1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/DebugCounter.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Transforms/Scalar.h" 35 36 #include <cmath> 37 #include <string> 38 39 using namespace llvm; 40 using namespace PatternMatch; 41 42 #define DEBUG_TYPE "constraint-elimination" 43 44 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 45 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 46 "Controls which conditions are eliminated"); 47 48 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 49 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 50 51 // A helper to multiply 2 signed integers where overflowing is allowed. 52 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 53 int64_t Result; 54 MulOverflow(A, B, Result); 55 return Result; 56 } 57 58 // A helper to add 2 signed integers where overflowing is allowed. 59 static int64_t addWithOverflow(int64_t A, int64_t B) { 60 int64_t Result; 61 AddOverflow(A, B, Result); 62 return Result; 63 } 64 65 namespace { 66 67 class ConstraintInfo; 68 69 struct StackEntry { 70 unsigned NumIn; 71 unsigned NumOut; 72 bool IsSigned = false; 73 /// Variables that can be removed from the system once the stack entry gets 74 /// removed. 75 SmallVector<Value *, 2> ValuesToRelease; 76 77 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 78 SmallVector<Value *, 2> ValuesToRelease) 79 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 80 ValuesToRelease(ValuesToRelease) {} 81 }; 82 83 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 84 struct PreconditionTy { 85 CmpInst::Predicate Pred; 86 Value *Op0; 87 Value *Op1; 88 89 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 90 : Pred(Pred), Op0(Op0), Op1(Op1) {} 91 }; 92 93 struct ConstraintTy { 94 SmallVector<int64_t, 8> Coefficients; 95 SmallVector<PreconditionTy, 2> Preconditions; 96 97 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 98 99 bool IsSigned = false; 100 bool IsEq = false; 101 102 ConstraintTy() = default; 103 104 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 105 : Coefficients(Coefficients), IsSigned(IsSigned) {} 106 107 unsigned size() const { return Coefficients.size(); } 108 109 unsigned empty() const { return Coefficients.empty(); } 110 111 /// Returns true if all preconditions for this list of constraints are 112 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 113 bool isValid(const ConstraintInfo &Info) const; 114 }; 115 116 /// Wrapper encapsulating separate constraint systems and corresponding value 117 /// mappings for both unsigned and signed information. Facts are added to and 118 /// conditions are checked against the corresponding system depending on the 119 /// signed-ness of their predicates. While the information is kept separate 120 /// based on signed-ness, certain conditions can be transferred between the two 121 /// systems. 122 class ConstraintInfo { 123 DenseMap<Value *, unsigned> UnsignedValue2Index; 124 DenseMap<Value *, unsigned> SignedValue2Index; 125 126 ConstraintSystem UnsignedCS; 127 ConstraintSystem SignedCS; 128 129 const DataLayout &DL; 130 131 public: 132 ConstraintInfo(const DataLayout &DL) : DL(DL) {} 133 134 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 135 return Signed ? SignedValue2Index : UnsignedValue2Index; 136 } 137 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 138 return Signed ? SignedValue2Index : UnsignedValue2Index; 139 } 140 141 ConstraintSystem &getCS(bool Signed) { 142 return Signed ? SignedCS : UnsignedCS; 143 } 144 const ConstraintSystem &getCS(bool Signed) const { 145 return Signed ? SignedCS : UnsignedCS; 146 } 147 148 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 149 void popLastNVariables(bool Signed, unsigned N) { 150 getCS(Signed).popLastNVariables(N); 151 } 152 153 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 154 155 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 156 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 157 158 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 159 /// constraints, using indices from the corresponding constraint system. 160 /// New variables that need to be added to the system are collected in 161 /// \p NewVariables. 162 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 163 SmallVectorImpl<Value *> &NewVariables) const; 164 165 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 166 /// constraints using getConstraint. Returns an empty constraint if the result 167 /// cannot be used to query the existing constraint system, e.g. because it 168 /// would require adding new variables. Also tries to convert signed 169 /// predicates to unsigned ones if possible to allow using the unsigned system 170 /// which increases the effectiveness of the signed <-> unsigned transfer 171 /// logic. 172 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 173 Value *Op1) const; 174 175 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 176 /// system if \p Pred is signed/unsigned. 177 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 178 unsigned NumIn, unsigned NumOut, 179 SmallVectorImpl<StackEntry> &DFSInStack); 180 }; 181 182 /// Represents a (Coefficient * Variable) entry after IR decomposition. 183 struct DecompEntry { 184 int64_t Coefficient; 185 Value *Variable; 186 /// True if the variable is known positive in the current constraint. 187 bool IsKnownPositive; 188 189 DecompEntry(int64_t Coefficient, Value *Variable, 190 bool IsKnownPositive = false) 191 : Coefficient(Coefficient), Variable(Variable), 192 IsKnownPositive(IsKnownPositive) {} 193 }; 194 195 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 196 struct Decomposition { 197 int64_t Offset = 0; 198 SmallVector<DecompEntry, 3> Vars; 199 200 Decomposition(int64_t Offset) : Offset(Offset) {} 201 Decomposition(Value *V, bool IsKnownPositive = false) { 202 Vars.emplace_back(1, V, IsKnownPositive); 203 } 204 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 205 : Offset(Offset), Vars(Vars) {} 206 207 void add(int64_t OtherOffset) { 208 Offset = addWithOverflow(Offset, OtherOffset); 209 } 210 211 void add(const Decomposition &Other) { 212 add(Other.Offset); 213 append_range(Vars, Other.Vars); 214 } 215 216 void mul(int64_t Factor) { 217 Offset = multiplyWithOverflow(Offset, Factor); 218 for (auto &Var : Vars) 219 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 220 } 221 }; 222 223 } // namespace 224 225 static Decomposition decompose(Value *V, 226 SmallVectorImpl<PreconditionTy> &Preconditions, 227 bool IsSigned, const DataLayout &DL); 228 229 static bool canUseSExt(ConstantInt *CI) { 230 const APInt &Val = CI->getValue(); 231 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 232 } 233 234 static Decomposition 235 decomposeGEP(GetElementPtrInst &GEP, 236 SmallVectorImpl<PreconditionTy> &Preconditions, bool IsSigned, 237 const DataLayout &DL) { 238 // Do not reason about pointers where the index size is larger than 64 bits, 239 // as the coefficients used to encode constraints are 64 bit integers. 240 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 241 return &GEP; 242 243 if (!GEP.isInBounds()) 244 return &GEP; 245 246 // Handle the (gep (gep ....), C) case by incrementing the constant 247 // coefficient of the inner GEP, if C is a constant. 248 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand()); 249 if (InnerGEP && GEP.getNumOperands() == 2 && 250 isa<ConstantInt>(GEP.getOperand(1))) { 251 APInt Offset = cast<ConstantInt>(GEP.getOperand(1))->getValue(); 252 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 253 254 auto GTI = gep_type_begin(GEP); 255 // Bail out for scalable vectors for now. 256 if (isa<ScalableVectorType>(GTI.getIndexedType())) 257 return &GEP; 258 int64_t Scale = static_cast<int64_t>( 259 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 260 261 Result.add(multiplyWithOverflow(Scale, Offset.getSExtValue())); 262 if (Offset.isNegative()) { 263 // Add pre-condition ensuring the GEP is increasing monotonically and 264 // can be de-composed. 265 Preconditions.emplace_back( 266 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 267 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 268 -1 * Offset.getSExtValue())); 269 } 270 return Result; 271 } 272 273 Type *PtrTy = GEP.getType()->getScalarType(); 274 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 275 MapVector<Value *, APInt> VariableOffsets; 276 APInt ConstantOffset(BitWidth, 0); 277 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 278 return &GEP; 279 280 Decomposition Result(ConstantOffset.getSExtValue(), 281 DecompEntry(1, GEP.getPointerOperand())); 282 for (auto [Index, Scale] : VariableOffsets) { 283 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 284 IdxResult.mul(Scale.getSExtValue()); 285 Result.add(IdxResult); 286 287 // If Op0 is signed non-negative, the GEP is increasing monotonically and 288 // can be de-composed. 289 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 290 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 291 ConstantInt::get(Index->getType(), 0)); 292 } 293 return Result; 294 } 295 296 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable 297 // } where Coefficient * Variable. The sum of the pairs equals \p V. The first 298 // pair is the constant-factor and X must be nullptr. If the expression cannot 299 // be decomposed, returns an empty vector. 300 static Decomposition decompose(Value *V, 301 SmallVectorImpl<PreconditionTy> &Preconditions, 302 bool IsSigned, const DataLayout &DL) { 303 304 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 305 bool IsSignedB) { 306 auto ResA = decompose(A, Preconditions, IsSigned, DL); 307 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 308 ResA.add(ResB); 309 return ResA; 310 }; 311 312 // Decompose \p V used with a signed predicate. 313 if (IsSigned) { 314 if (auto *CI = dyn_cast<ConstantInt>(V)) { 315 if (canUseSExt(CI)) 316 return CI->getSExtValue(); 317 } 318 Value *Op0; 319 Value *Op1; 320 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 321 return MergeResults(Op0, Op1, IsSigned); 322 323 return V; 324 } 325 326 if (auto *CI = dyn_cast<ConstantInt>(V)) { 327 if (CI->uge(MaxConstraintValue)) 328 return V; 329 return int64_t(CI->getZExtValue()); 330 } 331 332 if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) 333 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 334 335 Value *Op0; 336 bool IsKnownPositive = false; 337 if (match(V, m_ZExt(m_Value(Op0)))) { 338 IsKnownPositive = true; 339 V = Op0; 340 } 341 342 Value *Op1; 343 ConstantInt *CI; 344 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 345 return MergeResults(Op0, Op1, IsSigned); 346 } 347 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 348 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 349 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 350 ConstantInt::get(Op0->getType(), 0)); 351 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 352 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 353 ConstantInt::get(Op1->getType(), 0)); 354 355 return MergeResults(Op0, Op1, IsSigned); 356 } 357 358 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 359 canUseSExt(CI)) { 360 Preconditions.emplace_back( 361 CmpInst::ICMP_UGE, Op0, 362 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 363 return MergeResults(Op0, CI, true); 364 } 365 366 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 367 int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue())); 368 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 369 Result.mul(Mult); 370 return Result; 371 } 372 373 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 374 (!CI->isNegative())) { 375 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 376 Result.mul(CI->getSExtValue()); 377 return Result; 378 } 379 380 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 381 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 382 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 383 return {0, {{1, Op0}, {-1, Op1}}}; 384 385 return {V, IsKnownPositive}; 386 } 387 388 ConstraintTy 389 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 390 SmallVectorImpl<Value *> &NewVariables) const { 391 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 392 bool IsEq = false; 393 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 394 switch (Pred) { 395 case CmpInst::ICMP_UGT: 396 case CmpInst::ICMP_UGE: 397 case CmpInst::ICMP_SGT: 398 case CmpInst::ICMP_SGE: { 399 Pred = CmpInst::getSwappedPredicate(Pred); 400 std::swap(Op0, Op1); 401 break; 402 } 403 case CmpInst::ICMP_EQ: 404 if (match(Op1, m_Zero())) { 405 Pred = CmpInst::ICMP_ULE; 406 } else { 407 IsEq = true; 408 Pred = CmpInst::ICMP_ULE; 409 } 410 break; 411 case CmpInst::ICMP_NE: 412 if (!match(Op1, m_Zero())) 413 return {}; 414 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 415 std::swap(Op0, Op1); 416 break; 417 default: 418 break; 419 } 420 421 // Only ULE and ULT predicates are supported at the moment. 422 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 423 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 424 return {}; 425 426 SmallVector<PreconditionTy, 4> Preconditions; 427 bool IsSigned = CmpInst::isSigned(Pred); 428 auto &Value2Index = getValue2Index(IsSigned); 429 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 430 Preconditions, IsSigned, DL); 431 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 432 Preconditions, IsSigned, DL); 433 int64_t Offset1 = ADec.Offset; 434 int64_t Offset2 = BDec.Offset; 435 Offset1 *= -1; 436 437 auto &VariablesA = ADec.Vars; 438 auto &VariablesB = BDec.Vars; 439 440 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 441 // new entry to NewVariables. 442 DenseMap<Value *, unsigned> NewIndexMap; 443 auto GetOrAddIndex = [&Value2Index, &NewVariables, 444 &NewIndexMap](Value *V) -> unsigned { 445 auto V2I = Value2Index.find(V); 446 if (V2I != Value2Index.end()) 447 return V2I->second; 448 auto Insert = 449 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 450 if (Insert.second) 451 NewVariables.push_back(V); 452 return Insert.first->second; 453 }; 454 455 // Make sure all variables have entries in Value2Index or NewVariables. 456 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 457 GetOrAddIndex(KV.Variable); 458 459 // Build result constraint, by first adding all coefficients from A and then 460 // subtracting all coefficients from B. 461 ConstraintTy Res( 462 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 463 IsSigned); 464 // Collect variables that are known to be positive in all uses in the 465 // constraint. 466 DenseMap<Value *, bool> KnownPositiveVariables; 467 Res.IsEq = IsEq; 468 auto &R = Res.Coefficients; 469 for (const auto &KV : VariablesA) { 470 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 471 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 472 I.first->second &= KV.IsKnownPositive; 473 } 474 475 for (const auto &KV : VariablesB) { 476 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 477 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 478 I.first->second &= KV.IsKnownPositive; 479 } 480 481 int64_t OffsetSum; 482 if (AddOverflow(Offset1, Offset2, OffsetSum)) 483 return {}; 484 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 485 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 486 return {}; 487 R[0] = OffsetSum; 488 Res.Preconditions = std::move(Preconditions); 489 490 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 491 // variables. 492 while (!NewVariables.empty()) { 493 int64_t Last = R.back(); 494 if (Last != 0) 495 break; 496 R.pop_back(); 497 Value *RemovedV = NewVariables.pop_back_val(); 498 NewIndexMap.erase(RemovedV); 499 } 500 501 // Add extra constraints for variables that are known positive. 502 for (auto &KV : KnownPositiveVariables) { 503 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 504 NewIndexMap.find(KV.first) == NewIndexMap.end())) 505 continue; 506 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 507 C[GetOrAddIndex(KV.first)] = -1; 508 Res.ExtraInfo.push_back(C); 509 } 510 return Res; 511 } 512 513 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 514 Value *Op0, 515 Value *Op1) const { 516 // If both operands are known to be non-negative, change signed predicates to 517 // unsigned ones. This increases the reasoning effectiveness in combination 518 // with the signed <-> unsigned transfer logic. 519 if (CmpInst::isSigned(Pred) && 520 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 521 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 522 Pred = CmpInst::getUnsignedPredicate(Pred); 523 524 SmallVector<Value *> NewVariables; 525 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 526 if (R.IsEq || !NewVariables.empty()) 527 return {}; 528 return R; 529 } 530 531 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 532 return Coefficients.size() > 0 && 533 all_of(Preconditions, [&Info](const PreconditionTy &C) { 534 return Info.doesHold(C.Pred, C.Op0, C.Op1); 535 }); 536 } 537 538 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 539 Value *B) const { 540 auto R = getConstraintForSolving(Pred, A, B); 541 return R.Preconditions.empty() && !R.empty() && 542 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 543 } 544 545 void ConstraintInfo::transferToOtherSystem( 546 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 547 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 548 // Check if we can combine facts from the signed and unsigned systems to 549 // derive additional facts. 550 if (!A->getType()->isIntegerTy()) 551 return; 552 // FIXME: This currently depends on the order we add facts. Ideally we 553 // would first add all known facts and only then try to add additional 554 // facts. 555 switch (Pred) { 556 default: 557 break; 558 case CmpInst::ICMP_ULT: 559 // If B is a signed positive constant, A >=s 0 and A <s B. 560 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 561 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 562 NumOut, DFSInStack); 563 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 564 } 565 break; 566 case CmpInst::ICMP_SLT: 567 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 568 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 569 break; 570 case CmpInst::ICMP_SGT: 571 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 572 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 573 NumOut, DFSInStack); 574 break; 575 case CmpInst::ICMP_SGE: 576 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 577 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 578 } 579 break; 580 } 581 } 582 583 namespace { 584 /// Represents either a condition that holds on entry to a block or a basic 585 /// block, with their respective Dominator DFS in and out numbers. 586 struct ConstraintOrBlock { 587 unsigned NumIn; 588 unsigned NumOut; 589 bool IsBlock; 590 bool Not; 591 union { 592 BasicBlock *BB; 593 CmpInst *Condition; 594 }; 595 596 ConstraintOrBlock(DomTreeNode *DTN) 597 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 598 BB(DTN->getBlock()) {} 599 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 600 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 601 Not(Not), Condition(Condition) {} 602 }; 603 604 /// Keep state required to build worklist. 605 struct State { 606 DominatorTree &DT; 607 SmallVector<ConstraintOrBlock, 64> WorkList; 608 609 State(DominatorTree &DT) : DT(DT) {} 610 611 /// Process block \p BB and add known facts to work-list. 612 void addInfoFor(BasicBlock &BB); 613 614 /// Returns true if we can add a known condition from BB to its successor 615 /// block Succ. Each predecessor of Succ can either be BB or be dominated 616 /// by Succ (e.g. the case when adding a condition from a pre-header to a 617 /// loop header). 618 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 619 if (BB.getSingleSuccessor()) { 620 assert(BB.getSingleSuccessor() == Succ); 621 return DT.properlyDominates(&BB, Succ); 622 } 623 return any_of(successors(&BB), 624 [Succ](const BasicBlock *S) { return S != Succ; }) && 625 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 626 return Pred == &BB || DT.dominates(Succ, Pred); 627 }); 628 } 629 }; 630 631 } // namespace 632 633 #ifndef NDEBUG 634 static void dumpWithNames(const ConstraintSystem &CS, 635 DenseMap<Value *, unsigned> &Value2Index) { 636 SmallVector<std::string> Names(Value2Index.size(), ""); 637 for (auto &KV : Value2Index) { 638 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 639 } 640 CS.dump(Names); 641 } 642 643 static void dumpWithNames(ArrayRef<int64_t> C, 644 DenseMap<Value *, unsigned> &Value2Index) { 645 ConstraintSystem CS; 646 CS.addVariableRowFill(C); 647 dumpWithNames(CS, Value2Index); 648 } 649 #endif 650 651 void State::addInfoFor(BasicBlock &BB) { 652 WorkList.emplace_back(DT.getNode(&BB)); 653 654 // True as long as long as the current instruction is guaranteed to execute. 655 bool GuaranteedToExecute = true; 656 // Scan BB for assume calls. 657 // TODO: also use this scan to queue conditions to simplify, so we can 658 // interleave facts from assumes and conditions to simplify in a single 659 // basic block. And to skip another traversal of each basic block when 660 // simplifying. 661 for (Instruction &I : BB) { 662 Value *Cond; 663 // For now, just handle assumes with a single compare as condition. 664 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 665 isa<ICmpInst>(Cond)) { 666 if (GuaranteedToExecute) { 667 // The assume is guaranteed to execute when BB is entered, hence Cond 668 // holds on entry to BB. 669 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 670 } else { 671 // Otherwise the condition only holds in the successors. 672 for (BasicBlock *Succ : successors(&BB)) { 673 if (!canAddSuccessor(BB, Succ)) 674 continue; 675 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false); 676 } 677 } 678 } 679 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 680 } 681 682 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 683 if (!Br || !Br->isConditional()) 684 return; 685 686 Value *Cond = Br->getCondition(); 687 688 // If the condition is a chain of ORs/AND and the successor only has the 689 // current block as predecessor, queue conditions for the successor. 690 Value *Op0, *Op1; 691 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 692 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 693 bool IsOr = match(Cond, m_LogicalOr()); 694 bool IsAnd = match(Cond, m_LogicalAnd()); 695 // If there's a select that matches both AND and OR, we need to commit to 696 // one of the options. Arbitrarily pick OR. 697 if (IsOr && IsAnd) 698 IsAnd = false; 699 700 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 701 if (canAddSuccessor(BB, Successor)) { 702 SmallVector<Value *> CondWorkList; 703 SmallPtrSet<Value *, 8> SeenCond; 704 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 705 if (SeenCond.insert(V).second) 706 CondWorkList.push_back(V); 707 }; 708 QueueValue(Op1); 709 QueueValue(Op0); 710 while (!CondWorkList.empty()) { 711 Value *Cur = CondWorkList.pop_back_val(); 712 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 713 WorkList.emplace_back(DT.getNode(Successor), Cmp, IsOr); 714 continue; 715 } 716 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 717 QueueValue(Op1); 718 QueueValue(Op0); 719 continue; 720 } 721 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 722 QueueValue(Op1); 723 QueueValue(Op0); 724 continue; 725 } 726 } 727 } 728 return; 729 } 730 731 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 732 if (!CmpI) 733 return; 734 if (canAddSuccessor(BB, Br->getSuccessor(0))) 735 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 736 if (canAddSuccessor(BB, Br->getSuccessor(1))) 737 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 738 } 739 740 static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) { 741 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 742 743 CmpInst::Predicate Pred = Cmp->getPredicate(); 744 Value *A = Cmp->getOperand(0); 745 Value *B = Cmp->getOperand(1); 746 747 auto R = Info.getConstraintForSolving(Pred, A, B); 748 if (R.empty() || !R.isValid(Info)){ 749 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 750 return false; 751 } 752 753 auto &CSToUse = Info.getCS(R.IsSigned); 754 755 // If there was extra information collected during decomposition, apply 756 // it now and remove it immediately once we are done with reasoning 757 // about the constraint. 758 for (auto &Row : R.ExtraInfo) 759 CSToUse.addVariableRow(Row); 760 auto InfoRestorer = make_scope_exit([&]() { 761 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 762 CSToUse.popLastConstraint(); 763 }); 764 765 bool Changed = false; 766 if (CSToUse.isConditionImplied(R.Coefficients)) { 767 if (!DebugCounter::shouldExecute(EliminatedCounter)) 768 return false; 769 770 LLVM_DEBUG({ 771 dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n"; 772 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 773 }); 774 Constant *TrueC = 775 ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType())); 776 Cmp->replaceUsesWithIf(TrueC, [](Use &U) { 777 // Conditions in an assume trivially simplify to true. Skip uses 778 // in assume calls to not destroy the available information. 779 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 780 return !II || II->getIntrinsicID() != Intrinsic::assume; 781 }); 782 NumCondsRemoved++; 783 Changed = true; 784 } 785 if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) { 786 if (!DebugCounter::shouldExecute(EliminatedCounter)) 787 return false; 788 789 LLVM_DEBUG({ 790 dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n"; 791 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 792 }); 793 Constant *FalseC = 794 ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType())); 795 Cmp->replaceAllUsesWith(FalseC); 796 NumCondsRemoved++; 797 Changed = true; 798 } 799 return Changed; 800 } 801 802 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 803 unsigned NumIn, unsigned NumOut, 804 SmallVectorImpl<StackEntry> &DFSInStack) { 805 // If the constraint has a pre-condition, skip the constraint if it does not 806 // hold. 807 SmallVector<Value *> NewVariables; 808 auto R = getConstraint(Pred, A, B, NewVariables); 809 if (!R.isValid(*this)) 810 return; 811 812 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; 813 A->printAsOperand(dbgs(), false); dbgs() << ", "; 814 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 815 bool Added = false; 816 auto &CSToUse = getCS(R.IsSigned); 817 if (R.Coefficients.empty()) 818 return; 819 820 Added |= CSToUse.addVariableRowFill(R.Coefficients); 821 822 // If R has been added to the system, add the new variables and queue it for 823 // removal once it goes out-of-scope. 824 if (Added) { 825 SmallVector<Value *, 2> ValuesToRelease; 826 auto &Value2Index = getValue2Index(R.IsSigned); 827 for (Value *V : NewVariables) { 828 Value2Index.insert({V, Value2Index.size() + 1}); 829 ValuesToRelease.push_back(V); 830 } 831 832 LLVM_DEBUG({ 833 dbgs() << " constraint: "; 834 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 835 dbgs() << "\n"; 836 }); 837 838 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease); 839 840 if (R.IsEq) { 841 // Also add the inverted constraint for equality constraints. 842 for (auto &Coeff : R.Coefficients) 843 Coeff *= -1; 844 CSToUse.addVariableRowFill(R.Coefficients); 845 846 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 847 SmallVector<Value *, 2>()); 848 } 849 } 850 } 851 852 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 853 SmallVectorImpl<Instruction *> &ToRemove) { 854 bool Changed = false; 855 IRBuilder<> Builder(II->getParent(), II->getIterator()); 856 Value *Sub = nullptr; 857 for (User *U : make_early_inc_range(II->users())) { 858 if (match(U, m_ExtractValue<0>(m_Value()))) { 859 if (!Sub) 860 Sub = Builder.CreateSub(A, B); 861 U->replaceAllUsesWith(Sub); 862 Changed = true; 863 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 864 U->replaceAllUsesWith(Builder.getFalse()); 865 Changed = true; 866 } else 867 continue; 868 869 if (U->use_empty()) { 870 auto *I = cast<Instruction>(U); 871 ToRemove.push_back(I); 872 I->setOperand(0, PoisonValue::get(II->getType())); 873 Changed = true; 874 } 875 } 876 877 if (II->use_empty()) { 878 II->eraseFromParent(); 879 Changed = true; 880 } 881 return Changed; 882 } 883 884 static bool 885 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 886 SmallVectorImpl<Instruction *> &ToRemove) { 887 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 888 ConstraintInfo &Info) { 889 auto R = Info.getConstraintForSolving(Pred, A, B); 890 if (R.size() < 2 || !R.isValid(Info)) 891 return false; 892 893 auto &CSToUse = Info.getCS(R.IsSigned); 894 return CSToUse.isConditionImplied(R.Coefficients); 895 }; 896 897 bool Changed = false; 898 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 899 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 900 // can be simplified to a regular sub. 901 Value *A = II->getArgOperand(0); 902 Value *B = II->getArgOperand(1); 903 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 904 !DoesConditionHold(CmpInst::ICMP_SGE, B, 905 ConstantInt::get(A->getType(), 0), Info)) 906 return false; 907 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 908 } 909 return Changed; 910 } 911 912 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 913 bool Changed = false; 914 DT.updateDFSNumbers(); 915 916 ConstraintInfo Info(F.getParent()->getDataLayout()); 917 State S(DT); 918 919 // First, collect conditions implied by branches and blocks with their 920 // Dominator DFS in and out numbers. 921 for (BasicBlock &BB : F) { 922 if (!DT.getNode(&BB)) 923 continue; 924 S.addInfoFor(BB); 925 } 926 927 // Next, sort worklist by dominance, so that dominating blocks and conditions 928 // come before blocks and conditions dominated by them. If a block and a 929 // condition have the same numbers, the condition comes before the block, as 930 // it holds on entry to the block. Also make sure conditions with constant 931 // operands come before conditions without constant operands. This increases 932 // the effectiveness of the current signed <-> unsigned fact transfer logic. 933 stable_sort( 934 S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 935 auto HasNoConstOp = [](const ConstraintOrBlock &B) { 936 return !B.IsBlock && !isa<ConstantInt>(B.Condition->getOperand(0)) && 937 !isa<ConstantInt>(B.Condition->getOperand(1)); 938 }; 939 bool NoConstOpA = HasNoConstOp(A); 940 bool NoConstOpB = HasNoConstOp(B); 941 return std::tie(A.NumIn, A.IsBlock, NoConstOpA) < 942 std::tie(B.NumIn, B.IsBlock, NoConstOpB); 943 }); 944 945 SmallVector<Instruction *> ToRemove; 946 947 // Finally, process ordered worklist and eliminate implied conditions. 948 SmallVector<StackEntry, 16> DFSInStack; 949 for (ConstraintOrBlock &CB : S.WorkList) { 950 // First, pop entries from the stack that are out-of-scope for CB. Remove 951 // the corresponding entry from the constraint system. 952 while (!DFSInStack.empty()) { 953 auto &E = DFSInStack.back(); 954 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 955 << "\n"); 956 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 957 assert(E.NumIn <= CB.NumIn); 958 if (CB.NumOut <= E.NumOut) 959 break; 960 LLVM_DEBUG({ 961 dbgs() << "Removing "; 962 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 963 Info.getValue2Index(E.IsSigned)); 964 dbgs() << "\n"; 965 }); 966 967 Info.popLastConstraint(E.IsSigned); 968 // Remove variables in the system that went out of scope. 969 auto &Mapping = Info.getValue2Index(E.IsSigned); 970 for (Value *V : E.ValuesToRelease) 971 Mapping.erase(V); 972 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 973 DFSInStack.pop_back(); 974 } 975 976 LLVM_DEBUG({ 977 dbgs() << "Processing "; 978 if (CB.IsBlock) 979 dbgs() << *CB.BB; 980 else 981 dbgs() << *CB.Condition; 982 dbgs() << "\n"; 983 }); 984 985 // For a block, check if any CmpInsts become known based on the current set 986 // of constraints. 987 if (CB.IsBlock) { 988 for (Instruction &I : make_early_inc_range(*CB.BB)) { 989 if (auto *II = dyn_cast<WithOverflowInst>(&I)) { 990 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 991 continue; 992 } 993 auto *Cmp = dyn_cast<ICmpInst>(&I); 994 if (!Cmp) 995 continue; 996 997 Changed |= checkAndReplaceCondition(Cmp, Info); 998 } 999 continue; 1000 } 1001 1002 ICmpInst::Predicate Pred; 1003 Value *A, *B; 1004 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 1005 // Use the inverse predicate if required. 1006 if (CB.Not) 1007 Pred = CmpInst::getInversePredicate(Pred); 1008 1009 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1010 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1011 } 1012 } 1013 1014 #ifndef NDEBUG 1015 unsigned SignedEntries = 1016 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1017 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1018 "updates to CS and DFSInStack are out of sync"); 1019 assert(Info.getCS(true).size() == SignedEntries && 1020 "updates to CS and DFSInStack are out of sync"); 1021 #endif 1022 1023 for (Instruction *I : ToRemove) 1024 I->eraseFromParent(); 1025 return Changed; 1026 } 1027 1028 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1029 FunctionAnalysisManager &AM) { 1030 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1031 if (!eliminateConstraints(F, DT)) 1032 return PreservedAnalyses::all(); 1033 1034 PreservedAnalyses PA; 1035 PA.preserve<DominatorTreeAnalysis>(); 1036 PA.preserveSet<CFGAnalyses>(); 1037 return PA; 1038 } 1039 1040 namespace { 1041 1042 class ConstraintElimination : public FunctionPass { 1043 public: 1044 static char ID; 1045 1046 ConstraintElimination() : FunctionPass(ID) { 1047 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 1048 } 1049 1050 bool runOnFunction(Function &F) override { 1051 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1052 return eliminateConstraints(F, DT); 1053 } 1054 1055 void getAnalysisUsage(AnalysisUsage &AU) const override { 1056 AU.setPreservesCFG(); 1057 AU.addRequired<DominatorTreeWrapperPass>(); 1058 AU.addPreserved<GlobalsAAWrapperPass>(); 1059 AU.addPreserved<DominatorTreeWrapperPass>(); 1060 } 1061 }; 1062 1063 } // end anonymous namespace 1064 1065 char ConstraintElimination::ID = 0; 1066 1067 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 1068 "Constraint Elimination", false, false) 1069 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1070 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 1071 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 1072 "Constraint Elimination", false, false) 1073 1074 FunctionPass *llvm::createConstraintEliminationPass() { 1075 return new ConstraintElimination(); 1076 } 1077