xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 782e91224601e461c019e0a4573bbccc6094fbcd)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/DebugCounter.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Scalar.h"
33 
34 #include <string>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "constraint-elimination"
40 
41 STATISTIC(NumCondsRemoved, "Number of instructions removed");
42 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
43               "Controls which conditions are eliminated");
44 
45 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
46 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
47 
48 namespace {
49 
50 class ConstraintInfo;
51 
52 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
53 struct PreconditionTy {
54   CmpInst::Predicate Pred;
55   Value *Op0;
56   Value *Op1;
57 
58   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
59       : Pred(Pred), Op0(Op0), Op1(Op1) {}
60 };
61 
62 struct ConstraintTy {
63   SmallVector<int64_t, 8> Coefficients;
64   SmallVector<PreconditionTy, 2> Preconditions;
65 
66   bool IsSigned = false;
67   bool IsEq = false;
68 
69   ConstraintTy() = default;
70 
71   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
72       : Coefficients(Coefficients), IsSigned(IsSigned) {}
73 
74   unsigned size() const { return Coefficients.size(); }
75 
76   unsigned empty() const { return Coefficients.empty(); }
77 
78   /// Returns true if any constraint has a non-zero coefficient for any of the
79   /// newly added indices. Zero coefficients for new indices are removed. If it
80   /// returns true, no new variable need to be added to the system.
81   bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) {
82     for (unsigned I = 0; I < NewIndices.size(); ++I) {
83       int64_t Last = Coefficients.pop_back_val();
84       if (Last != 0)
85         return true;
86     }
87     return false;
88   }
89 
90   /// Returns true if all preconditions for this list of constraints are
91   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
92   bool isValid(const ConstraintInfo &Info) const;
93 };
94 
95 /// Wrapper encapsulating separate constraint systems and corresponding value
96 /// mappings for both unsigned and signed information. Facts are added to and
97 /// conditions are checked against the corresponding system depending on the
98 /// signed-ness of their predicates. While the information is kept separate
99 /// based on signed-ness, certain conditions can be transferred between the two
100 /// systems.
101 class ConstraintInfo {
102   DenseMap<Value *, unsigned> UnsignedValue2Index;
103   DenseMap<Value *, unsigned> SignedValue2Index;
104 
105   ConstraintSystem UnsignedCS;
106   ConstraintSystem SignedCS;
107 
108 public:
109   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
110     return Signed ? SignedValue2Index : UnsignedValue2Index;
111   }
112   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
113     return Signed ? SignedValue2Index : UnsignedValue2Index;
114   }
115 
116   ConstraintSystem &getCS(bool Signed) {
117     return Signed ? SignedCS : UnsignedCS;
118   }
119   const ConstraintSystem &getCS(bool Signed) const {
120     return Signed ? SignedCS : UnsignedCS;
121   }
122 
123   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
124   void popLastNVariables(bool Signed, unsigned N) {
125     getCS(Signed).popLastNVariables(N);
126   }
127 };
128 
129 } // namespace
130 
131 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
132 // sum of the pairs equals \p V.  The first pair is the constant-factor and X
133 // must be nullptr. If the expression cannot be decomposed, returns an empty
134 // vector.
135 static SmallVector<std::pair<int64_t, Value *>, 4>
136 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
137           bool IsSigned) {
138 
139   auto CanUseSExt = [](ConstantInt *CI) {
140     const APInt &Val = CI->getValue();
141     return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
142   };
143   // Decompose \p V used with a signed predicate.
144   if (IsSigned) {
145     if (auto *CI = dyn_cast<ConstantInt>(V)) {
146       if (CanUseSExt(CI))
147         return {{CI->getSExtValue(), nullptr}};
148     }
149 
150     return {{0, nullptr}, {1, V}};
151   }
152 
153   if (auto *CI = dyn_cast<ConstantInt>(V)) {
154     if (CI->uge(MaxConstraintValue))
155       return {};
156     return {{CI->getZExtValue(), nullptr}};
157   }
158   auto *GEP = dyn_cast<GetElementPtrInst>(V);
159   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
160     Value *Op0, *Op1;
161     ConstantInt *CI;
162 
163     // If the index is zero-extended, it is guaranteed to be positive.
164     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
165               m_ZExt(m_Value(Op0)))) {
166       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) &&
167           CanUseSExt(CI))
168         return {{0, nullptr},
169                 {1, GEP->getPointerOperand()},
170                 {std::pow(int64_t(2), CI->getSExtValue()), Op1}};
171       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) &&
172           CanUseSExt(CI))
173         return {{CI->getSExtValue(), nullptr},
174                 {1, GEP->getPointerOperand()},
175                 {1, Op1}};
176       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
177     }
178 
179     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
180         !CI->isNegative() && CanUseSExt(CI))
181       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
182 
183     SmallVector<std::pair<int64_t, Value *>, 4> Result;
184     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
185               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) &&
186         CanUseSExt(CI))
187       Result = {{0, nullptr},
188                 {1, GEP->getPointerOperand()},
189                 {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
190     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
191                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
192              CanUseSExt(CI))
193       Result = {{CI->getSExtValue(), nullptr},
194                 {1, GEP->getPointerOperand()},
195                 {1, Op0}};
196     else {
197       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
198       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
199     }
200     // If Op0 is signed non-negative, the GEP is increasing monotonically and
201     // can be de-composed.
202     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
203                                ConstantInt::get(Op0->getType(), 0));
204     return Result;
205   }
206 
207   Value *Op0;
208   if (match(V, m_ZExt(m_Value(Op0))))
209     V = Op0;
210 
211   Value *Op1;
212   ConstantInt *CI;
213   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
214       !CI->uge(MaxConstraintValue))
215     return {{CI->getZExtValue(), nullptr}, {1, Op0}};
216   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
217       CanUseSExt(CI)) {
218     Preconditions.emplace_back(
219         CmpInst::ICMP_UGE, Op0,
220         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
221     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
222   }
223   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
224     return {{0, nullptr}, {1, Op0}, {1, Op1}};
225 
226   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI))
227     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
228   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
229     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
230 
231   return {{0, nullptr}, {1, V}};
232 }
233 
234 /// Turn a condition \p CmpI into a vector of constraints, using indices from \p
235 /// Value2Index. Additional indices for newly discovered values are added to \p
236 /// NewIndices.
237 static ConstraintTy
238 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
239               const DenseMap<Value *, unsigned> &Value2Index,
240               DenseMap<Value *, unsigned> &NewIndices) {
241   bool IsEq = false;
242   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
243   switch (Pred) {
244   case CmpInst::ICMP_UGT:
245   case CmpInst::ICMP_UGE:
246   case CmpInst::ICMP_SGT:
247   case CmpInst::ICMP_SGE: {
248     Pred = CmpInst::getSwappedPredicate(Pred);
249     std::swap(Op0, Op1);
250     break;
251   }
252   case CmpInst::ICMP_EQ:
253     if (match(Op1, m_Zero())) {
254       Pred = CmpInst::ICMP_ULE;
255     } else {
256       IsEq = true;
257       Pred = CmpInst::ICMP_ULE;
258     }
259     break;
260   case CmpInst::ICMP_NE:
261     if (!match(Op1, m_Zero()))
262       return {};
263     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
264     std::swap(Op0, Op1);
265     break;
266   default:
267     break;
268   }
269 
270   // Only ULE and ULT predicates are supported at the moment.
271   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
272       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
273     return {};
274 
275   SmallVector<PreconditionTy, 4> Preconditions;
276   bool IsSigned = CmpInst::isSigned(Pred);
277   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
278                         Preconditions, IsSigned);
279   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
280                         Preconditions, IsSigned);
281   // Skip if decomposing either of the values failed.
282   if (ADec.empty() || BDec.empty())
283     return {};
284 
285   int64_t Offset1 = ADec[0].first;
286   int64_t Offset2 = BDec[0].first;
287   Offset1 *= -1;
288 
289   // Create iterator ranges that skip the constant-factor.
290   auto VariablesA = llvm::drop_begin(ADec);
291   auto VariablesB = llvm::drop_begin(BDec);
292 
293   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
294   // new entry to NewIndices.
295   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
296     auto V2I = Value2Index.find(V);
297     if (V2I != Value2Index.end())
298       return V2I->second;
299     auto Insert =
300         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
301     return Insert.first->second;
302   };
303 
304   // Make sure all variables have entries in Value2Index or NewIndices.
305   for (const auto &KV :
306        concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
307     GetOrAddIndex(KV.second);
308 
309   // Build result constraint, by first adding all coefficients from A and then
310   // subtracting all coefficients from B.
311   ConstraintTy Res(
312       SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0),
313       IsSigned);
314   Res.IsEq = IsEq;
315   auto &R = Res.Coefficients;
316   for (const auto &KV : VariablesA)
317     R[GetOrAddIndex(KV.second)] += KV.first;
318 
319   for (const auto &KV : VariablesB)
320     R[GetOrAddIndex(KV.second)] -= KV.first;
321 
322   int64_t OffsetSum;
323   if (AddOverflow(Offset1, Offset2, OffsetSum))
324     return {};
325   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
326     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
327       return {};
328   R[0] = OffsetSum;
329   Res.Preconditions = std::move(Preconditions);
330   return Res;
331 }
332 
333 static ConstraintTy getConstraint(CmpInst *Cmp, ConstraintInfo &Info,
334                                   DenseMap<Value *, unsigned> &NewIndices) {
335   return getConstraint(
336       Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1),
337       Info.getValue2Index(CmpInst::isSigned(Cmp->getPredicate())), NewIndices);
338 }
339 
340 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
341   return Coefficients.size() > 0 &&
342          all_of(Preconditions, [&Info](const PreconditionTy &C) {
343            DenseMap<Value *, unsigned> NewIndices;
344            auto R = getConstraint(
345                C.Pred, C.Op0, C.Op1,
346                Info.getValue2Index(CmpInst::isSigned(C.Pred)), NewIndices);
347            // TODO: properly check NewIndices.
348            return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq &&
349                   R.size() >= 1 &&
350                   Info.getCS(CmpInst::isSigned(C.Pred))
351                       .isConditionImplied(R.Coefficients);
352          });
353 }
354 
355 namespace {
356 /// Represents either a condition that holds on entry to a block or a basic
357 /// block, with their respective Dominator DFS in and out numbers.
358 struct ConstraintOrBlock {
359   unsigned NumIn;
360   unsigned NumOut;
361   bool IsBlock;
362   bool Not;
363   union {
364     BasicBlock *BB;
365     CmpInst *Condition;
366   };
367 
368   ConstraintOrBlock(DomTreeNode *DTN)
369       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
370         BB(DTN->getBlock()) {}
371   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
372       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
373         Not(Not), Condition(Condition) {}
374 };
375 
376 struct StackEntry {
377   unsigned NumIn;
378   unsigned NumOut;
379   Instruction *Condition;
380   bool IsNot;
381   bool IsSigned = false;
382   /// Variables that can be removed from the system once the stack entry gets
383   /// removed.
384   SmallVector<Value *, 2> ValuesToRelease;
385 
386   StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot,
387              bool IsSigned, SmallVector<Value *, 2> ValuesToRelease)
388       : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot),
389         IsSigned(IsSigned), ValuesToRelease(ValuesToRelease) {}
390 };
391 
392 /// Keep state required to build worklist.
393 struct State {
394   DominatorTree &DT;
395   SmallVector<ConstraintOrBlock, 64> WorkList;
396 
397   State(DominatorTree &DT) : DT(DT) {}
398 
399   /// Process block \p BB and add known facts to work-list.
400   void addInfoFor(BasicBlock &BB);
401 
402   /// Returns true if we can add a known condition from BB to its successor
403   /// block Succ. Each predecessor of Succ can either be BB or be dominated
404   /// by Succ (e.g. the case when adding a condition from a pre-header to a
405   /// loop header).
406   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
407     if (BB.getSingleSuccessor()) {
408       assert(BB.getSingleSuccessor() == Succ);
409       return DT.properlyDominates(&BB, Succ);
410     }
411     return any_of(successors(&BB),
412                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
413            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
414              return Pred == &BB || DT.dominates(Succ, Pred);
415            });
416   }
417 };
418 
419 } // namespace
420 
421 #ifndef NDEBUG
422 static void dumpWithNames(ConstraintTy &C,
423                           DenseMap<Value *, unsigned> &Value2Index) {
424   SmallVector<std::string> Names(Value2Index.size(), "");
425   for (auto &KV : Value2Index) {
426     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
427   }
428   ConstraintSystem CS;
429   CS.addVariableRowFill(C.Coefficients);
430   CS.dump(Names);
431 }
432 #endif
433 
434 void State::addInfoFor(BasicBlock &BB) {
435   WorkList.emplace_back(DT.getNode(&BB));
436 
437   // True as long as long as the current instruction is guaranteed to execute.
438   bool GuaranteedToExecute = true;
439   // Scan BB for assume calls.
440   // TODO: also use this scan to queue conditions to simplify, so we can
441   // interleave facts from assumes and conditions to simplify in a single
442   // basic block. And to skip another traversal of each basic block when
443   // simplifying.
444   for (Instruction &I : BB) {
445     Value *Cond;
446     // For now, just handle assumes with a single compare as condition.
447     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
448         isa<ICmpInst>(Cond)) {
449       if (GuaranteedToExecute) {
450         // The assume is guaranteed to execute when BB is entered, hence Cond
451         // holds on entry to BB.
452         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
453       } else {
454         // Otherwise the condition only holds in the successors.
455         for (BasicBlock *Succ : successors(&BB)) {
456           if (!canAddSuccessor(BB, Succ))
457             continue;
458           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
459         }
460       }
461     }
462     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
463   }
464 
465   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
466   if (!Br || !Br->isConditional())
467     return;
468 
469   // If the condition is an OR of 2 compares and the false successor only has
470   // the current block as predecessor, queue both negated conditions for the
471   // false successor.
472   Value *Op0, *Op1;
473   if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
474       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
475     BasicBlock *FalseSuccessor = Br->getSuccessor(1);
476     if (canAddSuccessor(BB, FalseSuccessor)) {
477       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0),
478                             true);
479       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1),
480                             true);
481     }
482     return;
483   }
484 
485   // If the condition is an AND of 2 compares and the true successor only has
486   // the current block as predecessor, queue both conditions for the true
487   // successor.
488   if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
489       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
490     BasicBlock *TrueSuccessor = Br->getSuccessor(0);
491     if (canAddSuccessor(BB, TrueSuccessor)) {
492       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0),
493                             false);
494       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1),
495                             false);
496     }
497     return;
498   }
499 
500   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
501   if (!CmpI)
502     return;
503   if (canAddSuccessor(BB, Br->getSuccessor(0)))
504     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
505   if (canAddSuccessor(BB, Br->getSuccessor(1)))
506     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
507 }
508 
509 static void
510 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
511                           SmallVectorImpl<Instruction *> &ToRemove) {
512   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
513                               ConstraintInfo &Info) {
514     DenseMap<Value *, unsigned> NewIndices;
515     auto R = getConstraint(
516         Pred, A, B, Info.getValue2Index(CmpInst::isSigned(Pred)), NewIndices);
517     if (R.size() < 2 || R.needsNewIndices(NewIndices) || !R.isValid(Info))
518       return false;
519 
520     auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred));
521     return CSToUse.isConditionImplied(R.Coefficients);
522   };
523 
524   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
525     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
526     // can be simplified to a regular sub.
527     Value *A = II->getArgOperand(0);
528     Value *B = II->getArgOperand(1);
529     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
530         !DoesConditionHold(CmpInst::ICMP_SGE, B,
531                            ConstantInt::get(A->getType(), 0), Info))
532       return;
533 
534     IRBuilder<> Builder(II->getParent(), II->getIterator());
535     Value *Sub = nullptr;
536     for (User *U : make_early_inc_range(II->users())) {
537       if (match(U, m_ExtractValue<0>(m_Value()))) {
538         if (!Sub)
539           Sub = Builder.CreateSub(A, B);
540         U->replaceAllUsesWith(Sub);
541       } else if (match(U, m_ExtractValue<1>(m_Value())))
542         U->replaceAllUsesWith(Builder.getFalse());
543       else
544         continue;
545 
546       if (U->use_empty()) {
547         auto *I = cast<Instruction>(U);
548         ToRemove.push_back(I);
549         I->setOperand(0, PoisonValue::get(II->getType()));
550       }
551     }
552 
553     if (II->use_empty())
554       II->eraseFromParent();
555   }
556 }
557 
558 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
559   bool Changed = false;
560   DT.updateDFSNumbers();
561 
562   ConstraintInfo Info;
563   State S(DT);
564 
565   // First, collect conditions implied by branches and blocks with their
566   // Dominator DFS in and out numbers.
567   for (BasicBlock &BB : F) {
568     if (!DT.getNode(&BB))
569       continue;
570     S.addInfoFor(BB);
571   }
572 
573   // Next, sort worklist by dominance, so that dominating blocks and conditions
574   // come before blocks and conditions dominated by them. If a block and a
575   // condition have the same numbers, the condition comes before the block, as
576   // it holds on entry to the block.
577   sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
578     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
579   });
580 
581   SmallVector<Instruction *> ToRemove;
582 
583   // Finally, process ordered worklist and eliminate implied conditions.
584   SmallVector<StackEntry, 16> DFSInStack;
585   for (ConstraintOrBlock &CB : S.WorkList) {
586     // First, pop entries from the stack that are out-of-scope for CB. Remove
587     // the corresponding entry from the constraint system.
588     while (!DFSInStack.empty()) {
589       auto &E = DFSInStack.back();
590       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
591                         << "\n");
592       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
593       assert(E.NumIn <= CB.NumIn);
594       if (CB.NumOut <= E.NumOut)
595         break;
596       LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
597                         << "\n");
598       Info.popLastConstraint(E.IsSigned);
599       // Remove variables in the system that went out of scope.
600       auto &Mapping = Info.getValue2Index(E.IsSigned);
601       for (Value *V : E.ValuesToRelease)
602         Mapping.erase(V);
603       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
604       DFSInStack.pop_back();
605     }
606 
607     LLVM_DEBUG({
608       dbgs() << "Processing ";
609       if (CB.IsBlock)
610         dbgs() << *CB.BB;
611       else
612         dbgs() << *CB.Condition;
613       dbgs() << "\n";
614     });
615 
616     // For a block, check if any CmpInsts become known based on the current set
617     // of constraints.
618     if (CB.IsBlock) {
619       for (Instruction &I : make_early_inc_range(*CB.BB)) {
620         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
621           tryToSimplifyOverflowMath(II, Info, ToRemove);
622           continue;
623         }
624         auto *Cmp = dyn_cast<ICmpInst>(&I);
625         if (!Cmp)
626           continue;
627 
628         DenseMap<Value *, unsigned> NewIndices;
629         auto R = getConstraint(Cmp, Info, NewIndices);
630         if (R.IsEq || R.empty() || R.needsNewIndices(NewIndices) ||
631             !R.isValid(Info))
632           continue;
633 
634         auto &CSToUse = Info.getCS(R.IsSigned);
635         if (CSToUse.isConditionImplied(R.Coefficients)) {
636           if (!DebugCounter::shouldExecute(EliminatedCounter))
637             continue;
638 
639           LLVM_DEBUG(dbgs() << "Condition " << *Cmp
640                             << " implied by dominating constraints\n");
641           LLVM_DEBUG({
642             for (auto &E : reverse(DFSInStack))
643               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
644           });
645           Cmp->replaceUsesWithIf(
646               ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
647                 // Conditions in an assume trivially simplify to true. Skip uses
648                 // in assume calls to not destroy the available information.
649                 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
650                 return !II || II->getIntrinsicID() != Intrinsic::assume;
651               });
652           NumCondsRemoved++;
653           Changed = true;
654         }
655         if (CSToUse.isConditionImplied(
656                 ConstraintSystem::negate(R.Coefficients))) {
657           if (!DebugCounter::shouldExecute(EliminatedCounter))
658             continue;
659 
660           LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
661                             << " implied by dominating constraints\n");
662           LLVM_DEBUG({
663             for (auto &E : reverse(DFSInStack))
664               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
665           });
666           Cmp->replaceAllUsesWith(
667               ConstantInt::getFalse(F.getParent()->getContext()));
668           NumCondsRemoved++;
669           Changed = true;
670         }
671       }
672       continue;
673     }
674 
675     // Set up a function to restore the predicate at the end of the scope if it
676     // has been negated. Negate the predicate in-place, if required.
677     auto *CI = dyn_cast<ICmpInst>(CB.Condition);
678     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
679       if (CB.Not && CI)
680         CI->setPredicate(CI->getInversePredicate());
681     });
682     if (CB.Not) {
683       if (CI) {
684         CI->setPredicate(CI->getInversePredicate());
685       } else {
686         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
687         continue;
688       }
689     }
690 
691     // Otherwise, add the condition to the system and stack, if we can transform
692     // it into a constraint.
693     DenseMap<Value *, unsigned> NewIndices;
694     auto R = getConstraint(CB.Condition, Info, NewIndices);
695     if (!R.isValid(Info))
696       continue;
697 
698     LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n");
699     bool Added = false;
700     assert(CmpInst::isSigned(CB.Condition->getPredicate()) == R.IsSigned &&
701            "condition and constraint signs must match");
702     auto &CSToUse = Info.getCS(R.IsSigned);
703     if (R.Coefficients.empty())
704       continue;
705 
706     Added |= CSToUse.addVariableRowFill(R.Coefficients);
707 
708     // If R has been added to the system, queue it for removal once it goes
709     // out-of-scope.
710     if (Added) {
711       SmallVector<Value *, 2> ValuesToRelease;
712       for (auto &KV : NewIndices) {
713         Info.getValue2Index(R.IsSigned).insert(KV);
714         ValuesToRelease.push_back(KV.first);
715       }
716 
717       LLVM_DEBUG({
718         dbgs() << "  constraint: ";
719         dumpWithNames(R, Info.getValue2Index(R.IsSigned));
720       });
721 
722       DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not,
723                               R.IsSigned, ValuesToRelease);
724 
725       if (R.IsEq) {
726         // Also add the inverted constraint for equality constraints.
727         for (auto &Coeff : R.Coefficients)
728           Coeff *= -1;
729         CSToUse.addVariableRowFill(R.Coefficients);
730 
731         DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not,
732                                 R.IsSigned, SmallVector<Value *, 2>());
733       }
734     }
735   }
736 
737 #ifndef NDEBUG
738   unsigned SignedEntries =
739       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
740   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
741          "updates to CS and DFSInStack are out of sync");
742   assert(Info.getCS(true).size() == SignedEntries &&
743          "updates to CS and DFSInStack are out of sync");
744 #endif
745 
746   for (Instruction *I : ToRemove)
747     I->eraseFromParent();
748   return Changed;
749 }
750 
751 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
752                                                  FunctionAnalysisManager &AM) {
753   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
754   if (!eliminateConstraints(F, DT))
755     return PreservedAnalyses::all();
756 
757   PreservedAnalyses PA;
758   PA.preserve<DominatorTreeAnalysis>();
759   PA.preserveSet<CFGAnalyses>();
760   return PA;
761 }
762 
763 namespace {
764 
765 class ConstraintElimination : public FunctionPass {
766 public:
767   static char ID;
768 
769   ConstraintElimination() : FunctionPass(ID) {
770     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
771   }
772 
773   bool runOnFunction(Function &F) override {
774     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
775     return eliminateConstraints(F, DT);
776   }
777 
778   void getAnalysisUsage(AnalysisUsage &AU) const override {
779     AU.setPreservesCFG();
780     AU.addRequired<DominatorTreeWrapperPass>();
781     AU.addPreserved<GlobalsAAWrapperPass>();
782     AU.addPreserved<DominatorTreeWrapperPass>();
783   }
784 };
785 
786 } // end anonymous namespace
787 
788 char ConstraintElimination::ID = 0;
789 
790 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
791                       "Constraint Elimination", false, false)
792 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
793 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
794 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
795                     "Constraint Elimination", false, false)
796 
797 FunctionPass *llvm::createConstraintEliminationPass() {
798   return new ConstraintElimination();
799 }
800