xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 5fa59edfa73a69ab146d7b9cc115de5770d11dca)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/DebugCounter.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Transforms/Utils/Cloning.h"
41 #include "llvm/Transforms/Utils/ValueMapper.h"
42 
43 #include <cmath>
44 #include <optional>
45 #include <string>
46 
47 using namespace llvm;
48 using namespace PatternMatch;
49 
50 #define DEBUG_TYPE "constraint-elimination"
51 
52 STATISTIC(NumCondsRemoved, "Number of instructions removed");
53 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
54               "Controls which conditions are eliminated");
55 
56 static cl::opt<unsigned>
57     MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
58             cl::desc("Maximum number of rows to keep in constraint system"));
59 
60 static cl::opt<bool> DumpReproducers(
61     "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
62     cl::desc("Dump IR to reproduce successful transformations."));
63 
64 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
65 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
66 
67 // A helper to multiply 2 signed integers where overflowing is allowed.
68 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
69   int64_t Result;
70   MulOverflow(A, B, Result);
71   return Result;
72 }
73 
74 // A helper to add 2 signed integers where overflowing is allowed.
75 static int64_t addWithOverflow(int64_t A, int64_t B) {
76   int64_t Result;
77   AddOverflow(A, B, Result);
78   return Result;
79 }
80 
81 static Instruction *getContextInstForUse(Use &U) {
82   Instruction *UserI = cast<Instruction>(U.getUser());
83   if (auto *Phi = dyn_cast<PHINode>(UserI))
84     UserI = Phi->getIncomingBlock(U)->getTerminator();
85   return UserI;
86 }
87 
88 namespace {
89 /// Struct to express a condition of the form %Op0 Pred %Op1.
90 struct ConditionTy {
91   CmpInst::Predicate Pred;
92   Value *Op0;
93   Value *Op1;
94 
95   ConditionTy()
96       : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {}
97   ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
98       : Pred(Pred), Op0(Op0), Op1(Op1) {}
99 };
100 
101 /// Represents either
102 ///  * a condition that holds on entry to a block (=condition fact)
103 ///  * an assume (=assume fact)
104 ///  * a use of a compare instruction to simplify.
105 /// It also tracks the Dominator DFS in and out numbers for each entry.
106 struct FactOrCheck {
107   enum class EntryTy {
108     ConditionFact, /// A condition that holds on entry to a block.
109     InstFact,      /// A fact that holds after Inst executed (e.g. an assume or
110                    /// min/mix intrinsic.
111     InstCheck,     /// An instruction to simplify (e.g. an overflow math
112                    /// intrinsics).
113     UseCheck       /// An use of a compare instruction to simplify.
114   };
115 
116   union {
117     Instruction *Inst;
118     Use *U;
119     ConditionTy Cond;
120   };
121 
122   /// A pre-condition that must hold for the current fact to be added to the
123   /// system.
124   ConditionTy DoesHold;
125 
126   unsigned NumIn;
127   unsigned NumOut;
128   EntryTy Ty;
129 
130   FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst)
131       : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
132         Ty(Ty) {}
133 
134   FactOrCheck(DomTreeNode *DTN, Use *U)
135       : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr),
136         NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
137         Ty(EntryTy::UseCheck) {}
138 
139   FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1,
140               ConditionTy Precond = ConditionTy())
141       : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()),
142         NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {}
143 
144   static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred,
145                                       Value *Op0, Value *Op1,
146                                       ConditionTy Precond = ConditionTy()) {
147     return FactOrCheck(DTN, Pred, Op0, Op1, Precond);
148   }
149 
150   static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) {
151     return FactOrCheck(EntryTy::InstFact, DTN, Inst);
152   }
153 
154   static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
155     return FactOrCheck(DTN, U);
156   }
157 
158   static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
159     return FactOrCheck(EntryTy::InstCheck, DTN, CI);
160   }
161 
162   bool isCheck() const {
163     return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck;
164   }
165 
166   Instruction *getContextInst() const {
167     assert(!isConditionFact());
168     if (Ty == EntryTy::UseCheck)
169       return getContextInstForUse(*U);
170     return Inst;
171   }
172 
173   Instruction *getInstructionToSimplify() const {
174     assert(isCheck());
175     if (Ty == EntryTy::InstCheck)
176       return Inst;
177     // The use may have been simplified to a constant already.
178     return dyn_cast<Instruction>(*U);
179   }
180 
181   bool isConditionFact() const { return Ty == EntryTy::ConditionFact; }
182 };
183 
184 /// Keep state required to build worklist.
185 struct State {
186   DominatorTree &DT;
187   LoopInfo &LI;
188   ScalarEvolution &SE;
189   SmallVector<FactOrCheck, 64> WorkList;
190 
191   State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE)
192       : DT(DT), LI(LI), SE(SE) {}
193 
194   /// Process block \p BB and add known facts to work-list.
195   void addInfoFor(BasicBlock &BB);
196 
197   /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares
198   /// controlling the loop header.
199   void addInfoForInductions(BasicBlock &BB);
200 
201   /// Returns true if we can add a known condition from BB to its successor
202   /// block Succ.
203   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
204     return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
205   }
206 };
207 
208 class ConstraintInfo;
209 
210 struct StackEntry {
211   unsigned NumIn;
212   unsigned NumOut;
213   bool IsSigned = false;
214   /// Variables that can be removed from the system once the stack entry gets
215   /// removed.
216   SmallVector<Value *, 2> ValuesToRelease;
217 
218   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
219              SmallVector<Value *, 2> ValuesToRelease)
220       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
221         ValuesToRelease(ValuesToRelease) {}
222 };
223 
224 struct ConstraintTy {
225   SmallVector<int64_t, 8> Coefficients;
226   SmallVector<ConditionTy, 2> Preconditions;
227 
228   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
229 
230   bool IsSigned = false;
231 
232   ConstraintTy() = default;
233 
234   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq,
235                bool IsNe)
236       : Coefficients(std::move(Coefficients)), IsSigned(IsSigned), IsEq(IsEq),
237         IsNe(IsNe) {}
238 
239   unsigned size() const { return Coefficients.size(); }
240 
241   unsigned empty() const { return Coefficients.empty(); }
242 
243   /// Returns true if all preconditions for this list of constraints are
244   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
245   bool isValid(const ConstraintInfo &Info) const;
246 
247   bool isEq() const { return IsEq; }
248 
249   bool isNe() const { return IsNe; }
250 
251   /// Check if the current constraint is implied by the given ConstraintSystem.
252   ///
253   /// \return true or false if the constraint is proven to be respectively true,
254   /// or false. When the constraint cannot be proven to be either true or false,
255   /// std::nullopt is returned.
256   std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
257 
258 private:
259   bool IsEq = false;
260   bool IsNe = false;
261 };
262 
263 /// Wrapper encapsulating separate constraint systems and corresponding value
264 /// mappings for both unsigned and signed information. Facts are added to and
265 /// conditions are checked against the corresponding system depending on the
266 /// signed-ness of their predicates. While the information is kept separate
267 /// based on signed-ness, certain conditions can be transferred between the two
268 /// systems.
269 class ConstraintInfo {
270 
271   ConstraintSystem UnsignedCS;
272   ConstraintSystem SignedCS;
273 
274   const DataLayout &DL;
275 
276 public:
277   ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
278       : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {
279     auto &Value2Index = getValue2Index(false);
280     // Add Arg > -1 constraints to unsigned system for all function arguments.
281     for (Value *Arg : FunctionArgs) {
282       ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
283                           false, false, false);
284       VarPos.Coefficients[Value2Index[Arg]] = -1;
285       UnsignedCS.addVariableRow(VarPos.Coefficients);
286     }
287   }
288 
289   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
290     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
291   }
292   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
293     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
294   }
295 
296   ConstraintSystem &getCS(bool Signed) {
297     return Signed ? SignedCS : UnsignedCS;
298   }
299   const ConstraintSystem &getCS(bool Signed) const {
300     return Signed ? SignedCS : UnsignedCS;
301   }
302 
303   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
304   void popLastNVariables(bool Signed, unsigned N) {
305     getCS(Signed).popLastNVariables(N);
306   }
307 
308   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
309 
310   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
311                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
312 
313   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
314   /// constraints, using indices from the corresponding constraint system.
315   /// New variables that need to be added to the system are collected in
316   /// \p NewVariables.
317   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
318                              SmallVectorImpl<Value *> &NewVariables) const;
319 
320   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
321   /// constraints using getConstraint. Returns an empty constraint if the result
322   /// cannot be used to query the existing constraint system, e.g. because it
323   /// would require adding new variables. Also tries to convert signed
324   /// predicates to unsigned ones if possible to allow using the unsigned system
325   /// which increases the effectiveness of the signed <-> unsigned transfer
326   /// logic.
327   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
328                                        Value *Op1) const;
329 
330   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
331   /// system if \p Pred is signed/unsigned.
332   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
333                              unsigned NumIn, unsigned NumOut,
334                              SmallVectorImpl<StackEntry> &DFSInStack);
335 };
336 
337 /// Represents a (Coefficient * Variable) entry after IR decomposition.
338 struct DecompEntry {
339   int64_t Coefficient;
340   Value *Variable;
341   /// True if the variable is known positive in the current constraint.
342   bool IsKnownNonNegative;
343 
344   DecompEntry(int64_t Coefficient, Value *Variable,
345               bool IsKnownNonNegative = false)
346       : Coefficient(Coefficient), Variable(Variable),
347         IsKnownNonNegative(IsKnownNonNegative) {}
348 };
349 
350 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
351 struct Decomposition {
352   int64_t Offset = 0;
353   SmallVector<DecompEntry, 3> Vars;
354 
355   Decomposition(int64_t Offset) : Offset(Offset) {}
356   Decomposition(Value *V, bool IsKnownNonNegative = false) {
357     Vars.emplace_back(1, V, IsKnownNonNegative);
358   }
359   Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
360       : Offset(Offset), Vars(Vars) {}
361 
362   void add(int64_t OtherOffset) {
363     Offset = addWithOverflow(Offset, OtherOffset);
364   }
365 
366   void add(const Decomposition &Other) {
367     add(Other.Offset);
368     append_range(Vars, Other.Vars);
369   }
370 
371   void sub(const Decomposition &Other) {
372     Decomposition Tmp = Other;
373     Tmp.mul(-1);
374     add(Tmp.Offset);
375     append_range(Vars, Tmp.Vars);
376   }
377 
378   void mul(int64_t Factor) {
379     Offset = multiplyWithOverflow(Offset, Factor);
380     for (auto &Var : Vars)
381       Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
382   }
383 };
384 
385 // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr.
386 struct OffsetResult {
387   Value *BasePtr;
388   APInt ConstantOffset;
389   SmallMapVector<Value *, APInt, 4> VariableOffsets;
390   GEPNoWrapFlags NW;
391 
392   OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {}
393 
394   OffsetResult(GEPOperator &GEP, const DataLayout &DL)
395       : BasePtr(GEP.getPointerOperand()), NW(GEP.getNoWrapFlags()) {
396     ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0);
397   }
398 };
399 } // namespace
400 
401 // Try to collect variable and constant offsets for \p GEP, partly traversing
402 // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting
403 // the offset fails.
404 static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) {
405   OffsetResult Result(GEP, DL);
406   unsigned BitWidth = Result.ConstantOffset.getBitWidth();
407   if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets,
408                          Result.ConstantOffset))
409     return {};
410 
411   // If we have a nested GEP, check if we can combine the constant offset of the
412   // inner GEP with the outer GEP.
413   if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) {
414     SmallMapVector<Value *, APInt, 4> VariableOffsets2;
415     APInt ConstantOffset2(BitWidth, 0);
416     bool CanCollectInner = InnerGEP->collectOffset(
417         DL, BitWidth, VariableOffsets2, ConstantOffset2);
418     // TODO: Support cases with more than 1 variable offset.
419     if (!CanCollectInner || Result.VariableOffsets.size() > 1 ||
420         VariableOffsets2.size() > 1 ||
421         (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) {
422       // More than 1 variable index, use outer result.
423       return Result;
424     }
425     Result.BasePtr = InnerGEP->getPointerOperand();
426     Result.ConstantOffset += ConstantOffset2;
427     if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1)
428       Result.VariableOffsets = VariableOffsets2;
429     Result.NW &= InnerGEP->getNoWrapFlags();
430   }
431   return Result;
432 }
433 
434 static Decomposition decompose(Value *V,
435                                SmallVectorImpl<ConditionTy> &Preconditions,
436                                bool IsSigned, const DataLayout &DL);
437 
438 static bool canUseSExt(ConstantInt *CI) {
439   const APInt &Val = CI->getValue();
440   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
441 }
442 
443 static Decomposition decomposeGEP(GEPOperator &GEP,
444                                   SmallVectorImpl<ConditionTy> &Preconditions,
445                                   bool IsSigned, const DataLayout &DL) {
446   // Do not reason about pointers where the index size is larger than 64 bits,
447   // as the coefficients used to encode constraints are 64 bit integers.
448   if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
449     return &GEP;
450 
451   assert(!IsSigned && "The logic below only supports decomposition for "
452                       "unsigned predicates at the moment.");
453   const auto &[BasePtr, ConstantOffset, VariableOffsets, NW] =
454       collectOffsets(GEP, DL);
455   // We support either plain gep nuw, or gep nusw with non-negative offset,
456   // which implies gep nuw.
457   if (!BasePtr || NW == GEPNoWrapFlags::none())
458     return &GEP;
459 
460   Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr));
461   for (auto [Index, Scale] : VariableOffsets) {
462     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
463     IdxResult.mul(Scale.getSExtValue());
464     Result.add(IdxResult);
465 
466     if (!NW.hasNoUnsignedWrap()) {
467       // Try to prove nuw from nusw and nneg.
468       assert(NW.hasNoUnsignedSignedWrap() && "Must have nusw flag");
469       if (!isKnownNonNegative(Index, DL))
470         Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
471                                    ConstantInt::get(Index->getType(), 0));
472     }
473   }
474   return Result;
475 }
476 
477 // Decomposes \p V into a constant offset + list of pairs { Coefficient,
478 // Variable } where Coefficient * Variable. The sum of the constant offset and
479 // pairs equals \p V.
480 static Decomposition decompose(Value *V,
481                                SmallVectorImpl<ConditionTy> &Preconditions,
482                                bool IsSigned, const DataLayout &DL) {
483 
484   auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
485                                                       bool IsSignedB) {
486     auto ResA = decompose(A, Preconditions, IsSigned, DL);
487     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
488     ResA.add(ResB);
489     return ResA;
490   };
491 
492   Type *Ty = V->getType()->getScalarType();
493   if (Ty->isPointerTy() && !IsSigned) {
494     if (auto *GEP = dyn_cast<GEPOperator>(V))
495       return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
496     if (isa<ConstantPointerNull>(V))
497       return int64_t(0);
498 
499     return V;
500   }
501 
502   // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so
503   // coefficient add/mul may wrap, while the operation in the full bit width
504   // would not.
505   if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64)
506     return V;
507 
508   bool IsKnownNonNegative = false;
509 
510   // Decompose \p V used with a signed predicate.
511   if (IsSigned) {
512     if (auto *CI = dyn_cast<ConstantInt>(V)) {
513       if (canUseSExt(CI))
514         return CI->getSExtValue();
515     }
516     Value *Op0;
517     Value *Op1;
518 
519     if (match(V, m_SExt(m_Value(Op0))))
520       V = Op0;
521     else if (match(V, m_NNegZExt(m_Value(Op0)))) {
522       V = Op0;
523       IsKnownNonNegative = true;
524     } else if (match(V, m_NSWTrunc(m_Value(Op0)))) {
525       if (Op0->getType()->getScalarSizeInBits() <= 64)
526         V = Op0;
527     }
528 
529     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
530       return MergeResults(Op0, Op1, IsSigned);
531 
532     ConstantInt *CI;
533     if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) {
534       auto Result = decompose(Op0, Preconditions, IsSigned, DL);
535       Result.mul(CI->getSExtValue());
536       return Result;
537     }
538 
539     // (shl nsw x, shift) is (mul nsw x, (1<<shift)), with the exception of
540     // shift == bw-1.
541     if (match(V, m_NSWShl(m_Value(Op0), m_ConstantInt(CI)))) {
542       uint64_t Shift = CI->getValue().getLimitedValue();
543       if (Shift < Ty->getIntegerBitWidth() - 1) {
544         assert(Shift < 64 && "Would overflow");
545         auto Result = decompose(Op0, Preconditions, IsSigned, DL);
546         Result.mul(int64_t(1) << Shift);
547         return Result;
548       }
549     }
550 
551     return {V, IsKnownNonNegative};
552   }
553 
554   if (auto *CI = dyn_cast<ConstantInt>(V)) {
555     if (CI->uge(MaxConstraintValue))
556       return V;
557     return int64_t(CI->getZExtValue());
558   }
559 
560   Value *Op0;
561   if (match(V, m_ZExt(m_Value(Op0)))) {
562     IsKnownNonNegative = true;
563     V = Op0;
564   } else if (match(V, m_SExt(m_Value(Op0)))) {
565     V = Op0;
566     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
567                                ConstantInt::get(Op0->getType(), 0));
568   } else if (auto *Trunc = dyn_cast<TruncInst>(V)) {
569     if (Trunc->getSrcTy()->getScalarSizeInBits() <= 64) {
570       if (Trunc->hasNoUnsignedWrap() || Trunc->hasNoSignedWrap()) {
571         V = Trunc->getOperand(0);
572         if (!Trunc->hasNoUnsignedWrap())
573           Preconditions.emplace_back(CmpInst::ICMP_SGE, V,
574                                      ConstantInt::get(V->getType(), 0));
575       }
576     }
577   }
578 
579   Value *Op1;
580   ConstantInt *CI;
581   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
582     return MergeResults(Op0, Op1, IsSigned);
583   }
584   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
585     if (!isKnownNonNegative(Op0, DL))
586       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
587                                  ConstantInt::get(Op0->getType(), 0));
588     if (!isKnownNonNegative(Op1, DL))
589       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
590                                  ConstantInt::get(Op1->getType(), 0));
591 
592     return MergeResults(Op0, Op1, IsSigned);
593   }
594 
595   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
596       canUseSExt(CI)) {
597     Preconditions.emplace_back(
598         CmpInst::ICMP_UGE, Op0,
599         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
600     return MergeResults(Op0, CI, true);
601   }
602 
603   // Decompose or as an add if there are no common bits between the operands.
604   if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI))))
605     return MergeResults(Op0, CI, IsSigned);
606 
607   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
608     if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
609       return {V, IsKnownNonNegative};
610     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
611     Result.mul(int64_t{1} << CI->getSExtValue());
612     return Result;
613   }
614 
615   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
616       (!CI->isNegative())) {
617     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
618     Result.mul(CI->getSExtValue());
619     return Result;
620   }
621 
622   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) {
623     auto ResA = decompose(Op0, Preconditions, IsSigned, DL);
624     auto ResB = decompose(Op1, Preconditions, IsSigned, DL);
625     ResA.sub(ResB);
626     return ResA;
627   }
628 
629   return {V, IsKnownNonNegative};
630 }
631 
632 ConstraintTy
633 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
634                               SmallVectorImpl<Value *> &NewVariables) const {
635   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
636   bool IsEq = false;
637   bool IsNe = false;
638 
639   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
640   switch (Pred) {
641   case CmpInst::ICMP_UGT:
642   case CmpInst::ICMP_UGE:
643   case CmpInst::ICMP_SGT:
644   case CmpInst::ICMP_SGE: {
645     Pred = CmpInst::getSwappedPredicate(Pred);
646     std::swap(Op0, Op1);
647     break;
648   }
649   case CmpInst::ICMP_EQ:
650     if (match(Op1, m_Zero())) {
651       Pred = CmpInst::ICMP_ULE;
652     } else {
653       IsEq = true;
654       Pred = CmpInst::ICMP_ULE;
655     }
656     break;
657   case CmpInst::ICMP_NE:
658     if (match(Op1, m_Zero())) {
659       Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
660       std::swap(Op0, Op1);
661     } else {
662       IsNe = true;
663       Pred = CmpInst::ICMP_ULE;
664     }
665     break;
666   default:
667     break;
668   }
669 
670   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
671       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
672     return {};
673 
674   SmallVector<ConditionTy, 4> Preconditions;
675   bool IsSigned = CmpInst::isSigned(Pred);
676   auto &Value2Index = getValue2Index(IsSigned);
677   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
678                         Preconditions, IsSigned, DL);
679   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
680                         Preconditions, IsSigned, DL);
681   int64_t Offset1 = ADec.Offset;
682   int64_t Offset2 = BDec.Offset;
683   Offset1 *= -1;
684 
685   auto &VariablesA = ADec.Vars;
686   auto &VariablesB = BDec.Vars;
687 
688   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
689   // new entry to NewVariables.
690   SmallDenseMap<Value *, unsigned> NewIndexMap;
691   auto GetOrAddIndex = [&Value2Index, &NewVariables,
692                         &NewIndexMap](Value *V) -> unsigned {
693     auto V2I = Value2Index.find(V);
694     if (V2I != Value2Index.end())
695       return V2I->second;
696     auto Insert =
697         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
698     if (Insert.second)
699       NewVariables.push_back(V);
700     return Insert.first->second;
701   };
702 
703   // Make sure all variables have entries in Value2Index or NewVariables.
704   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
705     GetOrAddIndex(KV.Variable);
706 
707   // Build result constraint, by first adding all coefficients from A and then
708   // subtracting all coefficients from B.
709   ConstraintTy Res(
710       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
711       IsSigned, IsEq, IsNe);
712   // Collect variables that are known to be positive in all uses in the
713   // constraint.
714   SmallDenseMap<Value *, bool> KnownNonNegativeVariables;
715   auto &R = Res.Coefficients;
716   for (const auto &KV : VariablesA) {
717     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
718     auto I =
719         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
720     I.first->second &= KV.IsKnownNonNegative;
721   }
722 
723   for (const auto &KV : VariablesB) {
724     if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient,
725                     R[GetOrAddIndex(KV.Variable)]))
726       return {};
727     auto I =
728         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
729     I.first->second &= KV.IsKnownNonNegative;
730   }
731 
732   int64_t OffsetSum;
733   if (AddOverflow(Offset1, Offset2, OffsetSum))
734     return {};
735   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
736     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
737       return {};
738   R[0] = OffsetSum;
739   Res.Preconditions = std::move(Preconditions);
740 
741   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
742   // variables.
743   while (!NewVariables.empty()) {
744     int64_t Last = R.back();
745     if (Last != 0)
746       break;
747     R.pop_back();
748     Value *RemovedV = NewVariables.pop_back_val();
749     NewIndexMap.erase(RemovedV);
750   }
751 
752   // Add extra constraints for variables that are known positive.
753   for (auto &KV : KnownNonNegativeVariables) {
754     if (!KV.second ||
755         (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
756       continue;
757     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
758     C[GetOrAddIndex(KV.first)] = -1;
759     Res.ExtraInfo.push_back(C);
760   }
761   return Res;
762 }
763 
764 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
765                                                      Value *Op0,
766                                                      Value *Op1) const {
767   Constant *NullC = Constant::getNullValue(Op0->getType());
768   // Handle trivially true compares directly to avoid adding V UGE 0 constraints
769   // for all variables in the unsigned system.
770   if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) ||
771       (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) {
772     auto &Value2Index = getValue2Index(false);
773     // Return constraint that's trivially true.
774     return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false,
775                         false, false);
776   }
777 
778   // If both operands are known to be non-negative, change signed predicates to
779   // unsigned ones. This increases the reasoning effectiveness in combination
780   // with the signed <-> unsigned transfer logic.
781   if (CmpInst::isSigned(Pred) &&
782       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
783       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
784     Pred = ICmpInst::getUnsignedPredicate(Pred);
785 
786   SmallVector<Value *> NewVariables;
787   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
788   if (!NewVariables.empty())
789     return {};
790   return R;
791 }
792 
793 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
794   return Coefficients.size() > 0 &&
795          all_of(Preconditions, [&Info](const ConditionTy &C) {
796            return Info.doesHold(C.Pred, C.Op0, C.Op1);
797          });
798 }
799 
800 std::optional<bool>
801 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
802   bool IsConditionImplied = CS.isConditionImplied(Coefficients);
803 
804   if (IsEq || IsNe) {
805     auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
806     bool IsNegatedOrEqualImplied =
807         !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
808 
809     // In order to check that `%a == %b` is true (equality), both conditions `%a
810     // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq`
811     // is true), we return true if they both hold, false in the other cases.
812     if (IsConditionImplied && IsNegatedOrEqualImplied)
813       return IsEq;
814 
815     auto Negated = ConstraintSystem::negate(Coefficients);
816     bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
817 
818     auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
819     bool IsStrictLessThanImplied =
820         !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
821 
822     // In order to check that `%a != %b` is true (non-equality), either
823     // condition `%a > %b` or `%a < %b` must hold true. When checking for
824     // non-equality (`IsNe` is true), we return true if one of the two holds,
825     // false in the other cases.
826     if (IsNegatedImplied || IsStrictLessThanImplied)
827       return IsNe;
828 
829     return std::nullopt;
830   }
831 
832   if (IsConditionImplied)
833     return true;
834 
835   auto Negated = ConstraintSystem::negate(Coefficients);
836   auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
837   if (IsNegatedImplied)
838     return false;
839 
840   // Neither the condition nor its negated holds, did not prove anything.
841   return std::nullopt;
842 }
843 
844 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
845                               Value *B) const {
846   auto R = getConstraintForSolving(Pred, A, B);
847   return R.isValid(*this) &&
848          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
849 }
850 
851 void ConstraintInfo::transferToOtherSystem(
852     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
853     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
854   auto IsKnownNonNegative = [this](Value *V) {
855     return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) ||
856            isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1);
857   };
858   // Check if we can combine facts from the signed and unsigned systems to
859   // derive additional facts.
860   if (!A->getType()->isIntegerTy())
861     return;
862   // FIXME: This currently depends on the order we add facts. Ideally we
863   // would first add all known facts and only then try to add additional
864   // facts.
865   switch (Pred) {
866   default:
867     break;
868   case CmpInst::ICMP_ULT:
869   case CmpInst::ICMP_ULE:
870     //  If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B.
871     if (IsKnownNonNegative(B)) {
872       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
873               NumOut, DFSInStack);
874       addFact(ICmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
875               DFSInStack);
876     }
877     break;
878   case CmpInst::ICMP_UGE:
879   case CmpInst::ICMP_UGT:
880     //  If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B.
881     if (IsKnownNonNegative(A)) {
882       addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn,
883               NumOut, DFSInStack);
884       addFact(ICmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
885               DFSInStack);
886     }
887     break;
888   case CmpInst::ICMP_SLT:
889     if (IsKnownNonNegative(A))
890       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
891     break;
892   case CmpInst::ICMP_SGT: {
893     if (doesHold(CmpInst::ICMP_SGE, B, Constant::getAllOnesValue(B->getType())))
894       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
895               NumOut, DFSInStack);
896     if (IsKnownNonNegative(B))
897       addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
898 
899     break;
900   }
901   case CmpInst::ICMP_SGE:
902     if (IsKnownNonNegative(B))
903       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
904     break;
905   }
906 }
907 
908 #ifndef NDEBUG
909 
910 static void dumpConstraint(ArrayRef<int64_t> C,
911                            const DenseMap<Value *, unsigned> &Value2Index) {
912   ConstraintSystem CS(Value2Index);
913   CS.addVariableRowFill(C);
914   CS.dump();
915 }
916 #endif
917 
918 void State::addInfoForInductions(BasicBlock &BB) {
919   auto *L = LI.getLoopFor(&BB);
920   if (!L || L->getHeader() != &BB)
921     return;
922 
923   Value *A;
924   Value *B;
925   CmpInst::Predicate Pred;
926 
927   if (!match(BB.getTerminator(),
928              m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value())))
929     return;
930   PHINode *PN = dyn_cast<PHINode>(A);
931   if (!PN) {
932     Pred = CmpInst::getSwappedPredicate(Pred);
933     std::swap(A, B);
934     PN = dyn_cast<PHINode>(A);
935   }
936 
937   if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 ||
938       !SE.isSCEVable(PN->getType()))
939     return;
940 
941   BasicBlock *InLoopSucc = nullptr;
942   if (Pred == CmpInst::ICMP_NE)
943     InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0);
944   else if (Pred == CmpInst::ICMP_EQ)
945     InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1);
946   else
947     return;
948 
949   if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB)
950     return;
951 
952   auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN));
953   BasicBlock *LoopPred = L->getLoopPredecessor();
954   if (!AR || AR->getLoop() != L || !LoopPred)
955     return;
956 
957   const SCEV *StartSCEV = AR->getStart();
958   Value *StartValue = nullptr;
959   if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) {
960     StartValue = C->getValue();
961   } else {
962     StartValue = PN->getIncomingValueForBlock(LoopPred);
963     assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value");
964   }
965 
966   DomTreeNode *DTN = DT.getNode(InLoopSucc);
967   auto IncUnsigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT);
968   auto IncSigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_SGT);
969   bool MonotonicallyIncreasingUnsigned =
970       IncUnsigned && *IncUnsigned == ScalarEvolution::MonotonicallyIncreasing;
971   bool MonotonicallyIncreasingSigned =
972       IncSigned && *IncSigned == ScalarEvolution::MonotonicallyIncreasing;
973   // If SCEV guarantees that AR does not wrap, PN >= StartValue can be added
974   // unconditionally.
975   if (MonotonicallyIncreasingUnsigned)
976     WorkList.push_back(
977         FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue));
978   if (MonotonicallyIncreasingSigned)
979     WorkList.push_back(
980         FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_SGE, PN, StartValue));
981 
982   APInt StepOffset;
983   if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
984     StepOffset = C->getAPInt();
985   else
986     return;
987 
988   // Make sure the bound B is loop-invariant.
989   if (!L->isLoopInvariant(B))
990     return;
991 
992   // Handle negative steps.
993   if (StepOffset.isNegative()) {
994     // TODO: Extend to allow steps > -1.
995     if (!(-StepOffset).isOne())
996       return;
997 
998     // AR may wrap.
999     // Add StartValue >= PN conditional on B <= StartValue which guarantees that
1000     // the loop exits before wrapping with a step of -1.
1001     WorkList.push_back(FactOrCheck::getConditionFact(
1002         DTN, CmpInst::ICMP_UGE, StartValue, PN,
1003         ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
1004     WorkList.push_back(FactOrCheck::getConditionFact(
1005         DTN, CmpInst::ICMP_SGE, StartValue, PN,
1006         ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
1007     // Add PN > B conditional on B <= StartValue which guarantees that the loop
1008     // exits when reaching B with a step of -1.
1009     WorkList.push_back(FactOrCheck::getConditionFact(
1010         DTN, CmpInst::ICMP_UGT, PN, B,
1011         ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
1012     WorkList.push_back(FactOrCheck::getConditionFact(
1013         DTN, CmpInst::ICMP_SGT, PN, B,
1014         ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
1015     return;
1016   }
1017 
1018   // Make sure AR either steps by 1 or that the value we compare against is a
1019   // GEP based on the same start value and all offsets are a multiple of the
1020   // step size, to guarantee that the induction will reach the value.
1021   if (StepOffset.isZero() || StepOffset.isNegative())
1022     return;
1023 
1024   if (!StepOffset.isOne()) {
1025     // Check whether B-Start is known to be a multiple of StepOffset.
1026     const SCEV *BMinusStart = SE.getMinusSCEV(SE.getSCEV(B), StartSCEV);
1027     if (isa<SCEVCouldNotCompute>(BMinusStart) ||
1028         !SE.getConstantMultiple(BMinusStart).urem(StepOffset).isZero())
1029       return;
1030   }
1031 
1032   // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which
1033   // guarantees that the loop exits before wrapping in combination with the
1034   // restrictions on B and the step above.
1035   if (!MonotonicallyIncreasingUnsigned)
1036     WorkList.push_back(FactOrCheck::getConditionFact(
1037         DTN, CmpInst::ICMP_UGE, PN, StartValue,
1038         ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1039   if (!MonotonicallyIncreasingSigned)
1040     WorkList.push_back(FactOrCheck::getConditionFact(
1041         DTN, CmpInst::ICMP_SGE, PN, StartValue,
1042         ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1043 
1044   WorkList.push_back(FactOrCheck::getConditionFact(
1045       DTN, CmpInst::ICMP_ULT, PN, B,
1046       ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1047   WorkList.push_back(FactOrCheck::getConditionFact(
1048       DTN, CmpInst::ICMP_SLT, PN, B,
1049       ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1050 
1051   // Try to add condition from header to the dedicated exit blocks. When exiting
1052   // either with EQ or NE in the header, we know that the induction value must
1053   // be u<= B, as other exits may only exit earlier.
1054   assert(!StepOffset.isNegative() && "induction must be increasing");
1055   assert((Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) &&
1056          "unsupported predicate");
1057   ConditionTy Precond = {CmpInst::ICMP_ULE, StartValue, B};
1058   SmallVector<BasicBlock *> ExitBBs;
1059   L->getExitBlocks(ExitBBs);
1060   for (BasicBlock *EB : ExitBBs) {
1061     // Bail out on non-dedicated exits.
1062     if (DT.dominates(&BB, EB)) {
1063       WorkList.emplace_back(FactOrCheck::getConditionFact(
1064           DT.getNode(EB), CmpInst::ICMP_ULE, A, B, Precond));
1065     }
1066   }
1067 }
1068 
1069 void State::addInfoFor(BasicBlock &BB) {
1070   addInfoForInductions(BB);
1071 
1072   // True as long as long as the current instruction is guaranteed to execute.
1073   bool GuaranteedToExecute = true;
1074   // Queue conditions and assumes.
1075   for (Instruction &I : BB) {
1076     if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
1077       for (Use &U : Cmp->uses()) {
1078         auto *UserI = getContextInstForUse(U);
1079         auto *DTN = DT.getNode(UserI->getParent());
1080         if (!DTN)
1081           continue;
1082         WorkList.push_back(FactOrCheck::getCheck(DTN, &U));
1083       }
1084       continue;
1085     }
1086 
1087     auto *II = dyn_cast<IntrinsicInst>(&I);
1088     Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic;
1089     switch (ID) {
1090     case Intrinsic::assume: {
1091       Value *A, *B;
1092       CmpInst::Predicate Pred;
1093       if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B))))
1094         break;
1095       if (GuaranteedToExecute) {
1096         // The assume is guaranteed to execute when BB is entered, hence Cond
1097         // holds on entry to BB.
1098         WorkList.emplace_back(FactOrCheck::getConditionFact(
1099             DT.getNode(I.getParent()), Pred, A, B));
1100       } else {
1101         WorkList.emplace_back(
1102             FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I));
1103       }
1104       break;
1105     }
1106     // Enqueue ssub_with_overflow for simplification.
1107     case Intrinsic::ssub_with_overflow:
1108     case Intrinsic::ucmp:
1109     case Intrinsic::scmp:
1110       WorkList.push_back(
1111           FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1112       break;
1113     // Enqueue the intrinsics to add extra info.
1114     case Intrinsic::umin:
1115     case Intrinsic::umax:
1116     case Intrinsic::smin:
1117     case Intrinsic::smax:
1118       // TODO: handle llvm.abs as well
1119       WorkList.push_back(
1120           FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1121       // TODO: Check if it is possible to instead only added the min/max facts
1122       // when simplifying uses of the min/max intrinsics.
1123       if (!isGuaranteedNotToBePoison(&I))
1124         break;
1125       [[fallthrough]];
1126     case Intrinsic::abs:
1127       WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I));
1128       break;
1129     }
1130 
1131     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
1132   }
1133 
1134   if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) {
1135     for (auto &Case : Switch->cases()) {
1136       BasicBlock *Succ = Case.getCaseSuccessor();
1137       Value *V = Case.getCaseValue();
1138       if (!canAddSuccessor(BB, Succ))
1139         continue;
1140       WorkList.emplace_back(FactOrCheck::getConditionFact(
1141           DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V));
1142     }
1143     return;
1144   }
1145 
1146   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
1147   if (!Br || !Br->isConditional())
1148     return;
1149 
1150   Value *Cond = Br->getCondition();
1151 
1152   // If the condition is a chain of ORs/AND and the successor only has the
1153   // current block as predecessor, queue conditions for the successor.
1154   Value *Op0, *Op1;
1155   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
1156       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1157     bool IsOr = match(Cond, m_LogicalOr());
1158     bool IsAnd = match(Cond, m_LogicalAnd());
1159     // If there's a select that matches both AND and OR, we need to commit to
1160     // one of the options. Arbitrarily pick OR.
1161     if (IsOr && IsAnd)
1162       IsAnd = false;
1163 
1164     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
1165     if (canAddSuccessor(BB, Successor)) {
1166       SmallVector<Value *> CondWorkList;
1167       SmallPtrSet<Value *, 8> SeenCond;
1168       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
1169         if (SeenCond.insert(V).second)
1170           CondWorkList.push_back(V);
1171       };
1172       QueueValue(Op1);
1173       QueueValue(Op0);
1174       while (!CondWorkList.empty()) {
1175         Value *Cur = CondWorkList.pop_back_val();
1176         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
1177           WorkList.emplace_back(FactOrCheck::getConditionFact(
1178               DT.getNode(Successor),
1179               IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate())
1180                    : Cmp->getPredicate(),
1181               Cmp->getOperand(0), Cmp->getOperand(1)));
1182           continue;
1183         }
1184         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
1185           QueueValue(Op1);
1186           QueueValue(Op0);
1187           continue;
1188         }
1189         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1190           QueueValue(Op1);
1191           QueueValue(Op0);
1192           continue;
1193         }
1194       }
1195     }
1196     return;
1197   }
1198 
1199   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
1200   if (!CmpI)
1201     return;
1202   if (canAddSuccessor(BB, Br->getSuccessor(0)))
1203     WorkList.emplace_back(FactOrCheck::getConditionFact(
1204         DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(),
1205         CmpI->getOperand(0), CmpI->getOperand(1)));
1206   if (canAddSuccessor(BB, Br->getSuccessor(1)))
1207     WorkList.emplace_back(FactOrCheck::getConditionFact(
1208         DT.getNode(Br->getSuccessor(1)),
1209         CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0),
1210         CmpI->getOperand(1)));
1211 }
1212 
1213 #ifndef NDEBUG
1214 static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred,
1215                              Value *LHS, Value *RHS) {
1216   OS << "icmp " << Pred << ' ';
1217   LHS->printAsOperand(OS, /*PrintType=*/true);
1218   OS << ", ";
1219   RHS->printAsOperand(OS, /*PrintType=*/false);
1220 }
1221 #endif
1222 
1223 namespace {
1224 /// Helper to keep track of a condition and if it should be treated as negated
1225 /// for reproducer construction.
1226 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a
1227 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack.
1228 struct ReproducerEntry {
1229   ICmpInst::Predicate Pred;
1230   Value *LHS;
1231   Value *RHS;
1232 
1233   ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS)
1234       : Pred(Pred), LHS(LHS), RHS(RHS) {}
1235 };
1236 } // namespace
1237 
1238 /// Helper function to generate a reproducer function for simplifying \p Cond.
1239 /// The reproducer function contains a series of @llvm.assume calls, one for
1240 /// each condition in \p Stack. For each condition, the operand instruction are
1241 /// cloned until we reach operands that have an entry in \p Value2Index. Those
1242 /// will then be added as function arguments. \p DT is used to order cloned
1243 /// instructions. The reproducer function will get added to \p M, if it is
1244 /// non-null. Otherwise no reproducer function is generated.
1245 static void generateReproducer(CmpInst *Cond, Module *M,
1246                                ArrayRef<ReproducerEntry> Stack,
1247                                ConstraintInfo &Info, DominatorTree &DT) {
1248   if (!M)
1249     return;
1250 
1251   LLVMContext &Ctx = Cond->getContext();
1252 
1253   LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
1254 
1255   ValueToValueMapTy Old2New;
1256   SmallVector<Value *> Args;
1257   SmallPtrSet<Value *, 8> Seen;
1258   // Traverse Cond and its operands recursively until we reach a value that's in
1259   // Value2Index or not an instruction, or not a operation that
1260   // ConstraintElimination can decompose. Such values will be considered as
1261   // external inputs to the reproducer, they are collected and added as function
1262   // arguments later.
1263   auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1264     auto &Value2Index = Info.getValue2Index(IsSigned);
1265     SmallVector<Value *, 4> WorkList(Ops);
1266     while (!WorkList.empty()) {
1267       Value *V = WorkList.pop_back_val();
1268       if (!Seen.insert(V).second)
1269         continue;
1270       if (Old2New.find(V) != Old2New.end())
1271         continue;
1272       if (isa<Constant>(V))
1273         continue;
1274 
1275       auto *I = dyn_cast<Instruction>(V);
1276       if (Value2Index.contains(V) || !I ||
1277           !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) {
1278         Old2New[V] = V;
1279         Args.push_back(V);
1280         LLVM_DEBUG(dbgs() << "  found external input " << *V << "\n");
1281       } else {
1282         append_range(WorkList, I->operands());
1283       }
1284     }
1285   };
1286 
1287   for (auto &Entry : Stack)
1288     if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE)
1289       CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred));
1290   CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate()));
1291 
1292   SmallVector<Type *> ParamTys;
1293   for (auto *P : Args)
1294     ParamTys.push_back(P->getType());
1295 
1296   FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
1297                                         /*isVarArg=*/false);
1298   Function *F = Function::Create(FTy, Function::ExternalLinkage,
1299                                  Cond->getModule()->getName() +
1300                                      Cond->getFunction()->getName() + "repro",
1301                                  M);
1302   // Add arguments to the reproducer function for each external value collected.
1303   for (unsigned I = 0; I < Args.size(); ++I) {
1304     F->getArg(I)->setName(Args[I]->getName());
1305     Old2New[Args[I]] = F->getArg(I);
1306   }
1307 
1308   BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
1309   IRBuilder<> Builder(Entry);
1310   Builder.CreateRet(Builder.getTrue());
1311   Builder.SetInsertPoint(Entry->getTerminator());
1312 
1313   // Clone instructions in \p Ops and their operands recursively until reaching
1314   // an value in Value2Index (external input to the reproducer). Update Old2New
1315   // mapping for the original and cloned instructions. Sort instructions to
1316   // clone by dominance, then insert the cloned instructions in the function.
1317   auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1318     SmallVector<Value *, 4> WorkList(Ops);
1319     SmallVector<Instruction *> ToClone;
1320     auto &Value2Index = Info.getValue2Index(IsSigned);
1321     while (!WorkList.empty()) {
1322       Value *V = WorkList.pop_back_val();
1323       if (Old2New.find(V) != Old2New.end())
1324         continue;
1325 
1326       auto *I = dyn_cast<Instruction>(V);
1327       if (!Value2Index.contains(V) && I) {
1328         Old2New[V] = nullptr;
1329         ToClone.push_back(I);
1330         append_range(WorkList, I->operands());
1331       }
1332     }
1333 
1334     sort(ToClone,
1335          [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
1336     for (Instruction *I : ToClone) {
1337       Instruction *Cloned = I->clone();
1338       Old2New[I] = Cloned;
1339       Old2New[I]->setName(I->getName());
1340       Cloned->insertBefore(&*Builder.GetInsertPoint());
1341       Cloned->dropUnknownNonDebugMetadata();
1342       Cloned->setDebugLoc({});
1343     }
1344   };
1345 
1346   // Materialize the assumptions for the reproducer using the entries in Stack.
1347   // That is, first clone the operands of the condition recursively until we
1348   // reach an external input to the reproducer and add them to the reproducer
1349   // function. Then add an ICmp for the condition (with the inverse predicate if
1350   // the entry is negated) and an assert using the ICmp.
1351   for (auto &Entry : Stack) {
1352     if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE)
1353       continue;
1354 
1355     LLVM_DEBUG(dbgs() << "  Materializing assumption ";
1356                dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS);
1357                dbgs() << "\n");
1358     CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred));
1359 
1360     auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS);
1361     Builder.CreateAssumption(Cmp);
1362   }
1363 
1364   // Finally, clone the condition to reproduce and remap instruction operands in
1365   // the reproducer using Old2New.
1366   CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
1367   Entry->getTerminator()->setOperand(0, Cond);
1368   remapInstructionsInBlocks({Entry}, Old2New);
1369 
1370   assert(!verifyFunction(*F, &dbgs()));
1371 }
1372 
1373 static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A,
1374                                           Value *B, Instruction *CheckInst,
1375                                           ConstraintInfo &Info) {
1376   LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n");
1377 
1378   auto R = Info.getConstraintForSolving(Pred, A, B);
1379   if (R.empty() || !R.isValid(Info)){
1380     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
1381     return std::nullopt;
1382   }
1383 
1384   auto &CSToUse = Info.getCS(R.IsSigned);
1385 
1386   // If there was extra information collected during decomposition, apply
1387   // it now and remove it immediately once we are done with reasoning
1388   // about the constraint.
1389   for (auto &Row : R.ExtraInfo)
1390     CSToUse.addVariableRow(Row);
1391   auto InfoRestorer = make_scope_exit([&]() {
1392     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
1393       CSToUse.popLastConstraint();
1394   });
1395 
1396   if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) {
1397     if (!DebugCounter::shouldExecute(EliminatedCounter))
1398       return std::nullopt;
1399 
1400     LLVM_DEBUG({
1401       dbgs() << "Condition ";
1402       dumpUnpackedICmp(
1403           dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred),
1404           A, B);
1405       dbgs() << " implied by dominating constraints\n";
1406       CSToUse.dump();
1407     });
1408     return ImpliedCondition;
1409   }
1410 
1411   return std::nullopt;
1412 }
1413 
1414 static bool checkAndReplaceCondition(
1415     CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut,
1416     Instruction *ContextInst, Module *ReproducerModule,
1417     ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT,
1418     SmallVectorImpl<Instruction *> &ToRemove) {
1419   auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
1420     generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
1421     Constant *ConstantC = ConstantInt::getBool(
1422         CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
1423     Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut,
1424                                        ContextInst](Use &U) {
1425       auto *UserI = getContextInstForUse(U);
1426       auto *DTN = DT.getNode(UserI->getParent());
1427       if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
1428         return false;
1429       if (UserI->getParent() == ContextInst->getParent() &&
1430           UserI->comesBefore(ContextInst))
1431         return false;
1432 
1433       // Conditions in an assume trivially simplify to true. Skip uses
1434       // in assume calls to not destroy the available information.
1435       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1436       return !II || II->getIntrinsicID() != Intrinsic::assume;
1437     });
1438     NumCondsRemoved++;
1439     if (Cmp->use_empty())
1440       ToRemove.push_back(Cmp);
1441     return true;
1442   };
1443 
1444   if (auto ImpliedCondition =
1445           checkCondition(Cmp->getPredicate(), Cmp->getOperand(0),
1446                          Cmp->getOperand(1), Cmp, Info))
1447     return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
1448   return false;
1449 }
1450 
1451 static bool checkAndReplaceMinMax(MinMaxIntrinsic *MinMax, ConstraintInfo &Info,
1452                                   SmallVectorImpl<Instruction *> &ToRemove) {
1453   auto ReplaceMinMaxWithOperand = [&](MinMaxIntrinsic *MinMax, bool UseLHS) {
1454     // TODO: generate reproducer for min/max.
1455     MinMax->replaceAllUsesWith(MinMax->getOperand(UseLHS ? 0 : 1));
1456     ToRemove.push_back(MinMax);
1457     return true;
1458   };
1459 
1460   ICmpInst::Predicate Pred =
1461       ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1462   if (auto ImpliedCondition = checkCondition(
1463           Pred, MinMax->getOperand(0), MinMax->getOperand(1), MinMax, Info))
1464     return ReplaceMinMaxWithOperand(MinMax, *ImpliedCondition);
1465   if (auto ImpliedCondition = checkCondition(
1466           Pred, MinMax->getOperand(1), MinMax->getOperand(0), MinMax, Info))
1467     return ReplaceMinMaxWithOperand(MinMax, !*ImpliedCondition);
1468   return false;
1469 }
1470 
1471 static bool checkAndReplaceCmp(CmpIntrinsic *I, ConstraintInfo &Info,
1472                                SmallVectorImpl<Instruction *> &ToRemove) {
1473   Value *LHS = I->getOperand(0);
1474   Value *RHS = I->getOperand(1);
1475   if (checkCondition(I->getGTPredicate(), LHS, RHS, I, Info).value_or(false)) {
1476     I->replaceAllUsesWith(ConstantInt::get(I->getType(), 1));
1477     ToRemove.push_back(I);
1478     return true;
1479   }
1480   if (checkCondition(I->getLTPredicate(), LHS, RHS, I, Info).value_or(false)) {
1481     I->replaceAllUsesWith(ConstantInt::getSigned(I->getType(), -1));
1482     ToRemove.push_back(I);
1483     return true;
1484   }
1485   if (checkCondition(ICmpInst::ICMP_EQ, LHS, RHS, I, Info).value_or(false)) {
1486     I->replaceAllUsesWith(ConstantInt::get(I->getType(), 0));
1487     ToRemove.push_back(I);
1488     return true;
1489   }
1490   return false;
1491 }
1492 
1493 static void
1494 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
1495                      Module *ReproducerModule,
1496                      SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1497                      SmallVectorImpl<StackEntry> &DFSInStack) {
1498   Info.popLastConstraint(E.IsSigned);
1499   // Remove variables in the system that went out of scope.
1500   auto &Mapping = Info.getValue2Index(E.IsSigned);
1501   for (Value *V : E.ValuesToRelease)
1502     Mapping.erase(V);
1503   Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1504   DFSInStack.pop_back();
1505   if (ReproducerModule)
1506     ReproducerCondStack.pop_back();
1507 }
1508 
1509 /// Check if either the first condition of an AND or OR is implied by the
1510 /// (negated in case of OR) second condition or vice versa.
1511 static bool checkOrAndOpImpliedByOther(
1512     FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule,
1513     SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1514     SmallVectorImpl<StackEntry> &DFSInStack) {
1515   Instruction *JoinOp = CB.getContextInst();
1516   CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify());
1517   unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0;
1518 
1519   // Don't try to simplify the first condition of a select by the second, as
1520   // this may make the select more poisonous than the original one.
1521   // TODO: check if the first operand may be poison.
1522   if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp))
1523     return false;
1524 
1525   unsigned OldSize = DFSInStack.size();
1526   auto InfoRestorer = make_scope_exit([&]() {
1527     // Remove entries again.
1528     while (OldSize < DFSInStack.size()) {
1529       StackEntry E = DFSInStack.back();
1530       removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack,
1531                            DFSInStack);
1532     }
1533   });
1534   bool IsOr = match(JoinOp, m_LogicalOr());
1535   SmallVector<Value *, 4> Worklist({JoinOp->getOperand(OtherOpIdx)});
1536   // Do a traversal of the AND/OR tree to add facts from leaf compares.
1537   while (!Worklist.empty()) {
1538     Value *Val = Worklist.pop_back_val();
1539     Value *LHS, *RHS;
1540     ICmpInst::Predicate Pred;
1541     if (match(Val, m_ICmp(Pred, m_Value(LHS), m_Value(RHS)))) {
1542       // For OR, check if the negated condition implies CmpToCheck.
1543       if (IsOr)
1544         Pred = CmpInst::getInversePredicate(Pred);
1545       // Optimistically add fact from the other compares in the AND/OR.
1546       Info.addFact(Pred, LHS, RHS, CB.NumIn, CB.NumOut, DFSInStack);
1547       continue;
1548     }
1549     if (IsOr ? match(Val, m_LogicalOr(m_Value(LHS), m_Value(RHS)))
1550              : match(Val, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) {
1551       Worklist.push_back(LHS);
1552       Worklist.push_back(RHS);
1553     }
1554   }
1555   if (OldSize == DFSInStack.size())
1556     return false;
1557 
1558   // Check if the second condition can be simplified now.
1559   if (auto ImpliedCondition =
1560           checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0),
1561                          CmpToCheck->getOperand(1), CmpToCheck, Info)) {
1562     if (IsOr && isa<SelectInst>(JoinOp)) {
1563       JoinOp->setOperand(
1564           OtherOpIdx == 0 ? 2 : 0,
1565           ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1566     } else
1567       JoinOp->setOperand(
1568           1 - OtherOpIdx,
1569           ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1570 
1571     return true;
1572   }
1573 
1574   return false;
1575 }
1576 
1577 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
1578                              unsigned NumIn, unsigned NumOut,
1579                              SmallVectorImpl<StackEntry> &DFSInStack) {
1580   // If the constraint has a pre-condition, skip the constraint if it does not
1581   // hold.
1582   SmallVector<Value *> NewVariables;
1583   auto R = getConstraint(Pred, A, B, NewVariables);
1584 
1585   // TODO: Support non-equality for facts as well.
1586   if (!R.isValid(*this) || R.isNe())
1587     return;
1588 
1589   LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B);
1590              dbgs() << "'\n");
1591   bool Added = false;
1592   auto &CSToUse = getCS(R.IsSigned);
1593   if (R.Coefficients.empty())
1594     return;
1595 
1596   Added |= CSToUse.addVariableRowFill(R.Coefficients);
1597 
1598   // If R has been added to the system, add the new variables and queue it for
1599   // removal once it goes out-of-scope.
1600   if (Added) {
1601     SmallVector<Value *, 2> ValuesToRelease;
1602     auto &Value2Index = getValue2Index(R.IsSigned);
1603     for (Value *V : NewVariables) {
1604       Value2Index.insert({V, Value2Index.size() + 1});
1605       ValuesToRelease.push_back(V);
1606     }
1607 
1608     LLVM_DEBUG({
1609       dbgs() << "  constraint: ";
1610       dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1611       dbgs() << "\n";
1612     });
1613 
1614     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1615                             std::move(ValuesToRelease));
1616 
1617     if (!R.IsSigned) {
1618       for (Value *V : NewVariables) {
1619         ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
1620                             false, false, false);
1621         VarPos.Coefficients[Value2Index[V]] = -1;
1622         CSToUse.addVariableRow(VarPos.Coefficients);
1623         DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1624                                 SmallVector<Value *, 2>());
1625       }
1626     }
1627 
1628     if (R.isEq()) {
1629       // Also add the inverted constraint for equality constraints.
1630       for (auto &Coeff : R.Coefficients)
1631         Coeff *= -1;
1632       CSToUse.addVariableRowFill(R.Coefficients);
1633 
1634       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1635                               SmallVector<Value *, 2>());
1636     }
1637   }
1638 }
1639 
1640 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
1641                                    SmallVectorImpl<Instruction *> &ToRemove) {
1642   bool Changed = false;
1643   IRBuilder<> Builder(II->getParent(), II->getIterator());
1644   Value *Sub = nullptr;
1645   for (User *U : make_early_inc_range(II->users())) {
1646     if (match(U, m_ExtractValue<0>(m_Value()))) {
1647       if (!Sub)
1648         Sub = Builder.CreateSub(A, B);
1649       U->replaceAllUsesWith(Sub);
1650       Changed = true;
1651     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
1652       U->replaceAllUsesWith(Builder.getFalse());
1653       Changed = true;
1654     } else
1655       continue;
1656 
1657     if (U->use_empty()) {
1658       auto *I = cast<Instruction>(U);
1659       ToRemove.push_back(I);
1660       I->setOperand(0, PoisonValue::get(II->getType()));
1661       Changed = true;
1662     }
1663   }
1664 
1665   if (II->use_empty()) {
1666     II->eraseFromParent();
1667     Changed = true;
1668   }
1669   return Changed;
1670 }
1671 
1672 static bool
1673 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
1674                           SmallVectorImpl<Instruction *> &ToRemove) {
1675   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1676                               ConstraintInfo &Info) {
1677     auto R = Info.getConstraintForSolving(Pred, A, B);
1678     if (R.size() < 2 || !R.isValid(Info))
1679       return false;
1680 
1681     auto &CSToUse = Info.getCS(R.IsSigned);
1682     return CSToUse.isConditionImplied(R.Coefficients);
1683   };
1684 
1685   bool Changed = false;
1686   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1687     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1688     // can be simplified to a regular sub.
1689     Value *A = II->getArgOperand(0);
1690     Value *B = II->getArgOperand(1);
1691     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1692         !DoesConditionHold(CmpInst::ICMP_SGE, B,
1693                            ConstantInt::get(A->getType(), 0), Info))
1694       return false;
1695     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
1696   }
1697   return Changed;
1698 }
1699 
1700 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI,
1701                                  ScalarEvolution &SE,
1702                                  OptimizationRemarkEmitter &ORE) {
1703   bool Changed = false;
1704   DT.updateDFSNumbers();
1705   SmallVector<Value *> FunctionArgs;
1706   for (Value &Arg : F.args())
1707     FunctionArgs.push_back(&Arg);
1708   ConstraintInfo Info(F.getDataLayout(), FunctionArgs);
1709   State S(DT, LI, SE);
1710   std::unique_ptr<Module> ReproducerModule(
1711       DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1712 
1713   // First, collect conditions implied by branches and blocks with their
1714   // Dominator DFS in and out numbers.
1715   for (BasicBlock &BB : F) {
1716     if (!DT.getNode(&BB))
1717       continue;
1718     S.addInfoFor(BB);
1719   }
1720 
1721   // Next, sort worklist by dominance, so that dominating conditions to check
1722   // and facts come before conditions and facts dominated by them. If a
1723   // condition to check and a fact have the same numbers, conditional facts come
1724   // first. Assume facts and checks are ordered according to their relative
1725   // order in the containing basic block. Also make sure conditions with
1726   // constant operands come before conditions without constant operands. This
1727   // increases the effectiveness of the current signed <-> unsigned fact
1728   // transfer logic.
1729   stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1730     auto HasNoConstOp = [](const FactOrCheck &B) {
1731       Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0);
1732       Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1);
1733       return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1);
1734     };
1735     // If both entries have the same In numbers, conditional facts come first.
1736     // Otherwise use the relative order in the basic block.
1737     if (A.NumIn == B.NumIn) {
1738       if (A.isConditionFact() && B.isConditionFact()) {
1739         bool NoConstOpA = HasNoConstOp(A);
1740         bool NoConstOpB = HasNoConstOp(B);
1741         return NoConstOpA < NoConstOpB;
1742       }
1743       if (A.isConditionFact())
1744         return true;
1745       if (B.isConditionFact())
1746         return false;
1747       auto *InstA = A.getContextInst();
1748       auto *InstB = B.getContextInst();
1749       return InstA->comesBefore(InstB);
1750     }
1751     return A.NumIn < B.NumIn;
1752   });
1753 
1754   SmallVector<Instruction *> ToRemove;
1755 
1756   // Finally, process ordered worklist and eliminate implied conditions.
1757   SmallVector<StackEntry, 16> DFSInStack;
1758   SmallVector<ReproducerEntry> ReproducerCondStack;
1759   for (FactOrCheck &CB : S.WorkList) {
1760     // First, pop entries from the stack that are out-of-scope for CB. Remove
1761     // the corresponding entry from the constraint system.
1762     while (!DFSInStack.empty()) {
1763       auto &E = DFSInStack.back();
1764       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1765                         << "\n");
1766       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1767       assert(E.NumIn <= CB.NumIn);
1768       if (CB.NumOut <= E.NumOut)
1769         break;
1770       LLVM_DEBUG({
1771         dbgs() << "Removing ";
1772         dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1773                        Info.getValue2Index(E.IsSigned));
1774         dbgs() << "\n";
1775       });
1776       removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
1777                            DFSInStack);
1778     }
1779 
1780     // For a block, check if any CmpInsts become known based on the current set
1781     // of constraints.
1782     if (CB.isCheck()) {
1783       Instruction *Inst = CB.getInstructionToSimplify();
1784       if (!Inst)
1785         continue;
1786       LLVM_DEBUG(dbgs() << "Processing condition to simplify: " << *Inst
1787                         << "\n");
1788       if (auto *II = dyn_cast<WithOverflowInst>(Inst)) {
1789         Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1790       } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) {
1791         bool Simplified = checkAndReplaceCondition(
1792             Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(),
1793             ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove);
1794         if (!Simplified &&
1795             match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) {
1796           Simplified =
1797               checkOrAndOpImpliedByOther(CB, Info, ReproducerModule.get(),
1798                                          ReproducerCondStack, DFSInStack);
1799         }
1800         Changed |= Simplified;
1801       } else if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Inst)) {
1802         Changed |= checkAndReplaceMinMax(MinMax, Info, ToRemove);
1803       } else if (auto *CmpIntr = dyn_cast<CmpIntrinsic>(Inst)) {
1804         Changed |= checkAndReplaceCmp(CmpIntr, Info, ToRemove);
1805       }
1806       continue;
1807     }
1808 
1809     auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) {
1810       LLVM_DEBUG(dbgs() << "Processing fact to add to the system: ";
1811                  dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n");
1812       if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1813         LLVM_DEBUG(
1814             dbgs()
1815             << "Skip adding constraint because system has too many rows.\n");
1816         return;
1817       }
1818 
1819       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1820       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1821         ReproducerCondStack.emplace_back(Pred, A, B);
1822 
1823       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1824       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
1825         // Add dummy entries to ReproducerCondStack to keep it in sync with
1826         // DFSInStack.
1827         for (unsigned I = 0,
1828                       E = (DFSInStack.size() - ReproducerCondStack.size());
1829              I < E; ++I) {
1830           ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE,
1831                                            nullptr, nullptr);
1832         }
1833       }
1834     };
1835 
1836     ICmpInst::Predicate Pred;
1837     if (!CB.isConditionFact()) {
1838       Value *X;
1839       if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) {
1840         // If is_int_min_poison is true then we may assume llvm.abs >= 0.
1841         if (cast<ConstantInt>(CB.Inst->getOperand(1))->isOne())
1842           AddFact(CmpInst::ICMP_SGE, CB.Inst,
1843                   ConstantInt::get(CB.Inst->getType(), 0));
1844         AddFact(CmpInst::ICMP_SGE, CB.Inst, X);
1845         continue;
1846       }
1847 
1848       if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) {
1849         Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1850         AddFact(Pred, MinMax, MinMax->getLHS());
1851         AddFact(Pred, MinMax, MinMax->getRHS());
1852         continue;
1853       }
1854     }
1855 
1856     Value *A = nullptr, *B = nullptr;
1857     if (CB.isConditionFact()) {
1858       Pred = CB.Cond.Pred;
1859       A = CB.Cond.Op0;
1860       B = CB.Cond.Op1;
1861       if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE &&
1862           !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) {
1863         LLVM_DEBUG({
1864           dbgs() << "Not adding fact ";
1865           dumpUnpackedICmp(dbgs(), Pred, A, B);
1866           dbgs() << " because precondition ";
1867           dumpUnpackedICmp(dbgs(), CB.DoesHold.Pred, CB.DoesHold.Op0,
1868                            CB.DoesHold.Op1);
1869           dbgs() << " does not hold.\n";
1870         });
1871         continue;
1872       }
1873     } else {
1874       bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>(
1875                                         m_ICmp(Pred, m_Value(A), m_Value(B))));
1876       (void)Matched;
1877       assert(Matched && "Must have an assume intrinsic with a icmp operand");
1878     }
1879     AddFact(Pred, A, B);
1880   }
1881 
1882   if (ReproducerModule && !ReproducerModule->functions().empty()) {
1883     std::string S;
1884     raw_string_ostream StringS(S);
1885     ReproducerModule->print(StringS, nullptr);
1886     OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
1887     Rem << ore::NV("module") << S;
1888     ORE.emit(Rem);
1889   }
1890 
1891 #ifndef NDEBUG
1892   unsigned SignedEntries =
1893       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1894   assert(Info.getCS(false).size() - FunctionArgs.size() ==
1895              DFSInStack.size() - SignedEntries &&
1896          "updates to CS and DFSInStack are out of sync");
1897   assert(Info.getCS(true).size() == SignedEntries &&
1898          "updates to CS and DFSInStack are out of sync");
1899 #endif
1900 
1901   for (Instruction *I : ToRemove)
1902     I->eraseFromParent();
1903   return Changed;
1904 }
1905 
1906 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1907                                                  FunctionAnalysisManager &AM) {
1908   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1909   auto &LI = AM.getResult<LoopAnalysis>(F);
1910   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1911   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1912   if (!eliminateConstraints(F, DT, LI, SE, ORE))
1913     return PreservedAnalyses::all();
1914 
1915   PreservedAnalyses PA;
1916   PA.preserve<DominatorTreeAnalysis>();
1917   PA.preserve<LoopAnalysis>();
1918   PA.preserve<ScalarEvolutionAnalysis>();
1919   PA.preserveSet<CFGAnalyses>();
1920   return PA;
1921 }
1922