xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 6c25c58a4d7caa0337d36bb8c41546f2002130d1)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GetElementPtrTypeIterator.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/DebugCounter.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/ValueMapper.h"
39 
40 #include <cmath>
41 #include <optional>
42 #include <string>
43 
44 using namespace llvm;
45 using namespace PatternMatch;
46 
47 #define DEBUG_TYPE "constraint-elimination"
48 
49 STATISTIC(NumCondsRemoved, "Number of instructions removed");
50 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
51               "Controls which conditions are eliminated");
52 
53 static cl::opt<unsigned>
54     MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
55             cl::desc("Maximum number of rows to keep in constraint system"));
56 
57 static cl::opt<bool> DumpReproducers(
58     "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
59     cl::desc("Dump IR to reproduce successful transformations."));
60 
61 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
62 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
63 
64 // A helper to multiply 2 signed integers where overflowing is allowed.
65 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
66   int64_t Result;
67   MulOverflow(A, B, Result);
68   return Result;
69 }
70 
71 // A helper to add 2 signed integers where overflowing is allowed.
72 static int64_t addWithOverflow(int64_t A, int64_t B) {
73   int64_t Result;
74   AddOverflow(A, B, Result);
75   return Result;
76 }
77 
78 namespace {
79 
80 class ConstraintInfo;
81 
82 struct StackEntry {
83   unsigned NumIn;
84   unsigned NumOut;
85   bool IsSigned = false;
86   /// Variables that can be removed from the system once the stack entry gets
87   /// removed.
88   SmallVector<Value *, 2> ValuesToRelease;
89 
90   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
91              SmallVector<Value *, 2> ValuesToRelease)
92       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
93         ValuesToRelease(ValuesToRelease) {}
94 };
95 
96 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
97 struct PreconditionTy {
98   CmpInst::Predicate Pred;
99   Value *Op0;
100   Value *Op1;
101 
102   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
103       : Pred(Pred), Op0(Op0), Op1(Op1) {}
104 };
105 
106 struct ConstraintTy {
107   SmallVector<int64_t, 8> Coefficients;
108   SmallVector<PreconditionTy, 2> Preconditions;
109 
110   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
111 
112   bool IsSigned = false;
113 
114   ConstraintTy() = default;
115 
116   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq)
117       : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq) {}
118 
119   unsigned size() const { return Coefficients.size(); }
120 
121   unsigned empty() const { return Coefficients.empty(); }
122 
123   /// Returns true if all preconditions for this list of constraints are
124   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
125   bool isValid(const ConstraintInfo &Info) const;
126 
127   bool isEq() const { return IsEq; }
128 
129   /// Check if the current constraint is implied by the given ConstraintSystem.
130   ///
131   /// \return true or false if the constraint is proven to be respectively true,
132   /// or false. When the constraint cannot be proven to be either true or false,
133   /// std::nullopt is returned.
134   std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
135 
136 private:
137   bool IsEq = false;
138 };
139 
140 /// Wrapper encapsulating separate constraint systems and corresponding value
141 /// mappings for both unsigned and signed information. Facts are added to and
142 /// conditions are checked against the corresponding system depending on the
143 /// signed-ness of their predicates. While the information is kept separate
144 /// based on signed-ness, certain conditions can be transferred between the two
145 /// systems.
146 class ConstraintInfo {
147 
148   ConstraintSystem UnsignedCS;
149   ConstraintSystem SignedCS;
150 
151   const DataLayout &DL;
152 
153 public:
154   ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
155       : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {}
156 
157   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
158     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
159   }
160   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
161     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
162   }
163 
164   ConstraintSystem &getCS(bool Signed) {
165     return Signed ? SignedCS : UnsignedCS;
166   }
167   const ConstraintSystem &getCS(bool Signed) const {
168     return Signed ? SignedCS : UnsignedCS;
169   }
170 
171   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
172   void popLastNVariables(bool Signed, unsigned N) {
173     getCS(Signed).popLastNVariables(N);
174   }
175 
176   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
177 
178   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
179                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
180 
181   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
182   /// constraints, using indices from the corresponding constraint system.
183   /// New variables that need to be added to the system are collected in
184   /// \p NewVariables.
185   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
186                              SmallVectorImpl<Value *> &NewVariables) const;
187 
188   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
189   /// constraints using getConstraint. Returns an empty constraint if the result
190   /// cannot be used to query the existing constraint system, e.g. because it
191   /// would require adding new variables. Also tries to convert signed
192   /// predicates to unsigned ones if possible to allow using the unsigned system
193   /// which increases the effectiveness of the signed <-> unsigned transfer
194   /// logic.
195   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
196                                        Value *Op1) const;
197 
198   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
199   /// system if \p Pred is signed/unsigned.
200   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
201                              unsigned NumIn, unsigned NumOut,
202                              SmallVectorImpl<StackEntry> &DFSInStack);
203 };
204 
205 /// Represents a (Coefficient * Variable) entry after IR decomposition.
206 struct DecompEntry {
207   int64_t Coefficient;
208   Value *Variable;
209   /// True if the variable is known positive in the current constraint.
210   bool IsKnownNonNegative;
211 
212   DecompEntry(int64_t Coefficient, Value *Variable,
213               bool IsKnownNonNegative = false)
214       : Coefficient(Coefficient), Variable(Variable),
215         IsKnownNonNegative(IsKnownNonNegative) {}
216 };
217 
218 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
219 struct Decomposition {
220   int64_t Offset = 0;
221   SmallVector<DecompEntry, 3> Vars;
222 
223   Decomposition(int64_t Offset) : Offset(Offset) {}
224   Decomposition(Value *V, bool IsKnownNonNegative = false) {
225     Vars.emplace_back(1, V, IsKnownNonNegative);
226   }
227   Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
228       : Offset(Offset), Vars(Vars) {}
229 
230   void add(int64_t OtherOffset) {
231     Offset = addWithOverflow(Offset, OtherOffset);
232   }
233 
234   void add(const Decomposition &Other) {
235     add(Other.Offset);
236     append_range(Vars, Other.Vars);
237   }
238 
239   void mul(int64_t Factor) {
240     Offset = multiplyWithOverflow(Offset, Factor);
241     for (auto &Var : Vars)
242       Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
243   }
244 };
245 
246 } // namespace
247 
248 static Decomposition decompose(Value *V,
249                                SmallVectorImpl<PreconditionTy> &Preconditions,
250                                bool IsSigned, const DataLayout &DL);
251 
252 static bool canUseSExt(ConstantInt *CI) {
253   const APInt &Val = CI->getValue();
254   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
255 }
256 
257 static Decomposition
258 decomposeGEP(GEPOperator &GEP, SmallVectorImpl<PreconditionTy> &Preconditions,
259              bool IsSigned, const DataLayout &DL) {
260   // Do not reason about pointers where the index size is larger than 64 bits,
261   // as the coefficients used to encode constraints are 64 bit integers.
262   if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
263     return &GEP;
264 
265   if (!GEP.isInBounds())
266     return &GEP;
267 
268   assert(!IsSigned && "The logic below only supports decomposition for "
269                       "unsinged predicates at the moment.");
270   Type *PtrTy = GEP.getType()->getScalarType();
271   unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
272   MapVector<Value *, APInt> VariableOffsets;
273   APInt ConstantOffset(BitWidth, 0);
274   if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
275     return &GEP;
276 
277   // Handle the (gep (gep ....), C) case by incrementing the constant
278   // coefficient of the inner GEP, if C is a constant.
279   auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand());
280   if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) {
281     auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
282     Result.add(ConstantOffset.getSExtValue());
283 
284     if (ConstantOffset.isNegative()) {
285       unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType());
286       int64_t ConstantOffsetI = ConstantOffset.getSExtValue();
287       if (ConstantOffsetI % Scale != 0)
288         return &GEP;
289       // Add pre-condition ensuring the GEP is increasing monotonically and
290       // can be de-composed.
291       // Both sides are normalized by being divided by Scale.
292       Preconditions.emplace_back(
293           CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
294           ConstantInt::get(InnerGEP->getOperand(1)->getType(),
295                            -1 * (ConstantOffsetI / Scale)));
296     }
297     return Result;
298   }
299 
300   Decomposition Result(ConstantOffset.getSExtValue(),
301                        DecompEntry(1, GEP.getPointerOperand()));
302   for (auto [Index, Scale] : VariableOffsets) {
303     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
304     IdxResult.mul(Scale.getSExtValue());
305     Result.add(IdxResult);
306 
307     // If Op0 is signed non-negative, the GEP is increasing monotonically and
308     // can be de-composed.
309     if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
310       Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
311                                  ConstantInt::get(Index->getType(), 0));
312   }
313   return Result;
314 }
315 
316 // Decomposes \p V into a constant offset + list of pairs { Coefficient,
317 // Variable } where Coefficient * Variable. The sum of the constant offset and
318 // pairs equals \p V.
319 static Decomposition decompose(Value *V,
320                                SmallVectorImpl<PreconditionTy> &Preconditions,
321                                bool IsSigned, const DataLayout &DL) {
322 
323   auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
324                                                       bool IsSignedB) {
325     auto ResA = decompose(A, Preconditions, IsSigned, DL);
326     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
327     ResA.add(ResB);
328     return ResA;
329   };
330 
331   // Decompose \p V used with a signed predicate.
332   if (IsSigned) {
333     if (auto *CI = dyn_cast<ConstantInt>(V)) {
334       if (canUseSExt(CI))
335         return CI->getSExtValue();
336     }
337     Value *Op0;
338     Value *Op1;
339     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
340       return MergeResults(Op0, Op1, IsSigned);
341 
342     ConstantInt *CI;
343     if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI)))) {
344       auto Result = decompose(Op0, Preconditions, IsSigned, DL);
345       Result.mul(CI->getSExtValue());
346       return Result;
347     }
348 
349     return V;
350   }
351 
352   if (auto *CI = dyn_cast<ConstantInt>(V)) {
353     if (CI->uge(MaxConstraintValue))
354       return V;
355     return int64_t(CI->getZExtValue());
356   }
357 
358   if (auto *GEP = dyn_cast<GEPOperator>(V))
359     return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
360 
361   Value *Op0;
362   bool IsKnownNonNegative = false;
363   if (match(V, m_ZExt(m_Value(Op0)))) {
364     IsKnownNonNegative = true;
365     V = Op0;
366   }
367 
368   Value *Op1;
369   ConstantInt *CI;
370   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
371     return MergeResults(Op0, Op1, IsSigned);
372   }
373   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
374     if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
375       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
376                                  ConstantInt::get(Op0->getType(), 0));
377     if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
378       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
379                                  ConstantInt::get(Op1->getType(), 0));
380 
381     return MergeResults(Op0, Op1, IsSigned);
382   }
383 
384   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
385       canUseSExt(CI)) {
386     Preconditions.emplace_back(
387         CmpInst::ICMP_UGE, Op0,
388         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
389     return MergeResults(Op0, CI, true);
390   }
391 
392   // Decompose or as an add if there are no common bits between the operands.
393   if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) &&
394       haveNoCommonBitsSet(Op0, CI, DL)) {
395     return MergeResults(Op0, CI, IsSigned);
396   }
397 
398   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
399     if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
400       return {V, IsKnownNonNegative};
401     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
402     Result.mul(int64_t{1} << CI->getSExtValue());
403     return Result;
404   }
405 
406   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
407       (!CI->isNegative())) {
408     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
409     Result.mul(CI->getSExtValue());
410     return Result;
411   }
412 
413   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI))
414     return {-1 * CI->getSExtValue(), {{1, Op0}}};
415   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
416     return {0, {{1, Op0}, {-1, Op1}}};
417 
418   return {V, IsKnownNonNegative};
419 }
420 
421 ConstraintTy
422 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
423                               SmallVectorImpl<Value *> &NewVariables) const {
424   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
425   bool IsEq = false;
426   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
427   switch (Pred) {
428   case CmpInst::ICMP_UGT:
429   case CmpInst::ICMP_UGE:
430   case CmpInst::ICMP_SGT:
431   case CmpInst::ICMP_SGE: {
432     Pred = CmpInst::getSwappedPredicate(Pred);
433     std::swap(Op0, Op1);
434     break;
435   }
436   case CmpInst::ICMP_EQ:
437     if (match(Op1, m_Zero())) {
438       Pred = CmpInst::ICMP_ULE;
439     } else {
440       IsEq = true;
441       Pred = CmpInst::ICMP_ULE;
442     }
443     break;
444   case CmpInst::ICMP_NE:
445     if (!match(Op1, m_Zero()))
446       return {};
447     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
448     std::swap(Op0, Op1);
449     break;
450   default:
451     break;
452   }
453 
454   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
455       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
456     return {};
457 
458   SmallVector<PreconditionTy, 4> Preconditions;
459   bool IsSigned = CmpInst::isSigned(Pred);
460   auto &Value2Index = getValue2Index(IsSigned);
461   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
462                         Preconditions, IsSigned, DL);
463   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
464                         Preconditions, IsSigned, DL);
465   int64_t Offset1 = ADec.Offset;
466   int64_t Offset2 = BDec.Offset;
467   Offset1 *= -1;
468 
469   auto &VariablesA = ADec.Vars;
470   auto &VariablesB = BDec.Vars;
471 
472   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
473   // new entry to NewVariables.
474   DenseMap<Value *, unsigned> NewIndexMap;
475   auto GetOrAddIndex = [&Value2Index, &NewVariables,
476                         &NewIndexMap](Value *V) -> unsigned {
477     auto V2I = Value2Index.find(V);
478     if (V2I != Value2Index.end())
479       return V2I->second;
480     auto Insert =
481         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
482     if (Insert.second)
483       NewVariables.push_back(V);
484     return Insert.first->second;
485   };
486 
487   // Make sure all variables have entries in Value2Index or NewVariables.
488   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
489     GetOrAddIndex(KV.Variable);
490 
491   // Build result constraint, by first adding all coefficients from A and then
492   // subtracting all coefficients from B.
493   ConstraintTy Res(
494       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
495       IsSigned, IsEq);
496   // Collect variables that are known to be positive in all uses in the
497   // constraint.
498   DenseMap<Value *, bool> KnownNonNegativeVariables;
499   auto &R = Res.Coefficients;
500   for (const auto &KV : VariablesA) {
501     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
502     auto I =
503         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
504     I.first->second &= KV.IsKnownNonNegative;
505   }
506 
507   for (const auto &KV : VariablesB) {
508     if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient,
509                     R[GetOrAddIndex(KV.Variable)]))
510       return {};
511     auto I =
512         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
513     I.first->second &= KV.IsKnownNonNegative;
514   }
515 
516   int64_t OffsetSum;
517   if (AddOverflow(Offset1, Offset2, OffsetSum))
518     return {};
519   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
520     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
521       return {};
522   R[0] = OffsetSum;
523   Res.Preconditions = std::move(Preconditions);
524 
525   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
526   // variables.
527   while (!NewVariables.empty()) {
528     int64_t Last = R.back();
529     if (Last != 0)
530       break;
531     R.pop_back();
532     Value *RemovedV = NewVariables.pop_back_val();
533     NewIndexMap.erase(RemovedV);
534   }
535 
536   // Add extra constraints for variables that are known positive.
537   for (auto &KV : KnownNonNegativeVariables) {
538     if (!KV.second ||
539         (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
540       continue;
541     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
542     C[GetOrAddIndex(KV.first)] = -1;
543     Res.ExtraInfo.push_back(C);
544   }
545   return Res;
546 }
547 
548 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
549                                                      Value *Op0,
550                                                      Value *Op1) const {
551   // If both operands are known to be non-negative, change signed predicates to
552   // unsigned ones. This increases the reasoning effectiveness in combination
553   // with the signed <-> unsigned transfer logic.
554   if (CmpInst::isSigned(Pred) &&
555       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
556       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
557     Pred = CmpInst::getUnsignedPredicate(Pred);
558 
559   SmallVector<Value *> NewVariables;
560   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
561   if (!NewVariables.empty())
562     return {};
563   return R;
564 }
565 
566 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
567   return Coefficients.size() > 0 &&
568          all_of(Preconditions, [&Info](const PreconditionTy &C) {
569            return Info.doesHold(C.Pred, C.Op0, C.Op1);
570          });
571 }
572 
573 std::optional<bool>
574 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
575   bool IsConditionImplied = CS.isConditionImplied(Coefficients);
576 
577   if (IsEq) {
578     auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
579     bool IsNegatedOrEqualImplied =
580         !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
581 
582     // In order to check that `%a == %b` is true, we want to check that `%a >=
583     // %b` and `%a <= %b` must hold.
584     if (IsConditionImplied && IsNegatedOrEqualImplied)
585       return true;
586 
587     auto Negated = ConstraintSystem::negate(Coefficients);
588     bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
589 
590     auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
591     bool IsStrictLessThanImplied =
592         !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
593 
594     // In order to check that `%a == %b` is false, we want to check whether
595     // either `%a > %b` or `%a < %b` holds.
596     if (IsNegatedImplied || IsStrictLessThanImplied)
597       return false;
598 
599     return std::nullopt;
600   }
601 
602   if (IsConditionImplied)
603     return true;
604 
605   auto Negated = ConstraintSystem::negate(Coefficients);
606   auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
607   if (IsNegatedImplied)
608     return false;
609 
610   // Neither the condition nor its negated holds, did not prove anything.
611   return std::nullopt;
612 }
613 
614 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
615                               Value *B) const {
616   auto R = getConstraintForSolving(Pred, A, B);
617   return R.Preconditions.empty() && !R.empty() &&
618          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
619 }
620 
621 void ConstraintInfo::transferToOtherSystem(
622     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
623     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
624   // Check if we can combine facts from the signed and unsigned systems to
625   // derive additional facts.
626   if (!A->getType()->isIntegerTy())
627     return;
628   // FIXME: This currently depends on the order we add facts. Ideally we
629   // would first add all known facts and only then try to add additional
630   // facts.
631   switch (Pred) {
632   default:
633     break;
634   case CmpInst::ICMP_ULT:
635     //  If B is a signed positive constant, A >=s 0 and A <s B.
636     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
637       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
638               NumOut, DFSInStack);
639       addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack);
640     }
641     break;
642   case CmpInst::ICMP_SLT:
643     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
644       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
645     break;
646   case CmpInst::ICMP_SGT: {
647     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
648       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
649               NumOut, DFSInStack);
650     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0)))
651       addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
652 
653     break;
654   }
655   case CmpInst::ICMP_SGE:
656     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
657       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
658     }
659     break;
660   }
661 }
662 
663 static Instruction *getContextInstForUse(Use &U) {
664   Instruction *UserI = cast<Instruction>(U.getUser());
665   if (auto *Phi = dyn_cast<PHINode>(UserI))
666     UserI = Phi->getIncomingBlock(U)->getTerminator();
667   return UserI;
668 }
669 
670 namespace {
671 /// Represents either
672 ///  * a condition that holds on entry to a block (=conditional fact)
673 ///  * an assume (=assume fact)
674 ///  * a use of a compare instruction to simplify.
675 /// It also tracks the Dominator DFS in and out numbers for each entry.
676 struct FactOrCheck {
677   union {
678     Instruction *Inst;
679     Use *U;
680   };
681   unsigned NumIn;
682   unsigned NumOut;
683   bool HasInst;
684   bool Not;
685 
686   FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool Not)
687       : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
688         HasInst(true), Not(Not) {}
689 
690   FactOrCheck(DomTreeNode *DTN, Use *U)
691       : U(U), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
692         HasInst(false), Not(false) {}
693 
694   static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst,
695                              bool Not = false) {
696     return FactOrCheck(DTN, Inst, Not);
697   }
698 
699   static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
700     return FactOrCheck(DTN, U);
701   }
702 
703   static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
704     return FactOrCheck(DTN, CI, false);
705   }
706 
707   bool isCheck() const {
708     return !HasInst ||
709            match(Inst, m_Intrinsic<Intrinsic::ssub_with_overflow>());
710   }
711 
712   Instruction *getContextInst() const {
713     if (HasInst)
714       return Inst;
715     return getContextInstForUse(*U);
716   }
717   Instruction *getInstructionToSimplify() const {
718     assert(isCheck());
719     if (HasInst)
720       return Inst;
721     // The use may have been simplified to a constant already.
722     return dyn_cast<Instruction>(*U);
723   }
724   bool isConditionFact() const { return !isCheck() && isa<CmpInst>(Inst); }
725 };
726 
727 /// Keep state required to build worklist.
728 struct State {
729   DominatorTree &DT;
730   SmallVector<FactOrCheck, 64> WorkList;
731 
732   State(DominatorTree &DT) : DT(DT) {}
733 
734   /// Process block \p BB and add known facts to work-list.
735   void addInfoFor(BasicBlock &BB);
736 
737   /// Returns true if we can add a known condition from BB to its successor
738   /// block Succ.
739   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
740     return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
741   }
742 };
743 
744 } // namespace
745 
746 #ifndef NDEBUG
747 
748 static void dumpConstraint(ArrayRef<int64_t> C,
749                            const DenseMap<Value *, unsigned> &Value2Index) {
750   ConstraintSystem CS(Value2Index);
751   CS.addVariableRowFill(C);
752   CS.dump();
753 }
754 #endif
755 
756 void State::addInfoFor(BasicBlock &BB) {
757   // True as long as long as the current instruction is guaranteed to execute.
758   bool GuaranteedToExecute = true;
759   // Queue conditions and assumes.
760   for (Instruction &I : BB) {
761     if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
762       for (Use &U : Cmp->uses()) {
763         auto *UserI = getContextInstForUse(U);
764         auto *DTN = DT.getNode(UserI->getParent());
765         if (!DTN)
766           continue;
767         WorkList.push_back(FactOrCheck::getCheck(DTN, &U));
768       }
769       continue;
770     }
771 
772     if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) {
773       WorkList.push_back(
774           FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
775       continue;
776     }
777 
778     Value *Cond;
779     // For now, just handle assumes with a single compare as condition.
780     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
781         isa<ICmpInst>(Cond)) {
782       if (GuaranteedToExecute) {
783         // The assume is guaranteed to execute when BB is entered, hence Cond
784         // holds on entry to BB.
785         WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()),
786                                                    cast<Instruction>(Cond)));
787       } else {
788         WorkList.emplace_back(
789             FactOrCheck::getFact(DT.getNode(I.getParent()), &I));
790       }
791     }
792     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
793   }
794 
795   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
796   if (!Br || !Br->isConditional())
797     return;
798 
799   Value *Cond = Br->getCondition();
800 
801   // If the condition is a chain of ORs/AND and the successor only has the
802   // current block as predecessor, queue conditions for the successor.
803   Value *Op0, *Op1;
804   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
805       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
806     bool IsOr = match(Cond, m_LogicalOr());
807     bool IsAnd = match(Cond, m_LogicalAnd());
808     // If there's a select that matches both AND and OR, we need to commit to
809     // one of the options. Arbitrarily pick OR.
810     if (IsOr && IsAnd)
811       IsAnd = false;
812 
813     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
814     if (canAddSuccessor(BB, Successor)) {
815       SmallVector<Value *> CondWorkList;
816       SmallPtrSet<Value *, 8> SeenCond;
817       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
818         if (SeenCond.insert(V).second)
819           CondWorkList.push_back(V);
820       };
821       QueueValue(Op1);
822       QueueValue(Op0);
823       while (!CondWorkList.empty()) {
824         Value *Cur = CondWorkList.pop_back_val();
825         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
826           WorkList.emplace_back(
827               FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr));
828           continue;
829         }
830         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
831           QueueValue(Op1);
832           QueueValue(Op0);
833           continue;
834         }
835         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
836           QueueValue(Op1);
837           QueueValue(Op0);
838           continue;
839         }
840       }
841     }
842     return;
843   }
844 
845   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
846   if (!CmpI)
847     return;
848   if (canAddSuccessor(BB, Br->getSuccessor(0)))
849     WorkList.emplace_back(
850         FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI));
851   if (canAddSuccessor(BB, Br->getSuccessor(1)))
852     WorkList.emplace_back(
853         FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true));
854 }
855 
856 namespace {
857 /// Helper to keep track of a condition and if it should be treated as negated
858 /// for reproducer construction.
859 struct ReproducerEntry {
860   CmpInst *Cond;
861   bool IsNot;
862 
863   ReproducerEntry(CmpInst *Cond, bool IsNot) : Cond(Cond), IsNot(IsNot) {}
864 };
865 } // namespace
866 
867 /// Helper function to generate a reproducer function for simplifying \p Cond.
868 /// The reproducer function contains a series of @llvm.assume calls, one for
869 /// each condition in \p Stack. For each condition, the operand instruction are
870 /// cloned until we reach operands that have an entry in \p Value2Index. Those
871 /// will then be added as function arguments. \p DT is used to order cloned
872 /// instructions. The reproducer function will get added to \p M, if it is
873 /// non-null. Otherwise no reproducer function is generated.
874 static void generateReproducer(CmpInst *Cond, Module *M,
875                                ArrayRef<ReproducerEntry> Stack,
876                                ConstraintInfo &Info, DominatorTree &DT) {
877   if (!M)
878     return;
879 
880   LLVMContext &Ctx = Cond->getContext();
881 
882   LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
883 
884   ValueToValueMapTy Old2New;
885   SmallVector<Value *> Args;
886   SmallPtrSet<Value *, 8> Seen;
887   // Traverse Cond and its operands recursively until we reach a value that's in
888   // Value2Index or not an instruction, or not a operation that
889   // ConstraintElimination can decompose. Such values will be considered as
890   // external inputs to the reproducer, they are collected and added as function
891   // arguments later.
892   auto CollectArguments = [&](CmpInst *Cond) {
893     if (!Cond)
894       return;
895     auto &Value2Index =
896         Info.getValue2Index(CmpInst::isSigned(Cond->getPredicate()));
897     SmallVector<Value *, 4> WorkList;
898     WorkList.push_back(Cond);
899     while (!WorkList.empty()) {
900       Value *V = WorkList.pop_back_val();
901       if (!Seen.insert(V).second)
902         continue;
903       if (Old2New.find(V) != Old2New.end())
904         continue;
905       if (isa<Constant>(V))
906         continue;
907 
908       auto *I = dyn_cast<Instruction>(V);
909       if (Value2Index.contains(V) || !I ||
910           !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) {
911         Old2New[V] = V;
912         Args.push_back(V);
913         LLVM_DEBUG(dbgs() << "  found external input " << *V << "\n");
914       } else {
915         append_range(WorkList, I->operands());
916       }
917     }
918   };
919 
920   for (auto &Entry : Stack)
921     CollectArguments(Entry.Cond);
922   CollectArguments(Cond);
923 
924   SmallVector<Type *> ParamTys;
925   for (auto *P : Args)
926     ParamTys.push_back(P->getType());
927 
928   FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
929                                         /*isVarArg=*/false);
930   Function *F = Function::Create(FTy, Function::ExternalLinkage,
931                                  Cond->getModule()->getName() +
932                                      Cond->getFunction()->getName() + "repro",
933                                  M);
934   // Add arguments to the reproducer function for each external value collected.
935   for (unsigned I = 0; I < Args.size(); ++I) {
936     F->getArg(I)->setName(Args[I]->getName());
937     Old2New[Args[I]] = F->getArg(I);
938   }
939 
940   BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
941   IRBuilder<> Builder(Entry);
942   Builder.CreateRet(Builder.getTrue());
943   Builder.SetInsertPoint(Entry->getTerminator());
944 
945   // Clone instructions in \p Ops and their operands recursively until reaching
946   // an value in Value2Index (external input to the reproducer). Update Old2New
947   // mapping for the original and cloned instructions. Sort instructions to
948   // clone by dominance, then insert the cloned instructions in the function.
949   auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
950     SmallVector<Value *, 4> WorkList(Ops);
951     SmallVector<Instruction *> ToClone;
952     auto &Value2Index = Info.getValue2Index(IsSigned);
953     while (!WorkList.empty()) {
954       Value *V = WorkList.pop_back_val();
955       if (Old2New.find(V) != Old2New.end())
956         continue;
957 
958       auto *I = dyn_cast<Instruction>(V);
959       if (!Value2Index.contains(V) && I) {
960         Old2New[V] = nullptr;
961         ToClone.push_back(I);
962         append_range(WorkList, I->operands());
963       }
964     }
965 
966     sort(ToClone,
967          [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
968     for (Instruction *I : ToClone) {
969       Instruction *Cloned = I->clone();
970       Old2New[I] = Cloned;
971       Old2New[I]->setName(I->getName());
972       Cloned->insertBefore(&*Builder.GetInsertPoint());
973       Cloned->dropUnknownNonDebugMetadata();
974       Cloned->setDebugLoc({});
975     }
976   };
977 
978   // Materialize the assumptions for the reproducer using the entries in Stack.
979   // That is, first clone the operands of the condition recursively until we
980   // reach an external input to the reproducer and add them to the reproducer
981   // function. Then add an ICmp for the condition (with the inverse predicate if
982   // the entry is negated) and an assert using the ICmp.
983   for (auto &Entry : Stack) {
984     if (!Entry.Cond)
985       continue;
986 
987     LLVM_DEBUG(dbgs() << "  Materializing assumption " << *Entry.Cond << "\n");
988     CmpInst::Predicate Pred = Entry.Cond->getPredicate();
989     if (Entry.IsNot)
990       Pred = CmpInst::getInversePredicate(Pred);
991 
992     CloneInstructions({Entry.Cond->getOperand(0), Entry.Cond->getOperand(1)},
993                       CmpInst::isSigned(Entry.Cond->getPredicate()));
994 
995     auto *Cmp = Builder.CreateICmp(Pred, Entry.Cond->getOperand(0),
996                                    Entry.Cond->getOperand(1));
997     Builder.CreateAssumption(Cmp);
998   }
999 
1000   // Finally, clone the condition to reproduce and remap instruction operands in
1001   // the reproducer using Old2New.
1002   CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
1003   Entry->getTerminator()->setOperand(0, Cond);
1004   remapInstructionsInBlocks({Entry}, Old2New);
1005 
1006   assert(!verifyFunction(*F, &dbgs()));
1007 }
1008 
1009 static bool checkAndReplaceCondition(
1010     CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut,
1011     Instruction *ContextInst, Module *ReproducerModule,
1012     ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT) {
1013   LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
1014 
1015   CmpInst::Predicate Pred = Cmp->getPredicate();
1016   Value *A = Cmp->getOperand(0);
1017   Value *B = Cmp->getOperand(1);
1018 
1019   auto R = Info.getConstraintForSolving(Pred, A, B);
1020   if (R.empty() || !R.isValid(Info)){
1021     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
1022     return false;
1023   }
1024 
1025   auto &CSToUse = Info.getCS(R.IsSigned);
1026 
1027   // If there was extra information collected during decomposition, apply
1028   // it now and remove it immediately once we are done with reasoning
1029   // about the constraint.
1030   for (auto &Row : R.ExtraInfo)
1031     CSToUse.addVariableRow(Row);
1032   auto InfoRestorer = make_scope_exit([&]() {
1033     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
1034       CSToUse.popLastConstraint();
1035   });
1036 
1037   auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
1038     if (!DebugCounter::shouldExecute(EliminatedCounter))
1039       return false;
1040 
1041     LLVM_DEBUG({
1042       if (IsTrue) {
1043         dbgs() << "Condition " << *Cmp;
1044       } else {
1045         auto InversePred = Cmp->getInversePredicate();
1046         dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " "
1047                << *A << ", " << *B;
1048       }
1049       dbgs() << " implied by dominating constraints\n";
1050       CSToUse.dump();
1051     });
1052 
1053     generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
1054     Constant *ConstantC = ConstantInt::getBool(
1055         CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
1056     Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut,
1057                                        ContextInst](Use &U) {
1058       auto *UserI = getContextInstForUse(U);
1059       auto *DTN = DT.getNode(UserI->getParent());
1060       if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
1061         return false;
1062       if (UserI->getParent() == ContextInst->getParent() &&
1063           UserI->comesBefore(ContextInst))
1064         return false;
1065 
1066       // Conditions in an assume trivially simplify to true. Skip uses
1067       // in assume calls to not destroy the available information.
1068       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1069       return !II || II->getIntrinsicID() != Intrinsic::assume;
1070     });
1071     NumCondsRemoved++;
1072     return true;
1073   };
1074 
1075   if (auto ImpliedCondition = R.isImpliedBy(CSToUse))
1076     return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
1077 
1078   return false;
1079 }
1080 
1081 static void
1082 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
1083                      Module *ReproducerModule,
1084                      SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1085                      SmallVectorImpl<StackEntry> &DFSInStack) {
1086   Info.popLastConstraint(E.IsSigned);
1087   // Remove variables in the system that went out of scope.
1088   auto &Mapping = Info.getValue2Index(E.IsSigned);
1089   for (Value *V : E.ValuesToRelease)
1090     Mapping.erase(V);
1091   Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1092   DFSInStack.pop_back();
1093   if (ReproducerModule)
1094     ReproducerCondStack.pop_back();
1095 }
1096 
1097 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
1098                              unsigned NumIn, unsigned NumOut,
1099                              SmallVectorImpl<StackEntry> &DFSInStack) {
1100   // If the constraint has a pre-condition, skip the constraint if it does not
1101   // hold.
1102   SmallVector<Value *> NewVariables;
1103   auto R = getConstraint(Pred, A, B, NewVariables);
1104   if (!R.isValid(*this))
1105     return;
1106 
1107   LLVM_DEBUG(dbgs() << "Adding '" << Pred << " ";
1108              A->printAsOperand(dbgs(), false); dbgs() << ", ";
1109              B->printAsOperand(dbgs(), false); dbgs() << "'\n");
1110   bool Added = false;
1111   auto &CSToUse = getCS(R.IsSigned);
1112   if (R.Coefficients.empty())
1113     return;
1114 
1115   Added |= CSToUse.addVariableRowFill(R.Coefficients);
1116 
1117   // If R has been added to the system, add the new variables and queue it for
1118   // removal once it goes out-of-scope.
1119   if (Added) {
1120     SmallVector<Value *, 2> ValuesToRelease;
1121     auto &Value2Index = getValue2Index(R.IsSigned);
1122     for (Value *V : NewVariables) {
1123       Value2Index.insert({V, Value2Index.size() + 1});
1124       ValuesToRelease.push_back(V);
1125     }
1126 
1127     LLVM_DEBUG({
1128       dbgs() << "  constraint: ";
1129       dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1130       dbgs() << "\n";
1131     });
1132 
1133     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1134                             std::move(ValuesToRelease));
1135 
1136     if (R.isEq()) {
1137       // Also add the inverted constraint for equality constraints.
1138       for (auto &Coeff : R.Coefficients)
1139         Coeff *= -1;
1140       CSToUse.addVariableRowFill(R.Coefficients);
1141 
1142       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1143                               SmallVector<Value *, 2>());
1144     }
1145   }
1146 }
1147 
1148 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
1149                                    SmallVectorImpl<Instruction *> &ToRemove) {
1150   bool Changed = false;
1151   IRBuilder<> Builder(II->getParent(), II->getIterator());
1152   Value *Sub = nullptr;
1153   for (User *U : make_early_inc_range(II->users())) {
1154     if (match(U, m_ExtractValue<0>(m_Value()))) {
1155       if (!Sub)
1156         Sub = Builder.CreateSub(A, B);
1157       U->replaceAllUsesWith(Sub);
1158       Changed = true;
1159     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
1160       U->replaceAllUsesWith(Builder.getFalse());
1161       Changed = true;
1162     } else
1163       continue;
1164 
1165     if (U->use_empty()) {
1166       auto *I = cast<Instruction>(U);
1167       ToRemove.push_back(I);
1168       I->setOperand(0, PoisonValue::get(II->getType()));
1169       Changed = true;
1170     }
1171   }
1172 
1173   if (II->use_empty()) {
1174     II->eraseFromParent();
1175     Changed = true;
1176   }
1177   return Changed;
1178 }
1179 
1180 static bool
1181 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
1182                           SmallVectorImpl<Instruction *> &ToRemove) {
1183   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1184                               ConstraintInfo &Info) {
1185     auto R = Info.getConstraintForSolving(Pred, A, B);
1186     if (R.size() < 2 || !R.isValid(Info))
1187       return false;
1188 
1189     auto &CSToUse = Info.getCS(R.IsSigned);
1190     return CSToUse.isConditionImplied(R.Coefficients);
1191   };
1192 
1193   bool Changed = false;
1194   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1195     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1196     // can be simplified to a regular sub.
1197     Value *A = II->getArgOperand(0);
1198     Value *B = II->getArgOperand(1);
1199     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1200         !DoesConditionHold(CmpInst::ICMP_SGE, B,
1201                            ConstantInt::get(A->getType(), 0), Info))
1202       return false;
1203     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
1204   }
1205   return Changed;
1206 }
1207 
1208 static bool eliminateConstraints(Function &F, DominatorTree &DT,
1209                                  OptimizationRemarkEmitter &ORE) {
1210   bool Changed = false;
1211   DT.updateDFSNumbers();
1212   SmallVector<Value *> FunctionArgs;
1213   for (Value &Arg : F.args())
1214     FunctionArgs.push_back(&Arg);
1215   ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs);
1216   State S(DT);
1217   std::unique_ptr<Module> ReproducerModule(
1218       DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1219 
1220   // First, collect conditions implied by branches and blocks with their
1221   // Dominator DFS in and out numbers.
1222   for (BasicBlock &BB : F) {
1223     if (!DT.getNode(&BB))
1224       continue;
1225     S.addInfoFor(BB);
1226   }
1227 
1228   // Next, sort worklist by dominance, so that dominating conditions to check
1229   // and facts come before conditions and facts dominated by them. If a
1230   // condition to check and a fact have the same numbers, conditional facts come
1231   // first. Assume facts and checks are ordered according to their relative
1232   // order in the containing basic block. Also make sure conditions with
1233   // constant operands come before conditions without constant operands. This
1234   // increases the effectiveness of the current signed <-> unsigned fact
1235   // transfer logic.
1236   stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1237     auto HasNoConstOp = [](const FactOrCheck &B) {
1238       return !isa<ConstantInt>(B.Inst->getOperand(0)) &&
1239              !isa<ConstantInt>(B.Inst->getOperand(1));
1240     };
1241     // If both entries have the same In numbers, conditional facts come first.
1242     // Otherwise use the relative order in the basic block.
1243     if (A.NumIn == B.NumIn) {
1244       if (A.isConditionFact() && B.isConditionFact()) {
1245         bool NoConstOpA = HasNoConstOp(A);
1246         bool NoConstOpB = HasNoConstOp(B);
1247         return NoConstOpA < NoConstOpB;
1248       }
1249       if (A.isConditionFact())
1250         return true;
1251       if (B.isConditionFact())
1252         return false;
1253       auto *InstA = A.getContextInst();
1254       auto *InstB = B.getContextInst();
1255       return InstA->comesBefore(InstB);
1256     }
1257     return A.NumIn < B.NumIn;
1258   });
1259 
1260   SmallVector<Instruction *> ToRemove;
1261 
1262   // Finally, process ordered worklist and eliminate implied conditions.
1263   SmallVector<StackEntry, 16> DFSInStack;
1264   SmallVector<ReproducerEntry> ReproducerCondStack;
1265   for (FactOrCheck &CB : S.WorkList) {
1266     // First, pop entries from the stack that are out-of-scope for CB. Remove
1267     // the corresponding entry from the constraint system.
1268     while (!DFSInStack.empty()) {
1269       auto &E = DFSInStack.back();
1270       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1271                         << "\n");
1272       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1273       assert(E.NumIn <= CB.NumIn);
1274       if (CB.NumOut <= E.NumOut)
1275         break;
1276       LLVM_DEBUG({
1277         dbgs() << "Removing ";
1278         dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1279                        Info.getValue2Index(E.IsSigned));
1280         dbgs() << "\n";
1281       });
1282       removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
1283                            DFSInStack);
1284     }
1285 
1286     LLVM_DEBUG(dbgs() << "Processing ");
1287 
1288     // For a block, check if any CmpInsts become known based on the current set
1289     // of constraints.
1290     if (CB.isCheck()) {
1291       Instruction *Inst = CB.getInstructionToSimplify();
1292       if (!Inst)
1293         continue;
1294       LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n");
1295       if (auto *II = dyn_cast<WithOverflowInst>(Inst)) {
1296         Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1297       } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) {
1298         Changed |= checkAndReplaceCondition(
1299             Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(),
1300             ReproducerModule.get(), ReproducerCondStack, S.DT);
1301       }
1302       continue;
1303     }
1304 
1305     LLVM_DEBUG(dbgs() << "fact to add to the system: " << *CB.Inst << "\n");
1306     ICmpInst::Predicate Pred;
1307     Value *A, *B;
1308     Value *Cmp = CB.Inst;
1309     match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp)));
1310     if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
1311       if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1312         LLVM_DEBUG(
1313             dbgs()
1314             << "Skip adding constraint because system has too many rows.\n");
1315         continue;
1316       }
1317 
1318       // Use the inverse predicate if required.
1319       if (CB.Not)
1320         Pred = CmpInst::getInversePredicate(Pred);
1321 
1322       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1323       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1324         ReproducerCondStack.emplace_back(cast<CmpInst>(Cmp), CB.Not);
1325 
1326       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1327       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
1328         // Add dummy entries to ReproducerCondStack to keep it in sync with
1329         // DFSInStack.
1330         for (unsigned I = 0,
1331                       E = (DFSInStack.size() - ReproducerCondStack.size());
1332              I < E; ++I) {
1333           ReproducerCondStack.emplace_back(nullptr, false);
1334         }
1335       }
1336     }
1337   }
1338 
1339   if (ReproducerModule && !ReproducerModule->functions().empty()) {
1340     std::string S;
1341     raw_string_ostream StringS(S);
1342     ReproducerModule->print(StringS, nullptr);
1343     StringS.flush();
1344     OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
1345     Rem << ore::NV("module") << S;
1346     ORE.emit(Rem);
1347   }
1348 
1349 #ifndef NDEBUG
1350   unsigned SignedEntries =
1351       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1352   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
1353          "updates to CS and DFSInStack are out of sync");
1354   assert(Info.getCS(true).size() == SignedEntries &&
1355          "updates to CS and DFSInStack are out of sync");
1356 #endif
1357 
1358   for (Instruction *I : ToRemove)
1359     I->eraseFromParent();
1360   return Changed;
1361 }
1362 
1363 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1364                                                  FunctionAnalysisManager &AM) {
1365   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1366   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1367   if (!eliminateConstraints(F, DT, ORE))
1368     return PreservedAnalyses::all();
1369 
1370   PreservedAnalyses PA;
1371   PA.preserve<DominatorTreeAnalysis>();
1372   PA.preserveSet<CFGAnalyses>();
1373   return PA;
1374 }
1375