xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 572d5d374c98e29214d4a49a03cfc5d33cb15744)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/DebugCounter.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Transforms/Scalar.h"
35 
36 #include <cmath>
37 #include <string>
38 
39 using namespace llvm;
40 using namespace PatternMatch;
41 
42 #define DEBUG_TYPE "constraint-elimination"
43 
44 STATISTIC(NumCondsRemoved, "Number of instructions removed");
45 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
46               "Controls which conditions are eliminated");
47 
48 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
49 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
50 
51 namespace {
52 
53 class ConstraintInfo;
54 
55 struct StackEntry {
56   unsigned NumIn;
57   unsigned NumOut;
58   bool IsSigned = false;
59   /// Variables that can be removed from the system once the stack entry gets
60   /// removed.
61   SmallVector<Value *, 2> ValuesToRelease;
62 
63   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
64              SmallVector<Value *, 2> ValuesToRelease)
65       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
66         ValuesToRelease(ValuesToRelease) {}
67 };
68 
69 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
70 struct PreconditionTy {
71   CmpInst::Predicate Pred;
72   Value *Op0;
73   Value *Op1;
74 
75   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
76       : Pred(Pred), Op0(Op0), Op1(Op1) {}
77 };
78 
79 struct ConstraintTy {
80   SmallVector<int64_t, 8> Coefficients;
81   SmallVector<PreconditionTy, 2> Preconditions;
82 
83   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
84 
85   bool IsSigned = false;
86   bool IsEq = false;
87 
88   ConstraintTy() = default;
89 
90   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
91       : Coefficients(Coefficients), IsSigned(IsSigned) {}
92 
93   unsigned size() const { return Coefficients.size(); }
94 
95   unsigned empty() const { return Coefficients.empty(); }
96 
97   /// Returns true if all preconditions for this list of constraints are
98   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
99   bool isValid(const ConstraintInfo &Info) const;
100 };
101 
102 /// Wrapper encapsulating separate constraint systems and corresponding value
103 /// mappings for both unsigned and signed information. Facts are added to and
104 /// conditions are checked against the corresponding system depending on the
105 /// signed-ness of their predicates. While the information is kept separate
106 /// based on signed-ness, certain conditions can be transferred between the two
107 /// systems.
108 class ConstraintInfo {
109   DenseMap<Value *, unsigned> UnsignedValue2Index;
110   DenseMap<Value *, unsigned> SignedValue2Index;
111 
112   ConstraintSystem UnsignedCS;
113   ConstraintSystem SignedCS;
114 
115   const DataLayout &DL;
116 
117 public:
118   ConstraintInfo(const DataLayout &DL) : DL(DL) {}
119 
120   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
121     return Signed ? SignedValue2Index : UnsignedValue2Index;
122   }
123   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
124     return Signed ? SignedValue2Index : UnsignedValue2Index;
125   }
126 
127   ConstraintSystem &getCS(bool Signed) {
128     return Signed ? SignedCS : UnsignedCS;
129   }
130   const ConstraintSystem &getCS(bool Signed) const {
131     return Signed ? SignedCS : UnsignedCS;
132   }
133 
134   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
135   void popLastNVariables(bool Signed, unsigned N) {
136     getCS(Signed).popLastNVariables(N);
137   }
138 
139   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
140 
141   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
142                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
143 
144   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
145   /// constraints, using indices from the corresponding constraint system.
146   /// New variables that need to be added to the system are collected in
147   /// \p NewVariables.
148   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
149                              SmallVectorImpl<Value *> &NewVariables) const;
150 
151   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
152   /// constraints using getConstraint. Returns an empty constraint if the result
153   /// cannot be used to query the existing constraint system, e.g. because it
154   /// would require adding new variables. Also tries to convert signed
155   /// predicates to unsigned ones if possible to allow using the unsigned system
156   /// which increases the effectiveness of the signed <-> unsigned transfer
157   /// logic.
158   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
159                                        Value *Op1) const;
160 
161   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
162   /// system if \p Pred is signed/unsigned.
163   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
164                              unsigned NumIn, unsigned NumOut,
165                              SmallVectorImpl<StackEntry> &DFSInStack);
166 };
167 
168 /// Represents a (Coefficient * Variable) entry after IR decomposition.
169 struct DecompEntry {
170   int64_t Coefficient;
171   Value *Variable;
172   /// True if the variable is known positive in the current constraint.
173   bool IsKnownPositive;
174 
175   DecompEntry(int64_t Coefficient, Value *Variable,
176               bool IsKnownPositive = false)
177       : Coefficient(Coefficient), Variable(Variable),
178         IsKnownPositive(IsKnownPositive) {}
179 };
180 
181 } // namespace
182 
183 static SmallVector<DecompEntry, 4>
184 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
185           bool IsSigned, const DataLayout &DL);
186 
187 static bool canUseSExt(ConstantInt *CI) {
188   const APInt &Val = CI->getValue();
189   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
190 }
191 
192 // A helper to multiply 2 signed integers where overflowing is allowed.
193 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
194   int64_t Result;
195   MulOverflow(A, B, Result);
196   return Result;
197 }
198 
199 static SmallVector<DecompEntry, 4>
200 decomposeGEP(GetElementPtrInst &GEP,
201              SmallVector<PreconditionTy, 4> &Preconditions, bool IsSigned,
202              const DataLayout &DL) {
203   // Do not reason about pointers where the index size is larger than 64 bits,
204   // as the coefficients used to encode constraints are 64 bit integers.
205   unsigned AS =
206       cast<PointerType>(GEP.getPointerOperand()->getType())->getAddressSpace();
207   if (DL.getIndexSizeInBits(AS) > 64)
208     return {};
209 
210   if (!GEP.isInBounds())
211     return {{0, nullptr}, {1, &GEP}};
212 
213   // Handle the (gep (gep ....), C) case by incrementing the constant
214   // coefficient of the inner GEP, if C is a constant.
215   auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand());
216   if (InnerGEP && InnerGEP->getNumOperands() == 2 &&
217       isa<ConstantInt>(GEP.getOperand(1))) {
218     APInt Offset = cast<ConstantInt>(GEP.getOperand(1))->getValue();
219     auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
220 
221     auto GTI = gep_type_begin(GEP);
222     // Bail out for scalable vectors for now.
223     if (isa<ScalableVectorType>(GTI.getIndexedType()))
224       return {};
225     int64_t Scale = static_cast<int64_t>(
226         DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
227 
228     Result[0].Coefficient += multiplyWithOverflow(Scale, Offset.getSExtValue());
229     if (Offset.isNegative()) {
230       // Add pre-condition ensuring the GEP is increasing monotonically and
231       // can be de-composed.
232       Preconditions.emplace_back(
233           CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
234           ConstantInt::get(InnerGEP->getOperand(1)->getType(),
235                            -1 * Offset.getSExtValue()));
236     }
237     return Result;
238   }
239 
240   SmallVector<DecompEntry, 4> Result = {{0, nullptr},
241                                         {1, GEP.getPointerOperand()}};
242   gep_type_iterator GTI = gep_type_begin(GEP);
243   for (User::const_op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
244        ++I, ++GTI) {
245     Value *Index = *I;
246 
247     // Bail out for scalable vectors for now.
248     if (isa<ScalableVectorType>(GTI.getIndexedType()))
249       return {};
250 
251     // Struct indices must be constants (and reference an existing field). Add
252     // them to the constant factor.
253     if (StructType *STy = GTI.getStructTypeOrNull()) {
254       // For a struct, add the member offset.
255       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
256       if (FieldNo == 0)
257         continue;
258 
259       // Add offset to constant factor.
260       Result[0].Coefficient +=
261           DL.getStructLayout(STy)->getElementOffset(FieldNo);
262       continue;
263     }
264 
265     // For an array/pointer, add the element offset, explicitly scaled.
266     unsigned Scale = DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize();
267 
268     Value *Op0, *Op1;
269     ConstantInt *CI;
270     // If the index is zero-extended, it is guaranteed to be positive.
271     if (match(Index, m_ZExt(m_Value(Op0)))) {
272       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) &&
273           canUseSExt(CI)) {
274         Result.emplace_back(
275             multiplyWithOverflow(
276                 Scale, int64_t(std::pow(int64_t(2), CI->getSExtValue()))),
277             Op1);
278         continue;
279       }
280 
281       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) &&
282           canUseSExt(CI) && match(Op0, m_NUWAdd(m_Value(), m_Value()))) {
283         Result[0].Coefficient +=
284             multiplyWithOverflow(Scale, CI->getSExtValue());
285         Result.emplace_back(Scale, Op1);
286         continue;
287       }
288 
289       Result.emplace_back(Scale, Op0, true);
290       continue;
291     }
292 
293     if (match(Index, m_ConstantInt(CI)) && !CI->isNegative() &&
294         canUseSExt(CI)) {
295       Result[0].Coefficient += multiplyWithOverflow(Scale, CI->getSExtValue());
296       continue;
297     }
298 
299     if (match(Index, m_NSWShl(m_Value(Op0), m_ConstantInt(CI))) &&
300         canUseSExt(CI)) {
301       Result.emplace_back(
302           multiplyWithOverflow(
303               Scale, int64_t(std::pow(int64_t(2), CI->getSExtValue()))),
304           Op0);
305     } else if (match(Index, m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
306                canUseSExt(CI)) {
307       Result[0].Coefficient += multiplyWithOverflow(Scale, CI->getSExtValue());
308       Result.emplace_back(Scale, Op0);
309     } else {
310       Op0 = Index;
311       Result.emplace_back(Scale, Op0);
312     }
313     // If Op0 is signed non-negative, the GEP is increasing monotonically and
314     // can be de-composed.
315     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
316                                ConstantInt::get(Op0->getType(), 0));
317   }
318   return Result;
319 }
320 
321 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable
322 // } where Coefficient * Variable. The sum of the pairs equals \p V.  The first
323 // pair is the constant-factor and X must be nullptr. If the expression cannot
324 // be decomposed, returns an empty vector.
325 static SmallVector<DecompEntry, 4>
326 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
327           bool IsSigned, const DataLayout &DL) {
328 
329   // Decompose \p V used with a signed predicate.
330   if (IsSigned) {
331     if (auto *CI = dyn_cast<ConstantInt>(V)) {
332       if (canUseSExt(CI))
333         return {{CI->getSExtValue(), nullptr}};
334     }
335 
336     return {{0, nullptr}, {1, V}};
337   }
338 
339   if (auto *CI = dyn_cast<ConstantInt>(V)) {
340     if (CI->uge(MaxConstraintValue))
341       return {};
342     return {{int64_t(CI->getZExtValue()), nullptr}};
343   }
344 
345   if (auto *GEP = dyn_cast<GetElementPtrInst>(V))
346     return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
347 
348   Value *Op0;
349   bool IsKnownPositive = false;
350   if (match(V, m_ZExt(m_Value(Op0)))) {
351     IsKnownPositive = true;
352     V = Op0;
353   }
354 
355   auto MergeResults = [&Preconditions, IsSigned,
356                        DL](Value *A, Value *B,
357                            bool IsSignedB) -> SmallVector<DecompEntry, 4> {
358     auto ResA = decompose(A, Preconditions, IsSigned, DL);
359     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
360     if (ResA.empty() || ResB.empty())
361       return {};
362     ResA[0].Coefficient += ResB[0].Coefficient;
363     append_range(ResA, drop_begin(ResB));
364     return ResA;
365   };
366   Value *Op1;
367   ConstantInt *CI;
368   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
369     return MergeResults(Op0, Op1, IsSigned);
370   }
371   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
372       canUseSExt(CI)) {
373     Preconditions.emplace_back(
374         CmpInst::ICMP_UGE, Op0,
375         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
376     return MergeResults(Op0, CI, true);
377   }
378 
379   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI))
380     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
381   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
382     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
383 
384   return {{0, nullptr}, {1, V, IsKnownPositive}};
385 }
386 
387 ConstraintTy
388 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
389                               SmallVectorImpl<Value *> &NewVariables) const {
390   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
391   bool IsEq = false;
392   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
393   switch (Pred) {
394   case CmpInst::ICMP_UGT:
395   case CmpInst::ICMP_UGE:
396   case CmpInst::ICMP_SGT:
397   case CmpInst::ICMP_SGE: {
398     Pred = CmpInst::getSwappedPredicate(Pred);
399     std::swap(Op0, Op1);
400     break;
401   }
402   case CmpInst::ICMP_EQ:
403     if (match(Op1, m_Zero())) {
404       Pred = CmpInst::ICMP_ULE;
405     } else {
406       IsEq = true;
407       Pred = CmpInst::ICMP_ULE;
408     }
409     break;
410   case CmpInst::ICMP_NE:
411     if (!match(Op1, m_Zero()))
412       return {};
413     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
414     std::swap(Op0, Op1);
415     break;
416   default:
417     break;
418   }
419 
420   // Only ULE and ULT predicates are supported at the moment.
421   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
422       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
423     return {};
424 
425   SmallVector<PreconditionTy, 4> Preconditions;
426   bool IsSigned = CmpInst::isSigned(Pred);
427   auto &Value2Index = getValue2Index(IsSigned);
428   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
429                         Preconditions, IsSigned, DL);
430   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
431                         Preconditions, IsSigned, DL);
432   // Skip if decomposing either of the values failed.
433   if (ADec.empty() || BDec.empty())
434     return {};
435 
436   int64_t Offset1 = ADec[0].Coefficient;
437   int64_t Offset2 = BDec[0].Coefficient;
438   Offset1 *= -1;
439 
440   // Create iterator ranges that skip the constant-factor.
441   auto VariablesA = llvm::drop_begin(ADec);
442   auto VariablesB = llvm::drop_begin(BDec);
443 
444   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
445   // new entry to NewVariables.
446   DenseMap<Value *, unsigned> NewIndexMap;
447   auto GetOrAddIndex = [&Value2Index, &NewVariables,
448                         &NewIndexMap](Value *V) -> unsigned {
449     auto V2I = Value2Index.find(V);
450     if (V2I != Value2Index.end())
451       return V2I->second;
452     auto Insert =
453         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
454     if (Insert.second)
455       NewVariables.push_back(V);
456     return Insert.first->second;
457   };
458 
459   // Make sure all variables have entries in Value2Index or NewVariables.
460   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
461     GetOrAddIndex(KV.Variable);
462 
463   // Build result constraint, by first adding all coefficients from A and then
464   // subtracting all coefficients from B.
465   ConstraintTy Res(
466       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
467       IsSigned);
468   // Collect variables that are known to be positive in all uses in the
469   // constraint.
470   DenseMap<Value *, bool> KnownPositiveVariables;
471   Res.IsEq = IsEq;
472   auto &R = Res.Coefficients;
473   for (const auto &KV : VariablesA) {
474     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
475     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
476     I.first->second &= KV.IsKnownPositive;
477   }
478 
479   for (const auto &KV : VariablesB) {
480     R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient;
481     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
482     I.first->second &= KV.IsKnownPositive;
483   }
484 
485   int64_t OffsetSum;
486   if (AddOverflow(Offset1, Offset2, OffsetSum))
487     return {};
488   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
489     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
490       return {};
491   R[0] = OffsetSum;
492   Res.Preconditions = std::move(Preconditions);
493 
494   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
495   // variables.
496   while (!NewVariables.empty()) {
497     int64_t Last = R.back();
498     if (Last != 0)
499       break;
500     R.pop_back();
501     Value *RemovedV = NewVariables.pop_back_val();
502     NewIndexMap.erase(RemovedV);
503   }
504 
505   // Add extra constraints for variables that are known positive.
506   for (auto &KV : KnownPositiveVariables) {
507     if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() &&
508                        NewIndexMap.find(KV.first) == NewIndexMap.end()))
509       continue;
510     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
511     C[GetOrAddIndex(KV.first)] = -1;
512     Res.ExtraInfo.push_back(C);
513   }
514   return Res;
515 }
516 
517 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
518                                                      Value *Op0,
519                                                      Value *Op1) const {
520   // If both operands are known to be non-negative, change signed predicates to
521   // unsigned ones. This increases the reasoning effectiveness in combination
522   // with the signed <-> unsigned transfer logic.
523   if (CmpInst::isSigned(Pred) &&
524       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
525       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
526     Pred = CmpInst::getUnsignedPredicate(Pred);
527 
528   SmallVector<Value *> NewVariables;
529   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
530   if (R.IsEq || !NewVariables.empty())
531     return {};
532   return R;
533 }
534 
535 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
536   return Coefficients.size() > 0 &&
537          all_of(Preconditions, [&Info](const PreconditionTy &C) {
538            return Info.doesHold(C.Pred, C.Op0, C.Op1);
539          });
540 }
541 
542 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
543                               Value *B) const {
544   auto R = getConstraintForSolving(Pred, A, B);
545   return R.Preconditions.empty() && !R.empty() &&
546          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
547 }
548 
549 void ConstraintInfo::transferToOtherSystem(
550     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
551     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
552   // Check if we can combine facts from the signed and unsigned systems to
553   // derive additional facts.
554   if (!A->getType()->isIntegerTy())
555     return;
556   // FIXME: This currently depends on the order we add facts. Ideally we
557   // would first add all known facts and only then try to add additional
558   // facts.
559   switch (Pred) {
560   default:
561     break;
562   case CmpInst::ICMP_ULT:
563     //  If B is a signed positive constant, A >=s 0 and A <s B.
564     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
565       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
566               NumOut, DFSInStack);
567       addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack);
568     }
569     break;
570   case CmpInst::ICMP_SLT:
571     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
572       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
573     break;
574   case CmpInst::ICMP_SGT:
575     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
576       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
577               NumOut, DFSInStack);
578     break;
579   case CmpInst::ICMP_SGE:
580     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
581       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
582     }
583     break;
584   }
585 }
586 
587 namespace {
588 /// Represents either a condition that holds on entry to a block or a basic
589 /// block, with their respective Dominator DFS in and out numbers.
590 struct ConstraintOrBlock {
591   unsigned NumIn;
592   unsigned NumOut;
593   bool IsBlock;
594   bool Not;
595   union {
596     BasicBlock *BB;
597     CmpInst *Condition;
598   };
599 
600   ConstraintOrBlock(DomTreeNode *DTN)
601       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
602         BB(DTN->getBlock()) {}
603   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
604       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
605         Not(Not), Condition(Condition) {}
606 };
607 
608 /// Keep state required to build worklist.
609 struct State {
610   DominatorTree &DT;
611   SmallVector<ConstraintOrBlock, 64> WorkList;
612 
613   State(DominatorTree &DT) : DT(DT) {}
614 
615   /// Process block \p BB and add known facts to work-list.
616   void addInfoFor(BasicBlock &BB);
617 
618   /// Returns true if we can add a known condition from BB to its successor
619   /// block Succ. Each predecessor of Succ can either be BB or be dominated
620   /// by Succ (e.g. the case when adding a condition from a pre-header to a
621   /// loop header).
622   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
623     if (BB.getSingleSuccessor()) {
624       assert(BB.getSingleSuccessor() == Succ);
625       return DT.properlyDominates(&BB, Succ);
626     }
627     return any_of(successors(&BB),
628                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
629            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
630              return Pred == &BB || DT.dominates(Succ, Pred);
631            });
632   }
633 };
634 
635 } // namespace
636 
637 #ifndef NDEBUG
638 static void dumpWithNames(const ConstraintSystem &CS,
639                           DenseMap<Value *, unsigned> &Value2Index) {
640   SmallVector<std::string> Names(Value2Index.size(), "");
641   for (auto &KV : Value2Index) {
642     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
643   }
644   CS.dump(Names);
645 }
646 
647 static void dumpWithNames(ArrayRef<int64_t> C,
648                           DenseMap<Value *, unsigned> &Value2Index) {
649   ConstraintSystem CS;
650   CS.addVariableRowFill(C);
651   dumpWithNames(CS, Value2Index);
652 }
653 #endif
654 
655 void State::addInfoFor(BasicBlock &BB) {
656   WorkList.emplace_back(DT.getNode(&BB));
657 
658   // True as long as long as the current instruction is guaranteed to execute.
659   bool GuaranteedToExecute = true;
660   // Scan BB for assume calls.
661   // TODO: also use this scan to queue conditions to simplify, so we can
662   // interleave facts from assumes and conditions to simplify in a single
663   // basic block. And to skip another traversal of each basic block when
664   // simplifying.
665   for (Instruction &I : BB) {
666     Value *Cond;
667     // For now, just handle assumes with a single compare as condition.
668     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
669         isa<ICmpInst>(Cond)) {
670       if (GuaranteedToExecute) {
671         // The assume is guaranteed to execute when BB is entered, hence Cond
672         // holds on entry to BB.
673         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
674       } else {
675         // Otherwise the condition only holds in the successors.
676         for (BasicBlock *Succ : successors(&BB)) {
677           if (!canAddSuccessor(BB, Succ))
678             continue;
679           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
680         }
681       }
682     }
683     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
684   }
685 
686   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
687   if (!Br || !Br->isConditional())
688     return;
689 
690   Value *Cond = Br->getCondition();
691 
692   // If the condition is a chain of ORs/AND and the successor only has the
693   // current block as predecessor, queue conditions for the successor.
694   Value *Op0, *Op1;
695   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
696       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
697     bool IsOr = match(Cond, m_LogicalOr());
698     bool IsAnd = match(Cond, m_LogicalAnd());
699     // If there's a select that matches both AND and OR, we need to commit to
700     // one of the options. Arbitrarily pick OR.
701     if (IsOr && IsAnd)
702       IsAnd = false;
703 
704     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
705     if (canAddSuccessor(BB, Successor)) {
706       SmallVector<Value *> CondWorkList;
707       SmallPtrSet<Value *, 8> SeenCond;
708       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
709         if (SeenCond.insert(V).second)
710           CondWorkList.push_back(V);
711       };
712       QueueValue(Op1);
713       QueueValue(Op0);
714       while (!CondWorkList.empty()) {
715         Value *Cur = CondWorkList.pop_back_val();
716         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
717           WorkList.emplace_back(DT.getNode(Successor), Cmp, IsOr);
718           continue;
719         }
720         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
721           QueueValue(Op1);
722           QueueValue(Op0);
723           continue;
724         }
725         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
726           QueueValue(Op1);
727           QueueValue(Op0);
728           continue;
729         }
730       }
731     }
732     return;
733   }
734 
735   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
736   if (!CmpI)
737     return;
738   if (canAddSuccessor(BB, Br->getSuccessor(0)))
739     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
740   if (canAddSuccessor(BB, Br->getSuccessor(1)))
741     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
742 }
743 
744 static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) {
745   LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
746   CmpInst::Predicate Pred = Cmp->getPredicate();
747   Value *A = Cmp->getOperand(0);
748   Value *B = Cmp->getOperand(1);
749 
750   auto R = Info.getConstraintForSolving(Pred, A, B);
751   if (R.empty() || !R.isValid(Info))
752     return false;
753 
754   auto &CSToUse = Info.getCS(R.IsSigned);
755 
756   // If there was extra information collected during decomposition, apply
757   // it now and remove it immediately once we are done with reasoning
758   // about the constraint.
759   for (auto &Row : R.ExtraInfo)
760     CSToUse.addVariableRow(Row);
761   auto InfoRestorer = make_scope_exit([&]() {
762     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
763       CSToUse.popLastConstraint();
764   });
765 
766   bool Changed = false;
767   LLVMContext &Ctx = Cmp->getModule()->getContext();
768   if (CSToUse.isConditionImplied(R.Coefficients)) {
769     if (!DebugCounter::shouldExecute(EliminatedCounter))
770       return false;
771 
772     LLVM_DEBUG({
773       dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n";
774       dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
775     });
776     Cmp->replaceUsesWithIf(ConstantInt::getTrue(Ctx), [](Use &U) {
777       // Conditions in an assume trivially simplify to true. Skip uses
778       // in assume calls to not destroy the available information.
779       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
780       return !II || II->getIntrinsicID() != Intrinsic::assume;
781     });
782     NumCondsRemoved++;
783     Changed = true;
784   }
785   if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) {
786     if (!DebugCounter::shouldExecute(EliminatedCounter))
787       return false;
788 
789     LLVM_DEBUG({
790       dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n";
791       dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
792     });
793     Cmp->replaceAllUsesWith(ConstantInt::getFalse(Ctx));
794     NumCondsRemoved++;
795     Changed = true;
796   }
797   return Changed;
798 }
799 
800 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
801                              unsigned NumIn, unsigned NumOut,
802                              SmallVectorImpl<StackEntry> &DFSInStack) {
803   // If the constraint has a pre-condition, skip the constraint if it does not
804   // hold.
805   SmallVector<Value *> NewVariables;
806   auto R = getConstraint(Pred, A, B, NewVariables);
807   if (!R.isValid(*this))
808     return;
809 
810   LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " ";
811              A->printAsOperand(dbgs(), false); dbgs() << ", ";
812              B->printAsOperand(dbgs(), false); dbgs() << "'\n");
813   bool Added = false;
814   auto &CSToUse = getCS(R.IsSigned);
815   if (R.Coefficients.empty())
816     return;
817 
818   Added |= CSToUse.addVariableRowFill(R.Coefficients);
819 
820   // If R has been added to the system, add the new variables and queue it for
821   // removal once it goes out-of-scope.
822   if (Added) {
823     SmallVector<Value *, 2> ValuesToRelease;
824     auto &Value2Index = getValue2Index(R.IsSigned);
825     for (Value *V : NewVariables) {
826       Value2Index.insert({V, Value2Index.size() + 1});
827       ValuesToRelease.push_back(V);
828     }
829 
830     LLVM_DEBUG({
831       dbgs() << "  constraint: ";
832       dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
833       dbgs() << "\n";
834     });
835 
836     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease);
837 
838     if (R.IsEq) {
839       // Also add the inverted constraint for equality constraints.
840       for (auto &Coeff : R.Coefficients)
841         Coeff *= -1;
842       CSToUse.addVariableRowFill(R.Coefficients);
843 
844       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
845                               SmallVector<Value *, 2>());
846     }
847   }
848 }
849 
850 static bool
851 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
852                           SmallVectorImpl<Instruction *> &ToRemove) {
853   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
854                               ConstraintInfo &Info) {
855     auto R = Info.getConstraintForSolving(Pred, A, B);
856     if (R.size() < 2 || !R.isValid(Info))
857       return false;
858 
859     auto &CSToUse = Info.getCS(R.IsSigned);
860     return CSToUse.isConditionImplied(R.Coefficients);
861   };
862 
863   bool Changed = false;
864   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
865     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
866     // can be simplified to a regular sub.
867     Value *A = II->getArgOperand(0);
868     Value *B = II->getArgOperand(1);
869     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
870         !DoesConditionHold(CmpInst::ICMP_SGE, B,
871                            ConstantInt::get(A->getType(), 0), Info))
872       return false;
873 
874     IRBuilder<> Builder(II->getParent(), II->getIterator());
875     Value *Sub = nullptr;
876     for (User *U : make_early_inc_range(II->users())) {
877       if (match(U, m_ExtractValue<0>(m_Value()))) {
878         if (!Sub)
879           Sub = Builder.CreateSub(A, B);
880         U->replaceAllUsesWith(Sub);
881         Changed = true;
882       } else if (match(U, m_ExtractValue<1>(m_Value()))) {
883         U->replaceAllUsesWith(Builder.getFalse());
884         Changed = true;
885       } else
886         continue;
887 
888       if (U->use_empty()) {
889         auto *I = cast<Instruction>(U);
890         ToRemove.push_back(I);
891         I->setOperand(0, PoisonValue::get(II->getType()));
892         Changed = true;
893       }
894     }
895 
896     if (II->use_empty()) {
897       II->eraseFromParent();
898       Changed = true;
899     }
900   }
901   return Changed;
902 }
903 
904 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
905   bool Changed = false;
906   DT.updateDFSNumbers();
907 
908   ConstraintInfo Info(F.getParent()->getDataLayout());
909   State S(DT);
910 
911   // First, collect conditions implied by branches and blocks with their
912   // Dominator DFS in and out numbers.
913   for (BasicBlock &BB : F) {
914     if (!DT.getNode(&BB))
915       continue;
916     S.addInfoFor(BB);
917   }
918 
919   // Next, sort worklist by dominance, so that dominating blocks and conditions
920   // come before blocks and conditions dominated by them. If a block and a
921   // condition have the same numbers, the condition comes before the block, as
922   // it holds on entry to the block. Also make sure conditions with constant
923   // operands come before conditions without constant operands. This increases
924   // the effectiveness of the current signed <-> unsigned fact transfer logic.
925   stable_sort(
926       S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
927         auto HasNoConstOp = [](const ConstraintOrBlock &B) {
928           return !B.IsBlock && !isa<ConstantInt>(B.Condition->getOperand(0)) &&
929                  !isa<ConstantInt>(B.Condition->getOperand(1));
930         };
931         bool NoConstOpA = HasNoConstOp(A);
932         bool NoConstOpB = HasNoConstOp(B);
933         return std::tie(A.NumIn, A.IsBlock, NoConstOpA) <
934                std::tie(B.NumIn, B.IsBlock, NoConstOpB);
935       });
936 
937   SmallVector<Instruction *> ToRemove;
938 
939   // Finally, process ordered worklist and eliminate implied conditions.
940   SmallVector<StackEntry, 16> DFSInStack;
941   for (ConstraintOrBlock &CB : S.WorkList) {
942     // First, pop entries from the stack that are out-of-scope for CB. Remove
943     // the corresponding entry from the constraint system.
944     while (!DFSInStack.empty()) {
945       auto &E = DFSInStack.back();
946       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
947                         << "\n");
948       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
949       assert(E.NumIn <= CB.NumIn);
950       if (CB.NumOut <= E.NumOut)
951         break;
952       LLVM_DEBUG({
953         dbgs() << "Removing ";
954         dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
955                       Info.getValue2Index(E.IsSigned));
956         dbgs() << "\n";
957       });
958 
959       Info.popLastConstraint(E.IsSigned);
960       // Remove variables in the system that went out of scope.
961       auto &Mapping = Info.getValue2Index(E.IsSigned);
962       for (Value *V : E.ValuesToRelease)
963         Mapping.erase(V);
964       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
965       DFSInStack.pop_back();
966     }
967 
968     LLVM_DEBUG({
969       dbgs() << "Processing ";
970       if (CB.IsBlock)
971         dbgs() << *CB.BB;
972       else
973         dbgs() << *CB.Condition;
974       dbgs() << "\n";
975     });
976 
977     // For a block, check if any CmpInsts become known based on the current set
978     // of constraints.
979     if (CB.IsBlock) {
980       for (Instruction &I : make_early_inc_range(*CB.BB)) {
981         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
982           Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
983           continue;
984         }
985         auto *Cmp = dyn_cast<ICmpInst>(&I);
986         if (!Cmp)
987           continue;
988 
989         Changed |= checkAndReplaceCondition(Cmp, Info);
990       }
991       continue;
992     }
993 
994     ICmpInst::Predicate Pred;
995     Value *A, *B;
996     if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
997       // Use the inverse predicate if required.
998       if (CB.Not)
999         Pred = CmpInst::getInversePredicate(Pred);
1000 
1001       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1002       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1003     }
1004   }
1005 
1006 #ifndef NDEBUG
1007   unsigned SignedEntries =
1008       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1009   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
1010          "updates to CS and DFSInStack are out of sync");
1011   assert(Info.getCS(true).size() == SignedEntries &&
1012          "updates to CS and DFSInStack are out of sync");
1013 #endif
1014 
1015   for (Instruction *I : ToRemove)
1016     I->eraseFromParent();
1017   return Changed;
1018 }
1019 
1020 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1021                                                  FunctionAnalysisManager &AM) {
1022   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1023   if (!eliminateConstraints(F, DT))
1024     return PreservedAnalyses::all();
1025 
1026   PreservedAnalyses PA;
1027   PA.preserve<DominatorTreeAnalysis>();
1028   PA.preserveSet<CFGAnalyses>();
1029   return PA;
1030 }
1031 
1032 namespace {
1033 
1034 class ConstraintElimination : public FunctionPass {
1035 public:
1036   static char ID;
1037 
1038   ConstraintElimination() : FunctionPass(ID) {
1039     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
1040   }
1041 
1042   bool runOnFunction(Function &F) override {
1043     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1044     return eliminateConstraints(F, DT);
1045   }
1046 
1047   void getAnalysisUsage(AnalysisUsage &AU) const override {
1048     AU.setPreservesCFG();
1049     AU.addRequired<DominatorTreeWrapperPass>();
1050     AU.addPreserved<GlobalsAAWrapperPass>();
1051     AU.addPreserved<DominatorTreeWrapperPass>();
1052   }
1053 };
1054 
1055 } // end anonymous namespace
1056 
1057 char ConstraintElimination::ID = 0;
1058 
1059 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
1060                       "Constraint Elimination", false, false)
1061 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1062 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
1063 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
1064                     "Constraint Elimination", false, false)
1065 
1066 FunctionPass *llvm::createConstraintEliminationPass() {
1067   return new ConstraintElimination();
1068 }
1069