1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/DebugCounter.h" 30 #include "llvm/Transforms/Scalar.h" 31 32 #include <string> 33 34 using namespace llvm; 35 using namespace PatternMatch; 36 37 #define DEBUG_TYPE "constraint-elimination" 38 39 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 40 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 41 "Controls which conditions are eliminated"); 42 43 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 44 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 45 46 namespace { 47 48 /// Wrapper encapsulating separate constraint systems and corresponding value 49 /// mappings for both unsigned and signed information. Facts are added to and 50 /// conditions are checked against the corresponding system depending on the 51 /// signed-ness of their predicates. While the information is kept separate 52 /// based on signed-ness, certain conditions can be transferred between the two 53 /// systems. 54 class ConstraintInfo { 55 DenseMap<Value *, unsigned> UnsignedValue2Index; 56 DenseMap<Value *, unsigned> SignedValue2Index; 57 58 ConstraintSystem UnsignedCS; 59 ConstraintSystem SignedCS; 60 61 public: 62 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 63 return Signed ? SignedValue2Index : UnsignedValue2Index; 64 } 65 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 66 return Signed ? SignedValue2Index : UnsignedValue2Index; 67 } 68 69 ConstraintSystem &getCS(bool Signed) { 70 return Signed ? SignedCS : UnsignedCS; 71 } 72 const ConstraintSystem &getCS(bool Signed) const { 73 return Signed ? SignedCS : UnsignedCS; 74 } 75 76 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 77 }; 78 79 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 80 struct PreconditionTy { 81 CmpInst::Predicate Pred; 82 Value *Op0; 83 Value *Op1; 84 85 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 86 : Pred(Pred), Op0(Op0), Op1(Op1) {} 87 }; 88 89 struct ConstraintTy { 90 SmallVector<int64_t, 8> Coefficients; 91 SmallVector<PreconditionTy, 2> Preconditions; 92 93 bool IsSigned = false; 94 bool IsEq = false; 95 96 ConstraintTy() = default; 97 98 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 99 : Coefficients(Coefficients), IsSigned(IsSigned) {} 100 101 unsigned size() const { return Coefficients.size(); } 102 103 unsigned empty() const { return Coefficients.empty(); } 104 105 /// Returns true if any constraint has a non-zero coefficient for any of the 106 /// newly added indices. Zero coefficients for new indices are removed. If it 107 /// returns true, no new variable need to be added to the system. 108 bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) { 109 for (unsigned I = 0; I < NewIndices.size(); ++I) { 110 int64_t Last = Coefficients.pop_back_val(); 111 if (Last != 0) 112 return true; 113 } 114 return false; 115 } 116 117 /// Returns true if all preconditions for this list of constraints are 118 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 119 bool isValid(const ConstraintInfo &Info) const; 120 121 /// Returns true if there is exactly one constraint in the list and isValid is 122 /// also true. 123 bool isValidSingle(const ConstraintInfo &Info) const { 124 if (size() != 1) 125 return false; 126 return isValid(Info); 127 } 128 }; 129 130 } // namespace 131 132 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The 133 // sum of the pairs equals \p V. The first pair is the constant-factor and X 134 // must be nullptr. If the expression cannot be decomposed, returns an empty 135 // vector. 136 static SmallVector<std::pair<int64_t, Value *>, 4> 137 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 138 bool IsSigned) { 139 140 // Decompose \p V used with a signed predicate. 141 if (IsSigned) { 142 if (auto *CI = dyn_cast<ConstantInt>(V)) { 143 const APInt &Val = CI->getValue(); 144 if (Val.sle(MinSignedConstraintValue) || Val.sge(MaxConstraintValue)) 145 return {}; 146 return {{CI->getSExtValue(), nullptr}}; 147 } 148 149 return {{0, nullptr}, {1, V}}; 150 } 151 152 if (auto *CI = dyn_cast<ConstantInt>(V)) { 153 if (CI->isNegative() || CI->uge(MaxConstraintValue)) 154 return {}; 155 return {{CI->getSExtValue(), nullptr}}; 156 } 157 auto *GEP = dyn_cast<GetElementPtrInst>(V); 158 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 159 Value *Op0, *Op1; 160 ConstantInt *CI; 161 162 // If the index is zero-extended, it is guaranteed to be positive. 163 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 164 m_ZExt(m_Value(Op0)))) { 165 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI)))) 166 return {{0, nullptr}, 167 {1, GEP->getPointerOperand()}, 168 {std::pow(int64_t(2), CI->getSExtValue()), Op1}}; 169 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI)))) 170 return {{CI->getSExtValue(), nullptr}, 171 {1, GEP->getPointerOperand()}, 172 {1, Op1}}; 173 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 174 } 175 176 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 177 !CI->isNegative()) 178 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 179 180 SmallVector<std::pair<int64_t, Value *>, 4> Result; 181 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 182 m_NUWShl(m_Value(Op0), m_ConstantInt(CI)))) 183 Result = {{0, nullptr}, 184 {1, GEP->getPointerOperand()}, 185 {std::pow(int64_t(2), CI->getSExtValue()), Op0}}; 186 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 187 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI)))) 188 Result = {{CI->getSExtValue(), nullptr}, 189 {1, GEP->getPointerOperand()}, 190 {1, Op0}}; 191 else { 192 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 193 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 194 } 195 // If Op0 is signed non-negative, the GEP is increasing monotonically and 196 // can be de-composed. 197 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 198 ConstantInt::get(Op0->getType(), 0)); 199 return Result; 200 } 201 202 Value *Op0; 203 if (match(V, m_ZExt(m_Value(Op0)))) 204 V = Op0; 205 206 Value *Op1; 207 ConstantInt *CI; 208 if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI)))) 209 return {{CI->getSExtValue(), nullptr}, {1, Op0}}; 210 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative()) { 211 Preconditions.emplace_back( 212 CmpInst::ICMP_UGE, Op0, 213 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 214 return {{CI->getSExtValue(), nullptr}, {1, Op0}}; 215 } 216 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) 217 return {{0, nullptr}, {1, Op0}, {1, Op1}}; 218 219 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI)))) 220 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 221 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 222 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 223 224 return {{0, nullptr}, {1, V}}; 225 } 226 227 /// Turn a condition \p CmpI into a vector of constraints, using indices from \p 228 /// Value2Index. Additional indices for newly discovered values are added to \p 229 /// NewIndices. 230 static ConstraintTy 231 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 232 const DenseMap<Value *, unsigned> &Value2Index, 233 DenseMap<Value *, unsigned> &NewIndices) { 234 bool IsEq = false; 235 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 236 switch (Pred) { 237 case CmpInst::ICMP_UGT: 238 case CmpInst::ICMP_UGE: 239 case CmpInst::ICMP_SGT: 240 case CmpInst::ICMP_SGE: { 241 Pred = CmpInst::getSwappedPredicate(Pred); 242 std::swap(Op0, Op1); 243 break; 244 } 245 case CmpInst::ICMP_EQ: 246 if (match(Op1, m_Zero())) { 247 Pred = CmpInst::ICMP_ULE; 248 } else { 249 IsEq = true; 250 Pred = CmpInst::ICMP_ULE; 251 } 252 break; 253 case CmpInst::ICMP_NE: 254 if (!match(Op1, m_Zero())) 255 return {}; 256 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 257 std::swap(Op0, Op1); 258 break; 259 default: 260 break; 261 } 262 263 // Only ULE and ULT predicates are supported at the moment. 264 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 265 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 266 return {}; 267 268 SmallVector<PreconditionTy, 4> Preconditions; 269 bool IsSigned = CmpInst::isSigned(Pred); 270 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 271 Preconditions, IsSigned); 272 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 273 Preconditions, IsSigned); 274 // Skip if decomposing either of the values failed. 275 if (ADec.empty() || BDec.empty()) 276 return {}; 277 278 // Skip trivial constraints without any variables. 279 if (ADec.size() == 1 && BDec.size() == 1) 280 return {}; 281 282 int64_t Offset1 = ADec[0].first; 283 int64_t Offset2 = BDec[0].first; 284 Offset1 *= -1; 285 286 // Create iterator ranges that skip the constant-factor. 287 auto VariablesA = llvm::drop_begin(ADec); 288 auto VariablesB = llvm::drop_begin(BDec); 289 290 // First try to look up \p V in Value2Index and NewIndices. Otherwise add a 291 // new entry to NewIndices. 292 auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned { 293 auto V2I = Value2Index.find(V); 294 if (V2I != Value2Index.end()) 295 return V2I->second; 296 auto Insert = 297 NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1}); 298 return Insert.first->second; 299 }; 300 301 // Make sure all variables have entries in Value2Index or NewIndices. 302 for (const auto &KV : 303 concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB)) 304 GetOrAddIndex(KV.second); 305 306 // Build result constraint, by first adding all coefficients from A and then 307 // subtracting all coefficients from B. 308 ConstraintTy Res( 309 SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0), 310 IsSigned); 311 Res.IsEq = IsEq; 312 auto &R = Res.Coefficients; 313 for (const auto &KV : VariablesA) 314 R[GetOrAddIndex(KV.second)] += KV.first; 315 316 for (const auto &KV : VariablesB) 317 R[GetOrAddIndex(KV.second)] -= KV.first; 318 319 R[0] = Offset1 + Offset2 + 320 (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT) ? -1 : 0); 321 Res.Preconditions = std::move(Preconditions); 322 return Res; 323 } 324 325 static ConstraintTy getConstraint(CmpInst *Cmp, ConstraintInfo &Info, 326 DenseMap<Value *, unsigned> &NewIndices) { 327 return getConstraint( 328 Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1), 329 Info.getValue2Index(CmpInst::isSigned(Cmp->getPredicate())), NewIndices); 330 } 331 332 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 333 return Coefficients.size() > 0 && 334 all_of(Preconditions, [&Info](const PreconditionTy &C) { 335 DenseMap<Value *, unsigned> NewIndices; 336 auto R = getConstraint( 337 C.Pred, C.Op0, C.Op1, 338 Info.getValue2Index(CmpInst::isSigned(C.Pred)), NewIndices); 339 // TODO: properly check NewIndices. 340 return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq && 341 R.size() >= 2 && 342 Info.getCS(CmpInst::isSigned(C.Pred)) 343 .isConditionImplied(R.Coefficients); 344 }); 345 } 346 347 namespace { 348 /// Represents either a condition that holds on entry to a block or a basic 349 /// block, with their respective Dominator DFS in and out numbers. 350 struct ConstraintOrBlock { 351 unsigned NumIn; 352 unsigned NumOut; 353 bool IsBlock; 354 bool Not; 355 union { 356 BasicBlock *BB; 357 CmpInst *Condition; 358 }; 359 360 ConstraintOrBlock(DomTreeNode *DTN) 361 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 362 BB(DTN->getBlock()) {} 363 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 364 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 365 Not(Not), Condition(Condition) {} 366 }; 367 368 struct StackEntry { 369 unsigned NumIn; 370 unsigned NumOut; 371 Instruction *Condition; 372 bool IsNot; 373 bool IsSigned = false; 374 375 StackEntry(unsigned NumIn, unsigned NumOut, Instruction *Condition, 376 bool IsNot, bool IsSigned) 377 : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot), 378 IsSigned(IsSigned) {} 379 }; 380 } // namespace 381 382 #ifndef NDEBUG 383 static void dumpWithNames(ConstraintTy &C, 384 DenseMap<Value *, unsigned> &Value2Index) { 385 SmallVector<std::string> Names(Value2Index.size(), ""); 386 for (auto &KV : Value2Index) { 387 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 388 } 389 ConstraintSystem CS; 390 CS.addVariableRowFill(C.Coefficients); 391 CS.dump(Names); 392 } 393 #endif 394 395 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 396 bool Changed = false; 397 DT.updateDFSNumbers(); 398 399 ConstraintInfo Info; 400 401 SmallVector<ConstraintOrBlock, 64> WorkList; 402 403 // First, collect conditions implied by branches and blocks with their 404 // Dominator DFS in and out numbers. 405 for (BasicBlock &BB : F) { 406 if (!DT.getNode(&BB)) 407 continue; 408 WorkList.emplace_back(DT.getNode(&BB)); 409 410 // True as long as long as the current instruction is guaranteed to execute. 411 bool GuaranteedToExecute = true; 412 // Scan BB for assume calls. 413 // TODO: also use this scan to queue conditions to simplify, so we can 414 // interleave facts from assumes and conditions to simplify in a single 415 // basic block. And to skip another traversal of each basic block when 416 // simplifying. 417 for (Instruction &I : BB) { 418 Value *Cond; 419 // For now, just handle assumes with a single compare as condition. 420 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 421 isa<ICmpInst>(Cond)) { 422 if (GuaranteedToExecute) { 423 // The assume is guaranteed to execute when BB is entered, hence Cond 424 // holds on entry to BB. 425 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 426 } else { 427 // Otherwise the condition only holds in the successors. 428 for (BasicBlock *Succ : successors(&BB)) 429 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), 430 false); 431 } 432 } 433 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 434 } 435 436 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 437 if (!Br || !Br->isConditional()) 438 continue; 439 440 // Returns true if we can add a known condition from BB to its successor 441 // block Succ. Each predecessor of Succ can either be BB or be dominated by 442 // Succ (e.g. the case when adding a condition from a pre-header to a loop 443 // header). 444 auto CanAdd = [&BB, &DT](BasicBlock *Succ) { 445 assert(isa<BranchInst>(BB.getTerminator())); 446 return any_of(successors(&BB), 447 [Succ](const BasicBlock *S) { return S != Succ; }) && 448 all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) { 449 return Pred == &BB || DT.dominates(Succ, Pred); 450 }); 451 }; 452 // If the condition is an OR of 2 compares and the false successor only has 453 // the current block as predecessor, queue both negated conditions for the 454 // false successor. 455 Value *Op0, *Op1; 456 if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && 457 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 458 BasicBlock *FalseSuccessor = Br->getSuccessor(1); 459 if (CanAdd(FalseSuccessor)) { 460 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0), 461 true); 462 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1), 463 true); 464 } 465 continue; 466 } 467 468 // If the condition is an AND of 2 compares and the true successor only has 469 // the current block as predecessor, queue both conditions for the true 470 // successor. 471 if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && 472 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 473 BasicBlock *TrueSuccessor = Br->getSuccessor(0); 474 if (CanAdd(TrueSuccessor)) { 475 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0), 476 false); 477 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1), 478 false); 479 } 480 continue; 481 } 482 483 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 484 if (!CmpI) 485 continue; 486 if (CanAdd(Br->getSuccessor(0))) 487 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 488 if (CanAdd(Br->getSuccessor(1))) 489 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 490 } 491 492 // Next, sort worklist by dominance, so that dominating blocks and conditions 493 // come before blocks and conditions dominated by them. If a block and a 494 // condition have the same numbers, the condition comes before the block, as 495 // it holds on entry to the block. 496 sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 497 return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); 498 }); 499 500 // Finally, process ordered worklist and eliminate implied conditions. 501 SmallVector<StackEntry, 16> DFSInStack; 502 for (ConstraintOrBlock &CB : WorkList) { 503 // First, pop entries from the stack that are out-of-scope for CB. Remove 504 // the corresponding entry from the constraint system. 505 while (!DFSInStack.empty()) { 506 auto &E = DFSInStack.back(); 507 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 508 << "\n"); 509 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 510 assert(E.NumIn <= CB.NumIn); 511 if (CB.NumOut <= E.NumOut) 512 break; 513 LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot 514 << "\n"); 515 DFSInStack.pop_back(); 516 Info.popLastConstraint(E.IsSigned); 517 } 518 519 LLVM_DEBUG({ 520 dbgs() << "Processing "; 521 if (CB.IsBlock) 522 dbgs() << *CB.BB; 523 else 524 dbgs() << *CB.Condition; 525 dbgs() << "\n"; 526 }); 527 528 // For a block, check if any CmpInsts become known based on the current set 529 // of constraints. 530 if (CB.IsBlock) { 531 for (Instruction &I : *CB.BB) { 532 auto *Cmp = dyn_cast<ICmpInst>(&I); 533 if (!Cmp) 534 continue; 535 536 DenseMap<Value *, unsigned> NewIndices; 537 auto R = getConstraint(Cmp, Info, NewIndices); 538 if (R.IsEq || R.size() < 2 || R.needsNewIndices(NewIndices) || 539 !R.isValid(Info)) 540 continue; 541 542 auto &CSToUse = Info.getCS(R.IsSigned); 543 if (CSToUse.isConditionImplied(R.Coefficients)) { 544 if (!DebugCounter::shouldExecute(EliminatedCounter)) 545 continue; 546 547 LLVM_DEBUG(dbgs() << "Condition " << *Cmp 548 << " implied by dominating constraints\n"); 549 LLVM_DEBUG({ 550 for (auto &E : reverse(DFSInStack)) 551 dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; 552 }); 553 Cmp->replaceUsesWithIf( 554 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 555 // Conditions in an assume trivially simplify to true. Skip uses 556 // in assume calls to not destroy the available information. 557 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 558 return !II || II->getIntrinsicID() != Intrinsic::assume; 559 }); 560 NumCondsRemoved++; 561 Changed = true; 562 } 563 if (CSToUse.isConditionImplied( 564 ConstraintSystem::negate(R.Coefficients))) { 565 if (!DebugCounter::shouldExecute(EliminatedCounter)) 566 continue; 567 568 LLVM_DEBUG(dbgs() << "Condition !" << *Cmp 569 << " implied by dominating constraints\n"); 570 LLVM_DEBUG({ 571 for (auto &E : reverse(DFSInStack)) 572 dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; 573 }); 574 Cmp->replaceAllUsesWith( 575 ConstantInt::getFalse(F.getParent()->getContext())); 576 NumCondsRemoved++; 577 Changed = true; 578 } 579 } 580 continue; 581 } 582 583 // Set up a function to restore the predicate at the end of the scope if it 584 // has been negated. Negate the predicate in-place, if required. 585 auto *CI = dyn_cast<ICmpInst>(CB.Condition); 586 auto PredicateRestorer = make_scope_exit([CI, &CB]() { 587 if (CB.Not && CI) 588 CI->setPredicate(CI->getInversePredicate()); 589 }); 590 if (CB.Not) { 591 if (CI) { 592 CI->setPredicate(CI->getInversePredicate()); 593 } else { 594 LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n"); 595 continue; 596 } 597 } 598 599 // Otherwise, add the condition to the system and stack, if we can transform 600 // it into a constraint. 601 DenseMap<Value *, unsigned> NewIndices; 602 auto R = getConstraint(CB.Condition, Info, NewIndices); 603 if (!R.isValid(Info)) 604 continue; 605 606 for (auto &KV : NewIndices) 607 Info.getValue2Index(CmpInst::isSigned(CB.Condition->getPredicate())) 608 .insert(KV); 609 610 LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n"); 611 bool Added = false; 612 assert(CmpInst::isSigned(CB.Condition->getPredicate()) == R.IsSigned && 613 "condition and constraint signs must match"); 614 auto &CSToUse = Info.getCS(R.IsSigned); 615 if (R.Coefficients.empty()) 616 continue; 617 618 Added |= CSToUse.addVariableRowFill(R.Coefficients); 619 620 // If R has been added to the system, queue it for removal once it goes 621 // out-of-scope. 622 if (Added) { 623 for (auto &KV : NewIndices) 624 Info.getValue2Index(R.IsSigned).insert(KV); 625 626 LLVM_DEBUG({ 627 dbgs() << " constraint: "; 628 dumpWithNames(R, Info.getValue2Index(R.IsSigned)); 629 }); 630 631 DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not, 632 R.IsSigned); 633 634 if (R.IsEq) { 635 // Also add the inverted constraint for equality constraints. 636 for (auto &Coeff : R.Coefficients) 637 Coeff *= -1; 638 CSToUse.addVariableRowFill(R.Coefficients); 639 640 DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not, 641 R.IsSigned); 642 } 643 } 644 } 645 646 #ifndef NDEBUG 647 unsigned SignedEntries = 648 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 649 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 650 "updates to CS and DFSInStack are out of sync"); 651 assert(Info.getCS(true).size() == SignedEntries && 652 "updates to CS and DFSInStack are out of sync"); 653 #endif 654 655 return Changed; 656 } 657 658 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 659 FunctionAnalysisManager &AM) { 660 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 661 if (!eliminateConstraints(F, DT)) 662 return PreservedAnalyses::all(); 663 664 PreservedAnalyses PA; 665 PA.preserve<DominatorTreeAnalysis>(); 666 PA.preserveSet<CFGAnalyses>(); 667 return PA; 668 } 669 670 namespace { 671 672 class ConstraintElimination : public FunctionPass { 673 public: 674 static char ID; 675 676 ConstraintElimination() : FunctionPass(ID) { 677 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 678 } 679 680 bool runOnFunction(Function &F) override { 681 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 682 return eliminateConstraints(F, DT); 683 } 684 685 void getAnalysisUsage(AnalysisUsage &AU) const override { 686 AU.setPreservesCFG(); 687 AU.addRequired<DominatorTreeWrapperPass>(); 688 AU.addPreserved<GlobalsAAWrapperPass>(); 689 AU.addPreserved<DominatorTreeWrapperPass>(); 690 } 691 }; 692 693 } // end anonymous namespace 694 695 char ConstraintElimination::ID = 0; 696 697 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 698 "Constraint Elimination", false, false) 699 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 700 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 701 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 702 "Constraint Elimination", false, false) 703 704 FunctionPass *llvm::createConstraintEliminationPass() { 705 return new ConstraintElimination(); 706 } 707