1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/DebugCounter.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Transforms/Scalar.h" 35 36 #include <cmath> 37 #include <string> 38 39 using namespace llvm; 40 using namespace PatternMatch; 41 42 #define DEBUG_TYPE "constraint-elimination" 43 44 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 45 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 46 "Controls which conditions are eliminated"); 47 48 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 49 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 50 51 namespace { 52 53 class ConstraintInfo; 54 55 struct StackEntry { 56 unsigned NumIn; 57 unsigned NumOut; 58 bool IsSigned = false; 59 /// Variables that can be removed from the system once the stack entry gets 60 /// removed. 61 SmallVector<Value *, 2> ValuesToRelease; 62 63 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 64 SmallVector<Value *, 2> ValuesToRelease) 65 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 66 ValuesToRelease(ValuesToRelease) {} 67 }; 68 69 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 70 struct PreconditionTy { 71 CmpInst::Predicate Pred; 72 Value *Op0; 73 Value *Op1; 74 75 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 76 : Pred(Pred), Op0(Op0), Op1(Op1) {} 77 }; 78 79 struct ConstraintTy { 80 SmallVector<int64_t, 8> Coefficients; 81 SmallVector<PreconditionTy, 2> Preconditions; 82 83 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 84 85 bool IsSigned = false; 86 bool IsEq = false; 87 88 ConstraintTy() = default; 89 90 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 91 : Coefficients(Coefficients), IsSigned(IsSigned) {} 92 93 unsigned size() const { return Coefficients.size(); } 94 95 unsigned empty() const { return Coefficients.empty(); } 96 97 /// Returns true if all preconditions for this list of constraints are 98 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 99 bool isValid(const ConstraintInfo &Info) const; 100 }; 101 102 /// Wrapper encapsulating separate constraint systems and corresponding value 103 /// mappings for both unsigned and signed information. Facts are added to and 104 /// conditions are checked against the corresponding system depending on the 105 /// signed-ness of their predicates. While the information is kept separate 106 /// based on signed-ness, certain conditions can be transferred between the two 107 /// systems. 108 class ConstraintInfo { 109 DenseMap<Value *, unsigned> UnsignedValue2Index; 110 DenseMap<Value *, unsigned> SignedValue2Index; 111 112 ConstraintSystem UnsignedCS; 113 ConstraintSystem SignedCS; 114 115 const DataLayout &DL; 116 117 public: 118 ConstraintInfo(const DataLayout &DL) : DL(DL) {} 119 120 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 121 return Signed ? SignedValue2Index : UnsignedValue2Index; 122 } 123 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 124 return Signed ? SignedValue2Index : UnsignedValue2Index; 125 } 126 127 ConstraintSystem &getCS(bool Signed) { 128 return Signed ? SignedCS : UnsignedCS; 129 } 130 const ConstraintSystem &getCS(bool Signed) const { 131 return Signed ? SignedCS : UnsignedCS; 132 } 133 134 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 135 void popLastNVariables(bool Signed, unsigned N) { 136 getCS(Signed).popLastNVariables(N); 137 } 138 139 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 140 141 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 142 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 143 144 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 145 /// constraints, using indices from the corresponding constraint system. 146 /// New variables that need to be added to the system are collected in 147 /// \p NewVariables. 148 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 149 SmallVectorImpl<Value *> &NewVariables) const; 150 151 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 152 /// constraints using getConstraint. Returns an empty constraint if the result 153 /// cannot be used to query the existing constraint system, e.g. because it 154 /// would require adding new variables. Also tries to convert signed 155 /// predicates to unsigned ones if possible to allow using the unsigned system 156 /// which increases the effectiveness of the signed <-> unsigned transfer 157 /// logic. 158 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 159 Value *Op1) const; 160 161 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 162 /// system if \p Pred is signed/unsigned. 163 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 164 unsigned NumIn, unsigned NumOut, 165 SmallVectorImpl<StackEntry> &DFSInStack); 166 }; 167 168 /// Represents a (Coefficient * Variable) entry after IR decomposition. 169 struct DecompEntry { 170 int64_t Coefficient; 171 Value *Variable; 172 /// True if the variable is known positive in the current constraint. 173 bool IsKnownPositive; 174 175 DecompEntry(int64_t Coefficient, Value *Variable, 176 bool IsKnownPositive = false) 177 : Coefficient(Coefficient), Variable(Variable), 178 IsKnownPositive(IsKnownPositive) {} 179 }; 180 181 } // namespace 182 183 static SmallVector<DecompEntry, 4> 184 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 185 bool IsSigned, const DataLayout &DL); 186 187 static bool canUseSExt(ConstantInt *CI) { 188 const APInt &Val = CI->getValue(); 189 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 190 } 191 192 // A helper to multiply 2 signed integers where overflowing is allowed. 193 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 194 int64_t Result; 195 MulOverflow(A, B, Result); 196 return Result; 197 } 198 199 static SmallVector<DecompEntry, 4> 200 decomposeGEP(GetElementPtrInst &GEP, 201 SmallVector<PreconditionTy, 4> &Preconditions, bool IsSigned, 202 const DataLayout &DL) { 203 // Do not reason about pointers where the index size is larger than 64 bits, 204 // as the coefficients used to encode constraints are 64 bit integers. 205 unsigned AS = 206 cast<PointerType>(GEP.getPointerOperand()->getType())->getAddressSpace(); 207 if (DL.getIndexSizeInBits(AS) > 64) 208 return {}; 209 210 auto GTI = gep_type_begin(GEP); 211 if (GEP.getNumOperands() != 2 || !GEP.isInBounds() || 212 isa<ScalableVectorType>(GTI.getIndexedType())) 213 return {{0, nullptr}, {1, &GEP}}; 214 215 int64_t Scale = static_cast<int64_t>( 216 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 217 // Handle the (gep (gep ....), C) case by incrementing the constant 218 // coefficient of the inner GEP, if C is a constant. 219 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand()); 220 if (InnerGEP && InnerGEP->getNumOperands() == 2 && 221 isa<ConstantInt>(GEP.getOperand(1))) { 222 APInt Offset = cast<ConstantInt>(GEP.getOperand(1))->getValue(); 223 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 224 Result[0].Coefficient += multiplyWithOverflow(Scale, Offset.getSExtValue()); 225 if (Offset.isNegative()) { 226 // Add pre-condition ensuring the GEP is increasing monotonically and 227 // can be de-composed. 228 Preconditions.emplace_back( 229 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 230 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 231 -1 * Offset.getSExtValue())); 232 } 233 return Result; 234 } 235 236 Value *Op0, *Op1; 237 ConstantInt *CI; 238 // If the index is zero-extended, it is guaranteed to be positive. 239 if (match(GEP.getOperand(GEP.getNumOperands() - 1), m_ZExt(m_Value(Op0)))) { 240 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) 241 return {{0, nullptr}, 242 {1, GEP.getPointerOperand()}, 243 {multiplyWithOverflow( 244 Scale, int64_t(std::pow(int64_t(2), CI->getSExtValue()))), 245 Op1}}; 246 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) && 247 canUseSExt(CI) && match(Op0, m_NUWAdd(m_Value(), m_Value()))) 248 return {{multiplyWithOverflow(Scale, CI->getSExtValue()), nullptr}, 249 {1, GEP.getPointerOperand()}, 250 {Scale, Op1}}; 251 252 return {{0, nullptr}, {1, GEP.getPointerOperand()}, {Scale, Op0, true}}; 253 } 254 255 if (match(GEP.getOperand(GEP.getNumOperands() - 1), m_ConstantInt(CI)) && 256 !CI->isNegative() && canUseSExt(CI)) 257 return {{multiplyWithOverflow(Scale, CI->getSExtValue()), nullptr}, 258 {1, GEP.getPointerOperand()}}; 259 260 SmallVector<DecompEntry, 4> Result; 261 if (match(GEP.getOperand(GEP.getNumOperands() - 1), 262 m_NSWShl(m_Value(Op0), m_ConstantInt(CI))) && 263 canUseSExt(CI)) 264 Result = {{0, nullptr}, 265 {1, GEP.getPointerOperand()}, 266 {multiplyWithOverflow( 267 Scale, int64_t(std::pow(int64_t(2), CI->getSExtValue()))), 268 Op0}}; 269 else if (match(GEP.getOperand(GEP.getNumOperands() - 1), 270 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) && 271 canUseSExt(CI)) 272 Result = {{multiplyWithOverflow(Scale, CI->getSExtValue()), nullptr}, 273 {1, GEP.getPointerOperand()}, 274 {Scale, Op0}}; 275 else { 276 Op0 = GEP.getOperand(GEP.getNumOperands() - 1); 277 Result = {{0, nullptr}, {1, GEP.getPointerOperand()}, {Scale, Op0}}; 278 } 279 // If Op0 is signed non-negative, the GEP is increasing monotonically and 280 // can be de-composed. 281 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 282 ConstantInt::get(Op0->getType(), 0)); 283 return Result; 284 } 285 286 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable 287 // } where Coefficient * Variable. The sum of the pairs equals \p V. The first 288 // pair is the constant-factor and X must be nullptr. If the expression cannot 289 // be decomposed, returns an empty vector. 290 static SmallVector<DecompEntry, 4> 291 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 292 bool IsSigned, const DataLayout &DL) { 293 294 // Decompose \p V used with a signed predicate. 295 if (IsSigned) { 296 if (auto *CI = dyn_cast<ConstantInt>(V)) { 297 if (canUseSExt(CI)) 298 return {{CI->getSExtValue(), nullptr}}; 299 } 300 301 return {{0, nullptr}, {1, V}}; 302 } 303 304 if (auto *CI = dyn_cast<ConstantInt>(V)) { 305 if (CI->uge(MaxConstraintValue)) 306 return {}; 307 return {{int64_t(CI->getZExtValue()), nullptr}}; 308 } 309 310 if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) 311 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 312 313 Value *Op0; 314 bool IsKnownPositive = false; 315 if (match(V, m_ZExt(m_Value(Op0)))) { 316 IsKnownPositive = true; 317 V = Op0; 318 } 319 320 auto MergeResults = [&Preconditions, IsSigned, 321 DL](Value *A, Value *B, 322 bool IsSignedB) -> SmallVector<DecompEntry, 4> { 323 auto ResA = decompose(A, Preconditions, IsSigned, DL); 324 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 325 if (ResA.empty() || ResB.empty()) 326 return {}; 327 ResA[0].Coefficient += ResB[0].Coefficient; 328 append_range(ResA, drop_begin(ResB)); 329 return ResA; 330 }; 331 Value *Op1; 332 ConstantInt *CI; 333 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 334 return MergeResults(Op0, Op1, IsSigned); 335 } 336 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 337 canUseSExt(CI)) { 338 Preconditions.emplace_back( 339 CmpInst::ICMP_UGE, Op0, 340 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 341 return MergeResults(Op0, CI, true); 342 } 343 344 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 345 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 346 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 347 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 348 349 return {{0, nullptr}, {1, V, IsKnownPositive}}; 350 } 351 352 ConstraintTy 353 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 354 SmallVectorImpl<Value *> &NewVariables) const { 355 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 356 bool IsEq = false; 357 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 358 switch (Pred) { 359 case CmpInst::ICMP_UGT: 360 case CmpInst::ICMP_UGE: 361 case CmpInst::ICMP_SGT: 362 case CmpInst::ICMP_SGE: { 363 Pred = CmpInst::getSwappedPredicate(Pred); 364 std::swap(Op0, Op1); 365 break; 366 } 367 case CmpInst::ICMP_EQ: 368 if (match(Op1, m_Zero())) { 369 Pred = CmpInst::ICMP_ULE; 370 } else { 371 IsEq = true; 372 Pred = CmpInst::ICMP_ULE; 373 } 374 break; 375 case CmpInst::ICMP_NE: 376 if (!match(Op1, m_Zero())) 377 return {}; 378 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 379 std::swap(Op0, Op1); 380 break; 381 default: 382 break; 383 } 384 385 // Only ULE and ULT predicates are supported at the moment. 386 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 387 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 388 return {}; 389 390 SmallVector<PreconditionTy, 4> Preconditions; 391 bool IsSigned = CmpInst::isSigned(Pred); 392 auto &Value2Index = getValue2Index(IsSigned); 393 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 394 Preconditions, IsSigned, DL); 395 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 396 Preconditions, IsSigned, DL); 397 // Skip if decomposing either of the values failed. 398 if (ADec.empty() || BDec.empty()) 399 return {}; 400 401 int64_t Offset1 = ADec[0].Coefficient; 402 int64_t Offset2 = BDec[0].Coefficient; 403 Offset1 *= -1; 404 405 // Create iterator ranges that skip the constant-factor. 406 auto VariablesA = llvm::drop_begin(ADec); 407 auto VariablesB = llvm::drop_begin(BDec); 408 409 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 410 // new entry to NewVariables. 411 DenseMap<Value *, unsigned> NewIndexMap; 412 auto GetOrAddIndex = [&Value2Index, &NewVariables, 413 &NewIndexMap](Value *V) -> unsigned { 414 auto V2I = Value2Index.find(V); 415 if (V2I != Value2Index.end()) 416 return V2I->second; 417 auto Insert = 418 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 419 if (Insert.second) 420 NewVariables.push_back(V); 421 return Insert.first->second; 422 }; 423 424 // Make sure all variables have entries in Value2Index or NewVariables. 425 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 426 GetOrAddIndex(KV.Variable); 427 428 // Build result constraint, by first adding all coefficients from A and then 429 // subtracting all coefficients from B. 430 ConstraintTy Res( 431 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 432 IsSigned); 433 // Collect variables that are known to be positive in all uses in the 434 // constraint. 435 DenseMap<Value *, bool> KnownPositiveVariables; 436 Res.IsEq = IsEq; 437 auto &R = Res.Coefficients; 438 for (const auto &KV : VariablesA) { 439 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 440 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 441 I.first->second &= KV.IsKnownPositive; 442 } 443 444 for (const auto &KV : VariablesB) { 445 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 446 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 447 I.first->second &= KV.IsKnownPositive; 448 } 449 450 int64_t OffsetSum; 451 if (AddOverflow(Offset1, Offset2, OffsetSum)) 452 return {}; 453 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 454 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 455 return {}; 456 R[0] = OffsetSum; 457 Res.Preconditions = std::move(Preconditions); 458 459 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 460 // variables. 461 while (!NewVariables.empty()) { 462 int64_t Last = R.back(); 463 if (Last != 0) 464 break; 465 R.pop_back(); 466 Value *RemovedV = NewVariables.pop_back_val(); 467 NewIndexMap.erase(RemovedV); 468 } 469 470 // Add extra constraints for variables that are known positive. 471 for (auto &KV : KnownPositiveVariables) { 472 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 473 NewIndexMap.find(KV.first) == NewIndexMap.end())) 474 continue; 475 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 476 C[GetOrAddIndex(KV.first)] = -1; 477 Res.ExtraInfo.push_back(C); 478 } 479 return Res; 480 } 481 482 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 483 Value *Op0, 484 Value *Op1) const { 485 // If both operands are known to be non-negative, change signed predicates to 486 // unsigned ones. This increases the reasoning effectiveness in combination 487 // with the signed <-> unsigned transfer logic. 488 if (CmpInst::isSigned(Pred) && 489 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 490 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 491 Pred = CmpInst::getUnsignedPredicate(Pred); 492 493 SmallVector<Value *> NewVariables; 494 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 495 if (R.IsEq || !NewVariables.empty()) 496 return {}; 497 return R; 498 } 499 500 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 501 return Coefficients.size() > 0 && 502 all_of(Preconditions, [&Info](const PreconditionTy &C) { 503 return Info.doesHold(C.Pred, C.Op0, C.Op1); 504 }); 505 } 506 507 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 508 Value *B) const { 509 auto R = getConstraintForSolving(Pred, A, B); 510 return R.Preconditions.empty() && !R.empty() && 511 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 512 } 513 514 void ConstraintInfo::transferToOtherSystem( 515 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 516 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 517 // Check if we can combine facts from the signed and unsigned systems to 518 // derive additional facts. 519 if (!A->getType()->isIntegerTy()) 520 return; 521 // FIXME: This currently depends on the order we add facts. Ideally we 522 // would first add all known facts and only then try to add additional 523 // facts. 524 switch (Pred) { 525 default: 526 break; 527 case CmpInst::ICMP_ULT: 528 // If B is a signed positive constant, A >=s 0 and A <s B. 529 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 530 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 531 NumOut, DFSInStack); 532 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 533 } 534 break; 535 case CmpInst::ICMP_SLT: 536 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 537 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 538 break; 539 case CmpInst::ICMP_SGT: 540 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 541 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 542 NumOut, DFSInStack); 543 break; 544 case CmpInst::ICMP_SGE: 545 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 546 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 547 } 548 break; 549 } 550 } 551 552 namespace { 553 /// Represents either a condition that holds on entry to a block or a basic 554 /// block, with their respective Dominator DFS in and out numbers. 555 struct ConstraintOrBlock { 556 unsigned NumIn; 557 unsigned NumOut; 558 bool IsBlock; 559 bool Not; 560 union { 561 BasicBlock *BB; 562 CmpInst *Condition; 563 }; 564 565 ConstraintOrBlock(DomTreeNode *DTN) 566 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 567 BB(DTN->getBlock()) {} 568 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 569 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 570 Not(Not), Condition(Condition) {} 571 }; 572 573 /// Keep state required to build worklist. 574 struct State { 575 DominatorTree &DT; 576 SmallVector<ConstraintOrBlock, 64> WorkList; 577 578 State(DominatorTree &DT) : DT(DT) {} 579 580 /// Process block \p BB and add known facts to work-list. 581 void addInfoFor(BasicBlock &BB); 582 583 /// Returns true if we can add a known condition from BB to its successor 584 /// block Succ. Each predecessor of Succ can either be BB or be dominated 585 /// by Succ (e.g. the case when adding a condition from a pre-header to a 586 /// loop header). 587 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 588 if (BB.getSingleSuccessor()) { 589 assert(BB.getSingleSuccessor() == Succ); 590 return DT.properlyDominates(&BB, Succ); 591 } 592 return any_of(successors(&BB), 593 [Succ](const BasicBlock *S) { return S != Succ; }) && 594 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 595 return Pred == &BB || DT.dominates(Succ, Pred); 596 }); 597 } 598 }; 599 600 } // namespace 601 602 #ifndef NDEBUG 603 static void dumpWithNames(const ConstraintSystem &CS, 604 DenseMap<Value *, unsigned> &Value2Index) { 605 SmallVector<std::string> Names(Value2Index.size(), ""); 606 for (auto &KV : Value2Index) { 607 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 608 } 609 CS.dump(Names); 610 } 611 612 static void dumpWithNames(ArrayRef<int64_t> C, 613 DenseMap<Value *, unsigned> &Value2Index) { 614 ConstraintSystem CS; 615 CS.addVariableRowFill(C); 616 dumpWithNames(CS, Value2Index); 617 } 618 #endif 619 620 void State::addInfoFor(BasicBlock &BB) { 621 WorkList.emplace_back(DT.getNode(&BB)); 622 623 // True as long as long as the current instruction is guaranteed to execute. 624 bool GuaranteedToExecute = true; 625 // Scan BB for assume calls. 626 // TODO: also use this scan to queue conditions to simplify, so we can 627 // interleave facts from assumes and conditions to simplify in a single 628 // basic block. And to skip another traversal of each basic block when 629 // simplifying. 630 for (Instruction &I : BB) { 631 Value *Cond; 632 // For now, just handle assumes with a single compare as condition. 633 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 634 isa<ICmpInst>(Cond)) { 635 if (GuaranteedToExecute) { 636 // The assume is guaranteed to execute when BB is entered, hence Cond 637 // holds on entry to BB. 638 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 639 } else { 640 // Otherwise the condition only holds in the successors. 641 for (BasicBlock *Succ : successors(&BB)) { 642 if (!canAddSuccessor(BB, Succ)) 643 continue; 644 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false); 645 } 646 } 647 } 648 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 649 } 650 651 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 652 if (!Br || !Br->isConditional()) 653 return; 654 655 Value *Cond = Br->getCondition(); 656 657 // If the condition is a chain of ORs/AND and the successor only has the 658 // current block as predecessor, queue conditions for the successor. 659 Value *Op0, *Op1; 660 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 661 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 662 bool IsOr = match(Cond, m_LogicalOr()); 663 bool IsAnd = match(Cond, m_LogicalAnd()); 664 // If there's a select that matches both AND and OR, we need to commit to 665 // one of the options. Arbitrarily pick OR. 666 if (IsOr && IsAnd) 667 IsAnd = false; 668 669 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 670 if (canAddSuccessor(BB, Successor)) { 671 SmallVector<Value *> CondWorkList; 672 SmallPtrSet<Value *, 8> SeenCond; 673 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 674 if (SeenCond.insert(V).second) 675 CondWorkList.push_back(V); 676 }; 677 QueueValue(Op1); 678 QueueValue(Op0); 679 while (!CondWorkList.empty()) { 680 Value *Cur = CondWorkList.pop_back_val(); 681 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 682 WorkList.emplace_back(DT.getNode(Successor), Cmp, IsOr); 683 continue; 684 } 685 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 686 QueueValue(Op1); 687 QueueValue(Op0); 688 continue; 689 } 690 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 691 QueueValue(Op1); 692 QueueValue(Op0); 693 continue; 694 } 695 } 696 } 697 return; 698 } 699 700 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 701 if (!CmpI) 702 return; 703 if (canAddSuccessor(BB, Br->getSuccessor(0))) 704 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 705 if (canAddSuccessor(BB, Br->getSuccessor(1))) 706 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 707 } 708 709 static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) { 710 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 711 CmpInst::Predicate Pred = Cmp->getPredicate(); 712 Value *A = Cmp->getOperand(0); 713 Value *B = Cmp->getOperand(1); 714 715 auto R = Info.getConstraintForSolving(Pred, A, B); 716 if (R.empty() || !R.isValid(Info)) 717 return false; 718 719 auto &CSToUse = Info.getCS(R.IsSigned); 720 721 // If there was extra information collected during decomposition, apply 722 // it now and remove it immediately once we are done with reasoning 723 // about the constraint. 724 for (auto &Row : R.ExtraInfo) 725 CSToUse.addVariableRow(Row); 726 auto InfoRestorer = make_scope_exit([&]() { 727 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 728 CSToUse.popLastConstraint(); 729 }); 730 731 bool Changed = false; 732 LLVMContext &Ctx = Cmp->getModule()->getContext(); 733 if (CSToUse.isConditionImplied(R.Coefficients)) { 734 if (!DebugCounter::shouldExecute(EliminatedCounter)) 735 return false; 736 737 LLVM_DEBUG({ 738 dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n"; 739 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 740 }); 741 Cmp->replaceUsesWithIf(ConstantInt::getTrue(Ctx), [](Use &U) { 742 // Conditions in an assume trivially simplify to true. Skip uses 743 // in assume calls to not destroy the available information. 744 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 745 return !II || II->getIntrinsicID() != Intrinsic::assume; 746 }); 747 NumCondsRemoved++; 748 Changed = true; 749 } 750 if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) { 751 if (!DebugCounter::shouldExecute(EliminatedCounter)) 752 return false; 753 754 LLVM_DEBUG({ 755 dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n"; 756 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 757 }); 758 Cmp->replaceAllUsesWith(ConstantInt::getFalse(Ctx)); 759 NumCondsRemoved++; 760 Changed = true; 761 } 762 return Changed; 763 } 764 765 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 766 unsigned NumIn, unsigned NumOut, 767 SmallVectorImpl<StackEntry> &DFSInStack) { 768 // If the constraint has a pre-condition, skip the constraint if it does not 769 // hold. 770 SmallVector<Value *> NewVariables; 771 auto R = getConstraint(Pred, A, B, NewVariables); 772 if (!R.isValid(*this)) 773 return; 774 775 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; 776 A->printAsOperand(dbgs(), false); dbgs() << ", "; 777 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 778 bool Added = false; 779 auto &CSToUse = getCS(R.IsSigned); 780 if (R.Coefficients.empty()) 781 return; 782 783 Added |= CSToUse.addVariableRowFill(R.Coefficients); 784 785 // If R has been added to the system, add the new variables and queue it for 786 // removal once it goes out-of-scope. 787 if (Added) { 788 SmallVector<Value *, 2> ValuesToRelease; 789 auto &Value2Index = getValue2Index(R.IsSigned); 790 for (Value *V : NewVariables) { 791 Value2Index.insert({V, Value2Index.size() + 1}); 792 ValuesToRelease.push_back(V); 793 } 794 795 LLVM_DEBUG({ 796 dbgs() << " constraint: "; 797 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 798 dbgs() << "\n"; 799 }); 800 801 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease); 802 803 if (R.IsEq) { 804 // Also add the inverted constraint for equality constraints. 805 for (auto &Coeff : R.Coefficients) 806 Coeff *= -1; 807 CSToUse.addVariableRowFill(R.Coefficients); 808 809 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 810 SmallVector<Value *, 2>()); 811 } 812 } 813 } 814 815 static bool 816 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 817 SmallVectorImpl<Instruction *> &ToRemove) { 818 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 819 ConstraintInfo &Info) { 820 auto R = Info.getConstraintForSolving(Pred, A, B); 821 if (R.size() < 2 || !R.isValid(Info)) 822 return false; 823 824 auto &CSToUse = Info.getCS(R.IsSigned); 825 return CSToUse.isConditionImplied(R.Coefficients); 826 }; 827 828 bool Changed = false; 829 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 830 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 831 // can be simplified to a regular sub. 832 Value *A = II->getArgOperand(0); 833 Value *B = II->getArgOperand(1); 834 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 835 !DoesConditionHold(CmpInst::ICMP_SGE, B, 836 ConstantInt::get(A->getType(), 0), Info)) 837 return false; 838 839 IRBuilder<> Builder(II->getParent(), II->getIterator()); 840 Value *Sub = nullptr; 841 for (User *U : make_early_inc_range(II->users())) { 842 if (match(U, m_ExtractValue<0>(m_Value()))) { 843 if (!Sub) 844 Sub = Builder.CreateSub(A, B); 845 U->replaceAllUsesWith(Sub); 846 Changed = true; 847 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 848 U->replaceAllUsesWith(Builder.getFalse()); 849 Changed = true; 850 } else 851 continue; 852 853 if (U->use_empty()) { 854 auto *I = cast<Instruction>(U); 855 ToRemove.push_back(I); 856 I->setOperand(0, PoisonValue::get(II->getType())); 857 Changed = true; 858 } 859 } 860 861 if (II->use_empty()) { 862 II->eraseFromParent(); 863 Changed = true; 864 } 865 } 866 return Changed; 867 } 868 869 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 870 bool Changed = false; 871 DT.updateDFSNumbers(); 872 873 ConstraintInfo Info(F.getParent()->getDataLayout()); 874 State S(DT); 875 876 // First, collect conditions implied by branches and blocks with their 877 // Dominator DFS in and out numbers. 878 for (BasicBlock &BB : F) { 879 if (!DT.getNode(&BB)) 880 continue; 881 S.addInfoFor(BB); 882 } 883 884 // Next, sort worklist by dominance, so that dominating blocks and conditions 885 // come before blocks and conditions dominated by them. If a block and a 886 // condition have the same numbers, the condition comes before the block, as 887 // it holds on entry to the block. Also make sure conditions with constant 888 // operands come before conditions without constant operands. This increases 889 // the effectiveness of the current signed <-> unsigned fact transfer logic. 890 stable_sort( 891 S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 892 auto HasNoConstOp = [](const ConstraintOrBlock &B) { 893 return !B.IsBlock && !isa<ConstantInt>(B.Condition->getOperand(0)) && 894 !isa<ConstantInt>(B.Condition->getOperand(1)); 895 }; 896 bool NoConstOpA = HasNoConstOp(A); 897 bool NoConstOpB = HasNoConstOp(B); 898 return std::tie(A.NumIn, A.IsBlock, NoConstOpA) < 899 std::tie(B.NumIn, B.IsBlock, NoConstOpB); 900 }); 901 902 SmallVector<Instruction *> ToRemove; 903 904 // Finally, process ordered worklist and eliminate implied conditions. 905 SmallVector<StackEntry, 16> DFSInStack; 906 for (ConstraintOrBlock &CB : S.WorkList) { 907 // First, pop entries from the stack that are out-of-scope for CB. Remove 908 // the corresponding entry from the constraint system. 909 while (!DFSInStack.empty()) { 910 auto &E = DFSInStack.back(); 911 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 912 << "\n"); 913 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 914 assert(E.NumIn <= CB.NumIn); 915 if (CB.NumOut <= E.NumOut) 916 break; 917 LLVM_DEBUG({ 918 dbgs() << "Removing "; 919 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 920 Info.getValue2Index(E.IsSigned)); 921 dbgs() << "\n"; 922 }); 923 924 Info.popLastConstraint(E.IsSigned); 925 // Remove variables in the system that went out of scope. 926 auto &Mapping = Info.getValue2Index(E.IsSigned); 927 for (Value *V : E.ValuesToRelease) 928 Mapping.erase(V); 929 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 930 DFSInStack.pop_back(); 931 } 932 933 LLVM_DEBUG({ 934 dbgs() << "Processing "; 935 if (CB.IsBlock) 936 dbgs() << *CB.BB; 937 else 938 dbgs() << *CB.Condition; 939 dbgs() << "\n"; 940 }); 941 942 // For a block, check if any CmpInsts become known based on the current set 943 // of constraints. 944 if (CB.IsBlock) { 945 for (Instruction &I : make_early_inc_range(*CB.BB)) { 946 if (auto *II = dyn_cast<WithOverflowInst>(&I)) { 947 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 948 continue; 949 } 950 auto *Cmp = dyn_cast<ICmpInst>(&I); 951 if (!Cmp) 952 continue; 953 954 Changed |= checkAndReplaceCondition(Cmp, Info); 955 } 956 continue; 957 } 958 959 ICmpInst::Predicate Pred; 960 Value *A, *B; 961 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 962 // Use the inverse predicate if required. 963 if (CB.Not) 964 Pred = CmpInst::getInversePredicate(Pred); 965 966 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 967 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 968 } 969 } 970 971 #ifndef NDEBUG 972 unsigned SignedEntries = 973 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 974 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 975 "updates to CS and DFSInStack are out of sync"); 976 assert(Info.getCS(true).size() == SignedEntries && 977 "updates to CS and DFSInStack are out of sync"); 978 #endif 979 980 for (Instruction *I : ToRemove) 981 I->eraseFromParent(); 982 return Changed; 983 } 984 985 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 986 FunctionAnalysisManager &AM) { 987 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 988 if (!eliminateConstraints(F, DT)) 989 return PreservedAnalyses::all(); 990 991 PreservedAnalyses PA; 992 PA.preserve<DominatorTreeAnalysis>(); 993 PA.preserveSet<CFGAnalyses>(); 994 return PA; 995 } 996 997 namespace { 998 999 class ConstraintElimination : public FunctionPass { 1000 public: 1001 static char ID; 1002 1003 ConstraintElimination() : FunctionPass(ID) { 1004 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 1005 } 1006 1007 bool runOnFunction(Function &F) override { 1008 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1009 return eliminateConstraints(F, DT); 1010 } 1011 1012 void getAnalysisUsage(AnalysisUsage &AU) const override { 1013 AU.setPreservesCFG(); 1014 AU.addRequired<DominatorTreeWrapperPass>(); 1015 AU.addPreserved<GlobalsAAWrapperPass>(); 1016 AU.addPreserved<DominatorTreeWrapperPass>(); 1017 } 1018 }; 1019 1020 } // end anonymous namespace 1021 1022 char ConstraintElimination::ID = 0; 1023 1024 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 1025 "Constraint Elimination", false, false) 1026 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1027 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 1028 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 1029 "Constraint Elimination", false, false) 1030 1031 FunctionPass *llvm::createConstraintEliminationPass() { 1032 return new ConstraintElimination(); 1033 } 1034