xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 6dd772d34819676268cb02e923bf9da69db15b4a)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/DebugCounter.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Scalar.h"
33 
34 #include <string>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "constraint-elimination"
40 
41 STATISTIC(NumCondsRemoved, "Number of instructions removed");
42 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
43               "Controls which conditions are eliminated");
44 
45 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
46 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
47 
48 namespace {
49 
50 class ConstraintInfo;
51 
52 struct StackEntry {
53   unsigned NumIn;
54   unsigned NumOut;
55   Instruction *Condition;
56   bool IsNot;
57   bool IsSigned = false;
58   /// Variables that can be removed from the system once the stack entry gets
59   /// removed.
60   SmallVector<Value *, 2> ValuesToRelease;
61 
62   StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot,
63              bool IsSigned, SmallVector<Value *, 2> ValuesToRelease)
64       : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot),
65         IsSigned(IsSigned), ValuesToRelease(ValuesToRelease) {}
66 };
67 
68 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
69 struct PreconditionTy {
70   CmpInst::Predicate Pred;
71   Value *Op0;
72   Value *Op1;
73 
74   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
75       : Pred(Pred), Op0(Op0), Op1(Op1) {}
76 };
77 
78 struct ConstraintTy {
79   SmallVector<int64_t, 8> Coefficients;
80   SmallVector<PreconditionTy, 2> Preconditions;
81 
82   bool IsSigned = false;
83   bool IsEq = false;
84 
85   ConstraintTy() = default;
86 
87   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
88       : Coefficients(Coefficients), IsSigned(IsSigned) {}
89 
90   unsigned size() const { return Coefficients.size(); }
91 
92   unsigned empty() const { return Coefficients.empty(); }
93 
94   /// Returns true if any constraint has a non-zero coefficient for any of the
95   /// newly added indices. Zero coefficients for new indices are removed. If it
96   /// returns true, no new variable need to be added to the system.
97   bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) {
98     for (unsigned I = 0; I < NewIndices.size(); ++I) {
99       int64_t Last = Coefficients.pop_back_val();
100       if (Last != 0)
101         return true;
102     }
103     return false;
104   }
105 
106   /// Returns true if all preconditions for this list of constraints are
107   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
108   bool isValid(const ConstraintInfo &Info) const;
109 };
110 
111 /// Wrapper encapsulating separate constraint systems and corresponding value
112 /// mappings for both unsigned and signed information. Facts are added to and
113 /// conditions are checked against the corresponding system depending on the
114 /// signed-ness of their predicates. While the information is kept separate
115 /// based on signed-ness, certain conditions can be transferred between the two
116 /// systems.
117 class ConstraintInfo {
118   DenseMap<Value *, unsigned> UnsignedValue2Index;
119   DenseMap<Value *, unsigned> SignedValue2Index;
120 
121   ConstraintSystem UnsignedCS;
122   ConstraintSystem SignedCS;
123 
124 public:
125   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
126     return Signed ? SignedValue2Index : UnsignedValue2Index;
127   }
128   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
129     return Signed ? SignedValue2Index : UnsignedValue2Index;
130   }
131 
132   ConstraintSystem &getCS(bool Signed) {
133     return Signed ? SignedCS : UnsignedCS;
134   }
135   const ConstraintSystem &getCS(bool Signed) const {
136     return Signed ? SignedCS : UnsignedCS;
137   }
138 
139   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
140   void popLastNVariables(bool Signed, unsigned N) {
141     getCS(Signed).popLastNVariables(N);
142   }
143 
144   void addFact(CmpInst *Condition, bool IsNegated, unsigned NumIn,
145                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
146 
147   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
148   /// constraints, using indices from the corresponding constraint system.
149   /// Additional indices for newly discovered values are added to \p NewIndices.
150   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
151                              DenseMap<Value *, unsigned> &NewIndices) const;
152 
153   /// Turn a condition \p CmpI into a vector of constraints, using indices from
154   /// the corresponding constraint system. Additional indices for newly
155   /// discovered values are added to \p NewIndices.
156   ConstraintTy getConstraint(CmpInst *Cmp,
157                              DenseMap<Value *, unsigned> &NewIndices) const {
158     return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
159                          Cmp->getOperand(1), NewIndices);
160   }
161 };
162 
163 } // namespace
164 
165 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
166 // sum of the pairs equals \p V.  The first pair is the constant-factor and X
167 // must be nullptr. If the expression cannot be decomposed, returns an empty
168 // vector.
169 static SmallVector<std::pair<int64_t, Value *>, 4>
170 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
171           bool IsSigned) {
172 
173   auto CanUseSExt = [](ConstantInt *CI) {
174     const APInt &Val = CI->getValue();
175     return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
176   };
177   // Decompose \p V used with a signed predicate.
178   if (IsSigned) {
179     if (auto *CI = dyn_cast<ConstantInt>(V)) {
180       if (CanUseSExt(CI))
181         return {{CI->getSExtValue(), nullptr}};
182     }
183 
184     return {{0, nullptr}, {1, V}};
185   }
186 
187   if (auto *CI = dyn_cast<ConstantInt>(V)) {
188     if (CI->uge(MaxConstraintValue))
189       return {};
190     return {{CI->getZExtValue(), nullptr}};
191   }
192   auto *GEP = dyn_cast<GetElementPtrInst>(V);
193   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
194     Value *Op0, *Op1;
195     ConstantInt *CI;
196 
197     // If the index is zero-extended, it is guaranteed to be positive.
198     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
199               m_ZExt(m_Value(Op0)))) {
200       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) &&
201           CanUseSExt(CI))
202         return {{0, nullptr},
203                 {1, GEP->getPointerOperand()},
204                 {std::pow(int64_t(2), CI->getSExtValue()), Op1}};
205       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) &&
206           CanUseSExt(CI))
207         return {{CI->getSExtValue(), nullptr},
208                 {1, GEP->getPointerOperand()},
209                 {1, Op1}};
210       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
211     }
212 
213     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
214         !CI->isNegative() && CanUseSExt(CI))
215       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
216 
217     SmallVector<std::pair<int64_t, Value *>, 4> Result;
218     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
219               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) &&
220         CanUseSExt(CI))
221       Result = {{0, nullptr},
222                 {1, GEP->getPointerOperand()},
223                 {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
224     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
225                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
226              CanUseSExt(CI))
227       Result = {{CI->getSExtValue(), nullptr},
228                 {1, GEP->getPointerOperand()},
229                 {1, Op0}};
230     else {
231       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
232       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
233     }
234     // If Op0 is signed non-negative, the GEP is increasing monotonically and
235     // can be de-composed.
236     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
237                                ConstantInt::get(Op0->getType(), 0));
238     return Result;
239   }
240 
241   Value *Op0;
242   if (match(V, m_ZExt(m_Value(Op0))))
243     V = Op0;
244 
245   Value *Op1;
246   ConstantInt *CI;
247   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
248       !CI->uge(MaxConstraintValue))
249     return {{CI->getZExtValue(), nullptr}, {1, Op0}};
250   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
251       CanUseSExt(CI)) {
252     Preconditions.emplace_back(
253         CmpInst::ICMP_UGE, Op0,
254         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
255     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
256   }
257   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
258     return {{0, nullptr}, {1, Op0}, {1, Op1}};
259 
260   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI))
261     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
262   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
263     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
264 
265   return {{0, nullptr}, {1, V}};
266 }
267 
268 ConstraintTy
269 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
270                               DenseMap<Value *, unsigned> &NewIndices) const {
271   bool IsEq = false;
272   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
273   switch (Pred) {
274   case CmpInst::ICMP_UGT:
275   case CmpInst::ICMP_UGE:
276   case CmpInst::ICMP_SGT:
277   case CmpInst::ICMP_SGE: {
278     Pred = CmpInst::getSwappedPredicate(Pred);
279     std::swap(Op0, Op1);
280     break;
281   }
282   case CmpInst::ICMP_EQ:
283     if (match(Op1, m_Zero())) {
284       Pred = CmpInst::ICMP_ULE;
285     } else {
286       IsEq = true;
287       Pred = CmpInst::ICMP_ULE;
288     }
289     break;
290   case CmpInst::ICMP_NE:
291     if (!match(Op1, m_Zero()))
292       return {};
293     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
294     std::swap(Op0, Op1);
295     break;
296   default:
297     break;
298   }
299 
300   // Only ULE and ULT predicates are supported at the moment.
301   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
302       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
303     return {};
304 
305   SmallVector<PreconditionTy, 4> Preconditions;
306   bool IsSigned = CmpInst::isSigned(Pred);
307   auto &Value2Index = getValue2Index(IsSigned);
308   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
309                         Preconditions, IsSigned);
310   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
311                         Preconditions, IsSigned);
312   // Skip if decomposing either of the values failed.
313   if (ADec.empty() || BDec.empty())
314     return {};
315 
316   int64_t Offset1 = ADec[0].first;
317   int64_t Offset2 = BDec[0].first;
318   Offset1 *= -1;
319 
320   // Create iterator ranges that skip the constant-factor.
321   auto VariablesA = llvm::drop_begin(ADec);
322   auto VariablesB = llvm::drop_begin(BDec);
323 
324   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
325   // new entry to NewIndices.
326   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
327     auto V2I = Value2Index.find(V);
328     if (V2I != Value2Index.end())
329       return V2I->second;
330     auto Insert =
331         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
332     return Insert.first->second;
333   };
334 
335   // Make sure all variables have entries in Value2Index or NewIndices.
336   for (const auto &KV :
337        concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
338     GetOrAddIndex(KV.second);
339 
340   // Build result constraint, by first adding all coefficients from A and then
341   // subtracting all coefficients from B.
342   ConstraintTy Res(
343       SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0),
344       IsSigned);
345   Res.IsEq = IsEq;
346   auto &R = Res.Coefficients;
347   for (const auto &KV : VariablesA)
348     R[GetOrAddIndex(KV.second)] += KV.first;
349 
350   for (const auto &KV : VariablesB)
351     R[GetOrAddIndex(KV.second)] -= KV.first;
352 
353   int64_t OffsetSum;
354   if (AddOverflow(Offset1, Offset2, OffsetSum))
355     return {};
356   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
357     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
358       return {};
359   R[0] = OffsetSum;
360   Res.Preconditions = std::move(Preconditions);
361   return Res;
362 }
363 
364 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
365   return Coefficients.size() > 0 &&
366          all_of(Preconditions, [&Info](const PreconditionTy &C) {
367            DenseMap<Value *, unsigned> NewIndices;
368            auto R = Info.getConstraint(C.Pred, C.Op0, C.Op1, NewIndices);
369            // TODO: properly check NewIndices.
370            return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq &&
371                   R.size() >= 1 &&
372                   Info.getCS(CmpInst::isSigned(C.Pred))
373                       .isConditionImplied(R.Coefficients);
374          });
375 }
376 
377 namespace {
378 /// Represents either a condition that holds on entry to a block or a basic
379 /// block, with their respective Dominator DFS in and out numbers.
380 struct ConstraintOrBlock {
381   unsigned NumIn;
382   unsigned NumOut;
383   bool IsBlock;
384   bool Not;
385   union {
386     BasicBlock *BB;
387     CmpInst *Condition;
388   };
389 
390   ConstraintOrBlock(DomTreeNode *DTN)
391       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
392         BB(DTN->getBlock()) {}
393   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
394       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
395         Not(Not), Condition(Condition) {}
396 };
397 
398 /// Keep state required to build worklist.
399 struct State {
400   DominatorTree &DT;
401   SmallVector<ConstraintOrBlock, 64> WorkList;
402 
403   State(DominatorTree &DT) : DT(DT) {}
404 
405   /// Process block \p BB and add known facts to work-list.
406   void addInfoFor(BasicBlock &BB);
407 
408   /// Returns true if we can add a known condition from BB to its successor
409   /// block Succ. Each predecessor of Succ can either be BB or be dominated
410   /// by Succ (e.g. the case when adding a condition from a pre-header to a
411   /// loop header).
412   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
413     if (BB.getSingleSuccessor()) {
414       assert(BB.getSingleSuccessor() == Succ);
415       return DT.properlyDominates(&BB, Succ);
416     }
417     return any_of(successors(&BB),
418                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
419            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
420              return Pred == &BB || DT.dominates(Succ, Pred);
421            });
422   }
423 };
424 
425 } // namespace
426 
427 #ifndef NDEBUG
428 static void dumpWithNames(ConstraintTy &C,
429                           DenseMap<Value *, unsigned> &Value2Index) {
430   SmallVector<std::string> Names(Value2Index.size(), "");
431   for (auto &KV : Value2Index) {
432     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
433   }
434   ConstraintSystem CS;
435   CS.addVariableRowFill(C.Coefficients);
436   CS.dump(Names);
437 }
438 #endif
439 
440 void State::addInfoFor(BasicBlock &BB) {
441   WorkList.emplace_back(DT.getNode(&BB));
442 
443   // True as long as long as the current instruction is guaranteed to execute.
444   bool GuaranteedToExecute = true;
445   // Scan BB for assume calls.
446   // TODO: also use this scan to queue conditions to simplify, so we can
447   // interleave facts from assumes and conditions to simplify in a single
448   // basic block. And to skip another traversal of each basic block when
449   // simplifying.
450   for (Instruction &I : BB) {
451     Value *Cond;
452     // For now, just handle assumes with a single compare as condition.
453     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
454         isa<ICmpInst>(Cond)) {
455       if (GuaranteedToExecute) {
456         // The assume is guaranteed to execute when BB is entered, hence Cond
457         // holds on entry to BB.
458         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
459       } else {
460         // Otherwise the condition only holds in the successors.
461         for (BasicBlock *Succ : successors(&BB)) {
462           if (!canAddSuccessor(BB, Succ))
463             continue;
464           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
465         }
466       }
467     }
468     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
469   }
470 
471   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
472   if (!Br || !Br->isConditional())
473     return;
474 
475   // If the condition is an OR of 2 compares and the false successor only has
476   // the current block as predecessor, queue both negated conditions for the
477   // false successor.
478   Value *Op0, *Op1;
479   if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
480       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
481     BasicBlock *FalseSuccessor = Br->getSuccessor(1);
482     if (canAddSuccessor(BB, FalseSuccessor)) {
483       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0),
484                             true);
485       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1),
486                             true);
487     }
488     return;
489   }
490 
491   // If the condition is an AND of 2 compares and the true successor only has
492   // the current block as predecessor, queue both conditions for the true
493   // successor.
494   if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
495       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
496     BasicBlock *TrueSuccessor = Br->getSuccessor(0);
497     if (canAddSuccessor(BB, TrueSuccessor)) {
498       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0),
499                             false);
500       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1),
501                             false);
502     }
503     return;
504   }
505 
506   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
507   if (!CmpI)
508     return;
509   if (canAddSuccessor(BB, Br->getSuccessor(0)))
510     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
511   if (canAddSuccessor(BB, Br->getSuccessor(1)))
512     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
513 }
514 
515 void ConstraintInfo::addFact(CmpInst *Condition, bool IsNegated, unsigned NumIn,
516                              unsigned NumOut,
517                              SmallVectorImpl<StackEntry> &DFSInStack) {
518   // If the constraint has a pre-condition, skip the constraint if it does not
519   // hold.
520   DenseMap<Value *, unsigned> NewIndices;
521   auto R = getConstraint(Condition, NewIndices);
522   if (!R.isValid(*this))
523     return;
524 
525   LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n");
526   bool Added = false;
527   assert(CmpInst::isSigned(Condition->getPredicate()) == R.IsSigned &&
528          "condition and constraint signs must match");
529   auto &CSToUse = getCS(R.IsSigned);
530   if (R.Coefficients.empty())
531     return;
532 
533   Added |= CSToUse.addVariableRowFill(R.Coefficients);
534 
535   // If R has been added to the system, queue it for removal once it goes
536   // out-of-scope.
537   if (Added) {
538     SmallVector<Value *, 2> ValuesToRelease;
539     for (auto &KV : NewIndices) {
540       getValue2Index(R.IsSigned).insert(KV);
541       ValuesToRelease.push_back(KV.first);
542     }
543 
544     LLVM_DEBUG({
545       dbgs() << "  constraint: ";
546       dumpWithNames(R, getValue2Index(R.IsSigned));
547     });
548 
549     DFSInStack.emplace_back(NumIn, NumOut, Condition, IsNegated, R.IsSigned,
550                             ValuesToRelease);
551 
552     if (R.IsEq) {
553       // Also add the inverted constraint for equality constraints.
554       for (auto &Coeff : R.Coefficients)
555         Coeff *= -1;
556       CSToUse.addVariableRowFill(R.Coefficients);
557 
558       DFSInStack.emplace_back(NumIn, NumOut, Condition, IsNegated, R.IsSigned,
559                               SmallVector<Value *, 2>());
560     }
561   }
562 }
563 
564 static void
565 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
566                           SmallVectorImpl<Instruction *> &ToRemove) {
567   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
568                               ConstraintInfo &Info) {
569     DenseMap<Value *, unsigned> NewIndices;
570     auto R = Info.getConstraint(Pred, A, B, NewIndices);
571     if (R.size() < 2 || R.needsNewIndices(NewIndices) || !R.isValid(Info))
572       return false;
573 
574     auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred));
575     return CSToUse.isConditionImplied(R.Coefficients);
576   };
577 
578   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
579     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
580     // can be simplified to a regular sub.
581     Value *A = II->getArgOperand(0);
582     Value *B = II->getArgOperand(1);
583     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
584         !DoesConditionHold(CmpInst::ICMP_SGE, B,
585                            ConstantInt::get(A->getType(), 0), Info))
586       return;
587 
588     IRBuilder<> Builder(II->getParent(), II->getIterator());
589     Value *Sub = nullptr;
590     for (User *U : make_early_inc_range(II->users())) {
591       if (match(U, m_ExtractValue<0>(m_Value()))) {
592         if (!Sub)
593           Sub = Builder.CreateSub(A, B);
594         U->replaceAllUsesWith(Sub);
595       } else if (match(U, m_ExtractValue<1>(m_Value())))
596         U->replaceAllUsesWith(Builder.getFalse());
597       else
598         continue;
599 
600       if (U->use_empty()) {
601         auto *I = cast<Instruction>(U);
602         ToRemove.push_back(I);
603         I->setOperand(0, PoisonValue::get(II->getType()));
604       }
605     }
606 
607     if (II->use_empty())
608       II->eraseFromParent();
609   }
610 }
611 
612 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
613   bool Changed = false;
614   DT.updateDFSNumbers();
615 
616   ConstraintInfo Info;
617   State S(DT);
618 
619   // First, collect conditions implied by branches and blocks with their
620   // Dominator DFS in and out numbers.
621   for (BasicBlock &BB : F) {
622     if (!DT.getNode(&BB))
623       continue;
624     S.addInfoFor(BB);
625   }
626 
627   // Next, sort worklist by dominance, so that dominating blocks and conditions
628   // come before blocks and conditions dominated by them. If a block and a
629   // condition have the same numbers, the condition comes before the block, as
630   // it holds on entry to the block.
631   sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
632     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
633   });
634 
635   SmallVector<Instruction *> ToRemove;
636 
637   // Finally, process ordered worklist and eliminate implied conditions.
638   SmallVector<StackEntry, 16> DFSInStack;
639   for (ConstraintOrBlock &CB : S.WorkList) {
640     // First, pop entries from the stack that are out-of-scope for CB. Remove
641     // the corresponding entry from the constraint system.
642     while (!DFSInStack.empty()) {
643       auto &E = DFSInStack.back();
644       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
645                         << "\n");
646       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
647       assert(E.NumIn <= CB.NumIn);
648       if (CB.NumOut <= E.NumOut)
649         break;
650       LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
651                         << "\n");
652       Info.popLastConstraint(E.IsSigned);
653       // Remove variables in the system that went out of scope.
654       auto &Mapping = Info.getValue2Index(E.IsSigned);
655       for (Value *V : E.ValuesToRelease)
656         Mapping.erase(V);
657       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
658       DFSInStack.pop_back();
659     }
660 
661     LLVM_DEBUG({
662       dbgs() << "Processing ";
663       if (CB.IsBlock)
664         dbgs() << *CB.BB;
665       else
666         dbgs() << *CB.Condition;
667       dbgs() << "\n";
668     });
669 
670     // For a block, check if any CmpInsts become known based on the current set
671     // of constraints.
672     if (CB.IsBlock) {
673       for (Instruction &I : make_early_inc_range(*CB.BB)) {
674         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
675           tryToSimplifyOverflowMath(II, Info, ToRemove);
676           continue;
677         }
678         auto *Cmp = dyn_cast<ICmpInst>(&I);
679         if (!Cmp)
680           continue;
681 
682         DenseMap<Value *, unsigned> NewIndices;
683         auto R = Info.getConstraint(Cmp, NewIndices);
684         if (R.IsEq || R.empty() || R.needsNewIndices(NewIndices) ||
685             !R.isValid(Info))
686           continue;
687 
688         auto &CSToUse = Info.getCS(R.IsSigned);
689         if (CSToUse.isConditionImplied(R.Coefficients)) {
690           if (!DebugCounter::shouldExecute(EliminatedCounter))
691             continue;
692 
693           LLVM_DEBUG(dbgs() << "Condition " << *Cmp
694                             << " implied by dominating constraints\n");
695           LLVM_DEBUG({
696             for (auto &E : reverse(DFSInStack))
697               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
698           });
699           Cmp->replaceUsesWithIf(
700               ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
701                 // Conditions in an assume trivially simplify to true. Skip uses
702                 // in assume calls to not destroy the available information.
703                 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
704                 return !II || II->getIntrinsicID() != Intrinsic::assume;
705               });
706           NumCondsRemoved++;
707           Changed = true;
708         }
709         if (CSToUse.isConditionImplied(
710                 ConstraintSystem::negate(R.Coefficients))) {
711           if (!DebugCounter::shouldExecute(EliminatedCounter))
712             continue;
713 
714           LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
715                             << " implied by dominating constraints\n");
716           LLVM_DEBUG({
717             for (auto &E : reverse(DFSInStack))
718               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
719           });
720           Cmp->replaceAllUsesWith(
721               ConstantInt::getFalse(F.getParent()->getContext()));
722           NumCondsRemoved++;
723           Changed = true;
724         }
725       }
726       continue;
727     }
728 
729     // Set up a function to restore the predicate at the end of the scope if it
730     // has been negated. Negate the predicate in-place, if required.
731     auto *CI = dyn_cast<ICmpInst>(CB.Condition);
732     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
733       if (CB.Not && CI)
734         CI->setPredicate(CI->getInversePredicate());
735     });
736     if (CB.Not) {
737       if (CI) {
738         CI->setPredicate(CI->getInversePredicate());
739       } else {
740         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
741         continue;
742       }
743     }
744 
745     // Otherwise, add the condition to the system and stack, if we can transform
746     // it into a constraint.
747     Info.addFact(CB.Condition, CB.Not, CB.NumIn, CB.NumOut, DFSInStack);
748   }
749 
750 #ifndef NDEBUG
751   unsigned SignedEntries =
752       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
753   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
754          "updates to CS and DFSInStack are out of sync");
755   assert(Info.getCS(true).size() == SignedEntries &&
756          "updates to CS and DFSInStack are out of sync");
757 #endif
758 
759   for (Instruction *I : ToRemove)
760     I->eraseFromParent();
761   return Changed;
762 }
763 
764 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
765                                                  FunctionAnalysisManager &AM) {
766   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
767   if (!eliminateConstraints(F, DT))
768     return PreservedAnalyses::all();
769 
770   PreservedAnalyses PA;
771   PA.preserve<DominatorTreeAnalysis>();
772   PA.preserveSet<CFGAnalyses>();
773   return PA;
774 }
775 
776 namespace {
777 
778 class ConstraintElimination : public FunctionPass {
779 public:
780   static char ID;
781 
782   ConstraintElimination() : FunctionPass(ID) {
783     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
784   }
785 
786   bool runOnFunction(Function &F) override {
787     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
788     return eliminateConstraints(F, DT);
789   }
790 
791   void getAnalysisUsage(AnalysisUsage &AU) const override {
792     AU.setPreservesCFG();
793     AU.addRequired<DominatorTreeWrapperPass>();
794     AU.addPreserved<GlobalsAAWrapperPass>();
795     AU.addPreserved<DominatorTreeWrapperPass>();
796   }
797 };
798 
799 } // end anonymous namespace
800 
801 char ConstraintElimination::ID = 0;
802 
803 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
804                       "Constraint Elimination", false, false)
805 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
806 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
807 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
808                     "Constraint Elimination", false, false)
809 
810 FunctionPass *llvm::createConstraintEliminationPass() {
811   return new ConstraintElimination();
812 }
813