xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 68dc90b3472de440118e76ed2e2cd99ae593b072)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/DebugCounter.h"
30 #include "llvm/Transforms/Scalar.h"
31 
32 #include <string>
33 
34 using namespace llvm;
35 using namespace PatternMatch;
36 
37 #define DEBUG_TYPE "constraint-elimination"
38 
39 STATISTIC(NumCondsRemoved, "Number of instructions removed");
40 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
41               "Controls which conditions are eliminated");
42 
43 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
44 
45 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
46 // sum of the pairs equals \p V.  The first pair is the constant-factor and X
47 // must be nullptr. If the expression cannot be decomposed, returns an empty
48 // vector.
49 static SmallVector<std::pair<int64_t, Value *>, 4> decompose(Value *V) {
50   if (auto *CI = dyn_cast<ConstantInt>(V)) {
51     if (CI->isNegative() || CI->uge(MaxConstraintValue))
52       return {};
53     return {{CI->getSExtValue(), nullptr}};
54   }
55   auto *GEP = dyn_cast<GetElementPtrInst>(V);
56   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
57     Value *Op0;
58     ConstantInt *CI;
59 
60     // If the index is zero-extended, it is guaranteed to be positive.
61     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
62               m_ZExt(m_Value(Op0)))) {
63       if (match(Op0, m_NUWShl(m_Value(Op0), m_ConstantInt(CI))))
64         return {{0, nullptr},
65                 {1, GEP->getPointerOperand()},
66                 {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
67       if (match(Op0, m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))))
68         return {{CI->getSExtValue(), nullptr},
69                 {1, GEP->getPointerOperand()},
70                 {1, Op0}};
71       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
72     }
73 
74     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
75         !CI->isNegative())
76       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
77 
78     SmallVector<std::pair<int64_t, Value *>, 4> Result;
79     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
80               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))))
81       Result = {{0, nullptr},
82                 {1, GEP->getPointerOperand()},
83                 {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
84     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
85                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))))
86       Result = {{CI->getSExtValue(), nullptr},
87                 {1, GEP->getPointerOperand()},
88                 {1, Op0}};
89     else {
90       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
91       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
92     }
93     return Result;
94   }
95 
96   Value *Op0;
97   if (match(V, m_ZExt(m_Value(Op0))))
98     V = Op0;
99 
100   Value *Op1;
101   ConstantInt *CI;
102   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))))
103     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
104   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
105     return {{0, nullptr}, {1, Op0}, {1, Op1}};
106 
107   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))))
108     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
109   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
110     return {{0, nullptr}, {1, Op0}, {1, Op1}};
111 
112   return {{0, nullptr}, {1, V}};
113 }
114 
115 struct ConstraintTy {
116   SmallVector<int64_t, 8> Coefficients;
117 
118   ConstraintTy(SmallVector<int64_t, 8> Coefficients)
119       : Coefficients(Coefficients) {}
120 
121   unsigned size() const { return Coefficients.size(); }
122 };
123 
124 /// Turn a condition \p CmpI into a vector of constraints, using indices from \p
125 /// Value2Index. Additional indices for newly discovered values are added to \p
126 /// NewIndices.
127 static SmallVector<ConstraintTy, 4>
128 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
129               const DenseMap<Value *, unsigned> &Value2Index,
130               DenseMap<Value *, unsigned> &NewIndices) {
131   int64_t Offset1 = 0;
132   int64_t Offset2 = 0;
133 
134   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
135   // new entry to NewIndices.
136   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
137     auto V2I = Value2Index.find(V);
138     if (V2I != Value2Index.end())
139       return V2I->second;
140     auto NewI = NewIndices.find(V);
141     if (NewI != NewIndices.end())
142       return NewI->second;
143     auto Insert =
144         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
145     return Insert.first->second;
146   };
147 
148   if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE)
149     return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0,
150                          Value2Index, NewIndices);
151 
152   if (Pred == CmpInst::ICMP_EQ) {
153     auto A =
154         getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, NewIndices);
155     auto B =
156         getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices);
157     append_range(A, B);
158     return A;
159   }
160 
161   // Only ULE and ULT predicates are supported at the moment.
162   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT)
163     return {};
164 
165   auto ADec = decompose(Op0->stripPointerCasts());
166   auto BDec = decompose(Op1->stripPointerCasts());
167   // Skip if decomposing either of the values failed.
168   if (ADec.empty() || BDec.empty())
169     return {};
170 
171   // Skip trivial constraints without any variables.
172   if (ADec.size() == 1 && BDec.size() == 1)
173     return {};
174 
175   Offset1 = ADec[0].first;
176   Offset2 = BDec[0].first;
177   Offset1 *= -1;
178 
179   // Create iterator ranges that skip the constant-factor.
180   auto VariablesA = make_range(std::next(ADec.begin()), ADec.end());
181   auto VariablesB = make_range(std::next(BDec.begin()), BDec.end());
182 
183   // Make sure all variables have entries in Value2Index or NewIndices.
184   for (const auto &KV :
185        concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
186     GetOrAddIndex(KV.second);
187 
188   // Build result constraint, by first adding all coefficients from A and then
189   // subtracting all coefficients from B.
190   SmallVector<int64_t, 8> R(Value2Index.size() + NewIndices.size() + 1, 0);
191   for (const auto &KV : VariablesA)
192     R[GetOrAddIndex(KV.second)] += KV.first;
193 
194   for (const auto &KV : VariablesB)
195     R[GetOrAddIndex(KV.second)] -= KV.first;
196 
197   R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0);
198   return {R};
199 }
200 
201 static SmallVector<ConstraintTy, 4>
202 getConstraint(CmpInst *Cmp, const DenseMap<Value *, unsigned> &Value2Index,
203               DenseMap<Value *, unsigned> &NewIndices) {
204   return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
205                        Cmp->getOperand(1), Value2Index, NewIndices);
206 }
207 
208 namespace {
209 /// Represents either a condition that holds on entry to a block or a basic
210 /// block, with their respective Dominator DFS in and out numbers.
211 struct ConstraintOrBlock {
212   unsigned NumIn;
213   unsigned NumOut;
214   bool IsBlock;
215   bool Not;
216   union {
217     BasicBlock *BB;
218     CmpInst *Condition;
219   };
220 
221   ConstraintOrBlock(DomTreeNode *DTN)
222       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
223         BB(DTN->getBlock()) {}
224   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
225       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
226         Not(Not), Condition(Condition) {}
227 };
228 
229 struct StackEntry {
230   unsigned NumIn;
231   unsigned NumOut;
232   CmpInst *Condition;
233   bool IsNot;
234 
235   StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot)
236       : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {}
237 };
238 } // namespace
239 
240 #ifndef NDEBUG
241 static void dumpWithNames(ConstraintTy &C,
242                           DenseMap<Value *, unsigned> &Value2Index) {
243   SmallVector<std::string> Names(Value2Index.size(), "");
244   for (auto &KV : Value2Index) {
245     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
246   }
247   ConstraintSystem CS;
248   CS.addVariableRowFill(C.Coefficients);
249   CS.dump(Names);
250 }
251 #endif
252 
253 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
254   bool Changed = false;
255   DT.updateDFSNumbers();
256   ConstraintSystem CS;
257 
258   SmallVector<ConstraintOrBlock, 64> WorkList;
259 
260   // First, collect conditions implied by branches and blocks with their
261   // Dominator DFS in and out numbers.
262   for (BasicBlock &BB : F) {
263     if (!DT.getNode(&BB))
264       continue;
265     WorkList.emplace_back(DT.getNode(&BB));
266 
267     auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
268     if (!Br || !Br->isConditional())
269       continue;
270 
271     // Returns true if we can add a known condition from BB to its successor
272     // block Succ. Each predecessor of Succ can either be BB or be dominated by
273     // Succ (e.g. the case when adding a condition from a pre-header to a loop
274     // header).
275     auto CanAdd = [&BB, &DT](BasicBlock *Succ) {
276       return all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) {
277         return Pred == &BB || DT.dominates(Succ, Pred);
278       });
279     };
280     // If the condition is an OR of 2 compares and the false successor only has
281     // the current block as predecessor, queue both negated conditions for the
282     // false successor.
283     Value *Op0, *Op1;
284     if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
285         match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
286       BasicBlock *FalseSuccessor = Br->getSuccessor(1);
287       if (CanAdd(FalseSuccessor)) {
288         WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0),
289                               true);
290         WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1),
291                               true);
292       }
293       continue;
294     }
295 
296     // If the condition is an AND of 2 compares and the true successor only has
297     // the current block as predecessor, queue both conditions for the true
298     // successor.
299     if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
300         match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
301       BasicBlock *TrueSuccessor = Br->getSuccessor(0);
302       if (CanAdd(TrueSuccessor)) {
303         WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0),
304                               false);
305         WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1),
306                               false);
307       }
308       continue;
309     }
310 
311     auto *CmpI = dyn_cast<CmpInst>(Br->getCondition());
312     if (!CmpI)
313       continue;
314     if (CanAdd(Br->getSuccessor(0)))
315       WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
316     if (CanAdd(Br->getSuccessor(1)))
317       WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
318   }
319 
320   // Next, sort worklist by dominance, so that dominating blocks and conditions
321   // come before blocks and conditions dominated by them. If a block and a
322   // condition have the same numbers, the condition comes before the block, as
323   // it holds on entry to the block.
324   sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
325     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
326   });
327 
328   // Finally, process ordered worklist and eliminate implied conditions.
329   SmallVector<StackEntry, 16> DFSInStack;
330   DenseMap<Value *, unsigned> Value2Index;
331   for (ConstraintOrBlock &CB : WorkList) {
332     // First, pop entries from the stack that are out-of-scope for CB. Remove
333     // the corresponding entry from the constraint system.
334     while (!DFSInStack.empty()) {
335       auto &E = DFSInStack.back();
336       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
337                         << "\n");
338       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
339       assert(E.NumIn <= CB.NumIn);
340       if (CB.NumOut <= E.NumOut)
341         break;
342       LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
343                         << "\n");
344       DFSInStack.pop_back();
345       CS.popLastConstraint();
346     }
347 
348     LLVM_DEBUG({
349       dbgs() << "Processing ";
350       if (CB.IsBlock)
351         dbgs() << *CB.BB;
352       else
353         dbgs() << *CB.Condition;
354       dbgs() << "\n";
355     });
356 
357     // For a block, check if any CmpInsts become known based on the current set
358     // of constraints.
359     if (CB.IsBlock) {
360       for (Instruction &I : *CB.BB) {
361         auto *Cmp = dyn_cast<CmpInst>(&I);
362         if (!Cmp)
363           continue;
364 
365         DenseMap<Value *, unsigned> NewIndices;
366         auto R = getConstraint(Cmp, Value2Index, NewIndices);
367         if (R.size() != 1)
368           continue;
369 
370         // Check if all coefficients of new indices are 0 after building the
371         // constraint. Skip if any of the new indices has a non-null
372         // coefficient.
373         bool HasNewIndex = false;
374         for (unsigned I = 0; I < NewIndices.size(); ++I) {
375           int64_t Last = R[0].Coefficients.pop_back_val();
376           if (Last != 0) {
377             HasNewIndex = true;
378             break;
379           }
380         }
381         if (HasNewIndex || R[0].size() == 1)
382           continue;
383 
384         if (CS.isConditionImplied(R[0].Coefficients)) {
385           if (!DebugCounter::shouldExecute(EliminatedCounter))
386             continue;
387 
388           LLVM_DEBUG(dbgs() << "Condition " << *Cmp
389                             << " implied by dominating constraints\n");
390           LLVM_DEBUG({
391             for (auto &E : reverse(DFSInStack))
392               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
393           });
394           Cmp->replaceAllUsesWith(
395               ConstantInt::getTrue(F.getParent()->getContext()));
396           NumCondsRemoved++;
397           Changed = true;
398         }
399         if (CS.isConditionImplied(
400                 ConstraintSystem::negate(R[0].Coefficients))) {
401           if (!DebugCounter::shouldExecute(EliminatedCounter))
402             continue;
403 
404           LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
405                             << " implied by dominating constraints\n");
406           LLVM_DEBUG({
407             for (auto &E : reverse(DFSInStack))
408               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
409           });
410           Cmp->replaceAllUsesWith(
411               ConstantInt::getFalse(F.getParent()->getContext()));
412           NumCondsRemoved++;
413           Changed = true;
414         }
415       }
416       continue;
417     }
418 
419     // Set up a function to restore the predicate at the end of the scope if it
420     // has been negated. Negate the predicate in-place, if required.
421     auto *CI = dyn_cast<CmpInst>(CB.Condition);
422     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
423       if (CB.Not && CI)
424         CI->setPredicate(CI->getInversePredicate());
425     });
426     if (CB.Not) {
427       if (CI) {
428         CI->setPredicate(CI->getInversePredicate());
429       } else {
430         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
431         continue;
432       }
433     }
434 
435     // Otherwise, add the condition to the system and stack, if we can transform
436     // it into a constraint.
437     DenseMap<Value *, unsigned> NewIndices;
438     auto R = getConstraint(CB.Condition, Value2Index, NewIndices);
439     if (R.empty())
440       continue;
441 
442     for (auto &KV : NewIndices)
443       Value2Index.insert(KV);
444 
445     LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n");
446     bool Added = false;
447     for (auto &C : R) {
448       auto Coeffs = C.Coefficients;
449       LLVM_DEBUG({
450         dbgs() << "  constraint: ";
451         dumpWithNames(C, Value2Index);
452       });
453       Added |= CS.addVariableRowFill(Coeffs);
454       // If R has been added to the system, queue it for removal once it goes
455       // out-of-scope.
456       if (Added)
457         DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not);
458     }
459   }
460 
461   assert(CS.size() == DFSInStack.size() &&
462          "updates to CS and DFSInStack are out of sync");
463   return Changed;
464 }
465 
466 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
467                                                  FunctionAnalysisManager &AM) {
468   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
469   if (!eliminateConstraints(F, DT))
470     return PreservedAnalyses::all();
471 
472   PreservedAnalyses PA;
473   PA.preserve<DominatorTreeAnalysis>();
474   PA.preserve<GlobalsAA>();
475   PA.preserveSet<CFGAnalyses>();
476   return PA;
477 }
478 
479 namespace {
480 
481 class ConstraintElimination : public FunctionPass {
482 public:
483   static char ID;
484 
485   ConstraintElimination() : FunctionPass(ID) {
486     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
487   }
488 
489   bool runOnFunction(Function &F) override {
490     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
491     return eliminateConstraints(F, DT);
492   }
493 
494   void getAnalysisUsage(AnalysisUsage &AU) const override {
495     AU.setPreservesCFG();
496     AU.addRequired<DominatorTreeWrapperPass>();
497     AU.addPreserved<GlobalsAAWrapperPass>();
498     AU.addPreserved<DominatorTreeWrapperPass>();
499   }
500 };
501 
502 } // end anonymous namespace
503 
504 char ConstraintElimination::ID = 0;
505 
506 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
507                       "Constraint Elimination", false, false)
508 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
509 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
510 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
511                     "Constraint Elimination", false, false)
512 
513 FunctionPass *llvm::createConstraintEliminationPass() {
514   return new ConstraintElimination();
515 }
516