesToRelease; 1442 auto &Value2Index = getValue2Index(R.IsSigned); 1443 for (Value *V : NewVariables) { 1444 Value2Index.insert({V, Value2Index.size() + 1}); 1445 ValuesToRelease.push_back(V); 1446 } 1447 1448 LLVM_DEBUG({ 1449 dbgs() << " constraint: "; 1450 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1451 dbgs() << "\n"; 1452 }); 1453 1454 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1455 std::move(ValuesToRelease)); 1456 1457 if (R.isEq()) { 1458 // Also add the inverted constraint for equality constraints. 1459 for (auto &Coeff : R.Coefficients) 1460 Coeff *= -1; 1461 CSToUse.addVariableRowFill(R.Coefficients); 1462 1463 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1464 SmallVector<Value *, 2>()); 1465 } 1466 } 1467 } 1468 1469 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1470 SmallVectorImpl<Instruction *> &ToRemove) { 1471 bool Changed = false; 1472 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1473 Value *Sub = nullptr; 1474 for (User *U : make_early_inc_range(II->users())) { 1475 if (match(U, m_ExtractValue<0>(m_Value()))) { 1476 if (!Sub) 1477 Sub = Builder.CreateSub(A, B); 1478 U->replaceAllUsesWith(Sub); 1479 Changed = true; 1480 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1481 U->replaceAllUsesWith(Builder.getFalse()); 1482 Changed = true; 1483 } else 1484 continue; 1485 1486 if (U->use_empty()) { 1487 auto *I = cast<Instruction>(U); 1488 ToRemove.push_back(I); 1489 I->setOperand(0, PoisonValue::get(II->getType())); 1490 Changed = true; 1491 } 1492 } 1493 1494 if (II->use_empty()) { 1495 II->eraseFromParent(); 1496 Changed = true; 1497 } 1498 return Changed; 1499 } 1500 1501 static bool 1502 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1503 SmallVectorImpl<Instruction *> &ToRemove) { 1504 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1505 ConstraintInfo &Info) { 1506 auto R = Info.getConstraintForSolving(Pred, A, B); 1507 if (R.size() < 2 || !R.isValid(Info)) 1508 return false; 1509 1510 auto &CSToUse = Info.getCS(R.IsSigned); 1511 return CSToUse.isConditionImplied(R.Coefficients); 1512 }; 1513 1514 bool Changed = false; 1515 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1516 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1517 // can be simplified to a regular sub. 1518 Value *A = II->getArgOperand(0); 1519 Value *B = II->getArgOperand(1); 1520 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1521 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1522 ConstantInt::get(A->getType(), 0), Info)) 1523 return false; 1524 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1525 } 1526 return Changed; 1527 } 1528 1529 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI, 1530 ScalarEvolution &SE, 1531 OptimizationRemarkEmitter &ORE) { 1532 bool Changed = false; 1533 DT.updateDFSNumbers(); 1534 SmallVector<Value *> FunctionArgs; 1535 for (Value &Arg : F.args()) 1536 FunctionArgs.push_back(&Arg); 1537 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1538 State S(DT, LI, SE); 1539 std::unique_ptr<Module> ReproducerModule( 1540 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1541 1542 // First, collect conditions implied by branches and blocks with their 1543 // Dominator DFS in and out numbers. 1544 for (BasicBlock &BB : F) { 1545 if (!DT.getNode(&BB)) 1546 continue; 1547 S.addInfoFor(BB); 1548 } 1549 1550 // Next, sort worklist by dominance, so that dominating conditions to check 1551 // and facts come before conditions and facts dominated by them. If a 1552 // condition to check and a fact have the same numbers, conditional facts come 1553 // first. Assume facts and checks are ordered according to their relative 1554 // order in the containing basic block. Also make sure conditions with 1555 // constant operands come before conditions without constant operands. This 1556 // increases the effectiveness of the current signed <-> unsigned fact 1557 // transfer logic. 1558 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1559 auto HasNoConstOp = [](const FactOrCheck &B) { 1560 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 1561 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 1562 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1563 }; 1564 // If both entries have the same In numbers, conditional facts come first. 1565 // Otherwise use the relative order in the basic block. 1566 if (A.NumIn == B.NumIn) { 1567 if (A.isConditionFact() && B.isConditionFact()) { 1568 bool NoConstOpA = HasNoConstOp(A); 1569 bool NoConstOpB = HasNoConstOp(B); 1570 return NoConstOpA < NoConstOpB; 1571 } 1572 if (A.isConditionFact()) 1573 return true; 1574 if (B.isConditionFact()) 1575 return false; 1576 auto *InstA = A.getContextInst(); 1577 auto *InstB = B.getContextInst(); 1578 return InstA->comesBefore(InstB); 1579 } 1580 return A.NumIn < B.NumIn; 1581 }); 1582 1583 SmallVector<Instruction *> ToRemove; 1584 1585 // Finally, process ordered worklist and eliminate implied conditions. 1586 SmallVector<StackEntry, 16> DFSInStack; 1587 SmallVector<ReproducerEntry> ReproducerCondStack; 1588 for (FactOrCheck &CB : S.WorkList) { 1589 // First, pop entries from the stack that are out-of-scope for CB. Remove 1590 // the corresponding entry from the constraint system. 1591 while (!DFSInStack.empty()) { 1592 auto &E = DFSInStack.back(); 1593 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1594 << "\n"); 1595 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1596 assert(E.NumIn <= CB.NumIn); 1597 if (CB.NumOut <= E.NumOut) 1598 break; 1599 LLVM_DEBUG({ 1600 dbgs() << "Removing "; 1601 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1602 Info.getValue2Index(E.IsSigned)); 1603 dbgs() << "\n"; 1604 }); 1605 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1606 DFSInStack); 1607 } 1608 1609 LLVM_DEBUG(dbgs() << "Processing "); 1610 1611 // For a block, check if any CmpInsts become known based on the current set 1612 // of constraints. 1613 if (CB.isCheck()) { 1614 Instruction *Inst = CB.getInstructionToSimplify(); 1615 if (!Inst) 1616 continue; 1617 LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 1618 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1619 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1620 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1621 bool Simplified = checkAndReplaceCondition( 1622 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1623 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1624 if (!Simplified && 1625 match(CB.getContextInst(), m_LogicalAnd(m_Value(), m_Value()))) { 1626 Simplified = 1627 checkAndOpImpliedByOther(CB, Info, ReproducerModule.get(), 1628 ReproducerCondStack, DFSInStack); 1629 } 1630 Changed |= Simplified; 1631 } 1632 continue; 1633 } 1634 1635 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1636 LLVM_DEBUG(dbgs() << "fact to add to the system: "; 1637 dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n"); 1638 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1639 LLVM_DEBUG( 1640 dbgs() 1641 << "Skip adding constraint because system has too many rows.\n"); 1642 return; 1643 } 1644 1645 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1646 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1647 ReproducerCondStack.emplace_back(Pred, A, B); 1648 1649 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1650 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1651 // Add dummy entries to ReproducerCondStack to keep it in sync with 1652 // DFSInStack. 1653 for (unsigned I = 0, 1654 E = (DFSInStack.size() - ReproducerCondStack.size()); 1655 I < E; ++I) { 1656 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1657 nullptr, nullptr); 1658 } 1659 } 1660 }; 1661 1662 ICmpInst::Predicate Pred; 1663 if (!CB.isConditionFact()) { 1664 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1665 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1666 AddFact(Pred, MinMax, MinMax->getLHS()); 1667 AddFact(Pred, MinMax, MinMax->getRHS()); 1668 continue; 1669 } 1670 } 1671 1672 Value *A = nullptr, *B = nullptr; 1673 if (CB.isConditionFact()) { 1674 Pred = CB.Cond.Pred; 1675 A = CB.Cond.Op0; 1676 B = CB.Cond.Op1; 1677 if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE && 1678 !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) 1679 continue; 1680 } else { 1681 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 1682 m_ICmp(Pred, m_Value(A), m_Value(B)))); 1683 (void)Matched; 1684 assert(Matched && "Must have an assume intrinsic with a icmp operand"); 1685 } 1686 AddFact(Pred, A, B); 1687 } 1688 1689 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1690 std::string S; 1691 raw_string_ostream StringS(S); 1692 ReproducerModule->print(StringS, nullptr); 1693 StringS.flush(); 1694 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1695 Rem << ore::NV("module") << S; 1696 ORE.emit(Rem); 1697 } 1698 1699 #ifndef NDEBUG 1700 unsigned SignedEntries = 1701 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1702 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1703 "updates to CS and DFSInStack are out of sync"); 1704 assert(Info.getCS(true).size() == SignedEntries && 1705 "updates to CS and DFSInStack are out of sync"); 1706 #endif 1707 1708 for (Instruction *I : ToRemove) 1709 I->eraseFromParent(); 1710 return Changed; 1711 } 1712 1713 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1714 FunctionAnalysisManager &AM) { 1715 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1716 auto &LI = AM.getResult<LoopAnalysis>(F); 1717 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1718 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1719 if (!eliminateConstraints(F, DT, LI, SE, ORE)) 1720 return PreservedAnalyses::all(); 1721 1722 PreservedAnalyses PA; 1723 PA.preserve<DominatorTreeAnalysis>(); 1724 PA.preserve<LoopAnalysis>(); 1725 PA.preserve<ScalarEvolutionAnalysis>(); 1726 PA.preserveSet<CFGAnalyses>(); 1727 return PA; 1728 } 1729