xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 4ea6891f95a878af869e01425a69099a5e48e4c6)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/DebugCounter.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Scalar.h"
33 
34 #include <string>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "constraint-elimination"
40 
41 STATISTIC(NumCondsRemoved, "Number of instructions removed");
42 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
43               "Controls which conditions are eliminated");
44 
45 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
46 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
47 
48 namespace {
49 
50 class ConstraintInfo;
51 
52 struct StackEntry {
53   unsigned NumIn;
54   unsigned NumOut;
55   bool IsNot;
56   bool IsSigned = false;
57   /// Variables that can be removed from the system once the stack entry gets
58   /// removed.
59   SmallVector<Value *, 2> ValuesToRelease;
60 
61   StackEntry(unsigned NumIn, unsigned NumOut, bool IsNot, bool IsSigned,
62              SmallVector<Value *, 2> ValuesToRelease)
63       : NumIn(NumIn), NumOut(NumOut), IsNot(IsNot), IsSigned(IsSigned),
64         ValuesToRelease(ValuesToRelease) {}
65 };
66 
67 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
68 struct PreconditionTy {
69   CmpInst::Predicate Pred;
70   Value *Op0;
71   Value *Op1;
72 
73   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
74       : Pred(Pred), Op0(Op0), Op1(Op1) {}
75 };
76 
77 struct ConstraintTy {
78   SmallVector<int64_t, 8> Coefficients;
79   SmallVector<PreconditionTy, 2> Preconditions;
80 
81   bool IsSigned = false;
82   bool IsEq = false;
83 
84   ConstraintTy() = default;
85 
86   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
87       : Coefficients(Coefficients), IsSigned(IsSigned) {}
88 
89   unsigned size() const { return Coefficients.size(); }
90 
91   unsigned empty() const { return Coefficients.empty(); }
92 
93   /// Returns true if any constraint has a non-zero coefficient for any of the
94   /// newly added indices. Zero coefficients for new indices are removed. If it
95   /// returns true, no new variable need to be added to the system.
96   bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) {
97     for (unsigned I = 0; I < NewIndices.size(); ++I) {
98       int64_t Last = Coefficients.pop_back_val();
99       if (Last != 0)
100         return true;
101     }
102     return false;
103   }
104 
105   /// Returns true if all preconditions for this list of constraints are
106   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
107   bool isValid(const ConstraintInfo &Info) const;
108 };
109 
110 /// Wrapper encapsulating separate constraint systems and corresponding value
111 /// mappings for both unsigned and signed information. Facts are added to and
112 /// conditions are checked against the corresponding system depending on the
113 /// signed-ness of their predicates. While the information is kept separate
114 /// based on signed-ness, certain conditions can be transferred between the two
115 /// systems.
116 class ConstraintInfo {
117   DenseMap<Value *, unsigned> UnsignedValue2Index;
118   DenseMap<Value *, unsigned> SignedValue2Index;
119 
120   ConstraintSystem UnsignedCS;
121   ConstraintSystem SignedCS;
122 
123 public:
124   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
125     return Signed ? SignedValue2Index : UnsignedValue2Index;
126   }
127   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
128     return Signed ? SignedValue2Index : UnsignedValue2Index;
129   }
130 
131   ConstraintSystem &getCS(bool Signed) {
132     return Signed ? SignedCS : UnsignedCS;
133   }
134   const ConstraintSystem &getCS(bool Signed) const {
135     return Signed ? SignedCS : UnsignedCS;
136   }
137 
138   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
139   void popLastNVariables(bool Signed, unsigned N) {
140     getCS(Signed).popLastNVariables(N);
141   }
142 
143   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
144 
145   void addFact(CmpInst *Condition, bool IsNegated, unsigned NumIn,
146                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
147 
148   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
149   /// constraints, using indices from the corresponding constraint system.
150   /// Additional indices for newly discovered values are added to \p NewIndices.
151   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
152                              DenseMap<Value *, unsigned> &NewIndices) const;
153 
154   /// Turn a condition \p CmpI into a vector of constraints, using indices from
155   /// the corresponding constraint system. Additional indices for newly
156   /// discovered values are added to \p NewIndices.
157   ConstraintTy getConstraint(CmpInst *Cmp,
158                              DenseMap<Value *, unsigned> &NewIndices) const {
159     return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
160                          Cmp->getOperand(1), NewIndices);
161   }
162 };
163 
164 } // namespace
165 
166 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
167 // sum of the pairs equals \p V.  The first pair is the constant-factor and X
168 // must be nullptr. If the expression cannot be decomposed, returns an empty
169 // vector.
170 static SmallVector<std::pair<int64_t, Value *>, 4>
171 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
172           bool IsSigned) {
173 
174   auto CanUseSExt = [](ConstantInt *CI) {
175     const APInt &Val = CI->getValue();
176     return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
177   };
178   // Decompose \p V used with a signed predicate.
179   if (IsSigned) {
180     if (auto *CI = dyn_cast<ConstantInt>(V)) {
181       if (CanUseSExt(CI))
182         return {{CI->getSExtValue(), nullptr}};
183     }
184 
185     return {{0, nullptr}, {1, V}};
186   }
187 
188   if (auto *CI = dyn_cast<ConstantInt>(V)) {
189     if (CI->uge(MaxConstraintValue))
190       return {};
191     return {{CI->getZExtValue(), nullptr}};
192   }
193   auto *GEP = dyn_cast<GetElementPtrInst>(V);
194   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
195     Value *Op0, *Op1;
196     ConstantInt *CI;
197 
198     // If the index is zero-extended, it is guaranteed to be positive.
199     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
200               m_ZExt(m_Value(Op0)))) {
201       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) &&
202           CanUseSExt(CI))
203         return {{0, nullptr},
204                 {1, GEP->getPointerOperand()},
205                 {std::pow(int64_t(2), CI->getSExtValue()), Op1}};
206       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) &&
207           CanUseSExt(CI))
208         return {{CI->getSExtValue(), nullptr},
209                 {1, GEP->getPointerOperand()},
210                 {1, Op1}};
211       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
212     }
213 
214     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
215         !CI->isNegative() && CanUseSExt(CI))
216       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
217 
218     SmallVector<std::pair<int64_t, Value *>, 4> Result;
219     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
220               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) &&
221         CanUseSExt(CI))
222       Result = {{0, nullptr},
223                 {1, GEP->getPointerOperand()},
224                 {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
225     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
226                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
227              CanUseSExt(CI))
228       Result = {{CI->getSExtValue(), nullptr},
229                 {1, GEP->getPointerOperand()},
230                 {1, Op0}};
231     else {
232       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
233       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
234     }
235     // If Op0 is signed non-negative, the GEP is increasing monotonically and
236     // can be de-composed.
237     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
238                                ConstantInt::get(Op0->getType(), 0));
239     return Result;
240   }
241 
242   Value *Op0;
243   if (match(V, m_ZExt(m_Value(Op0))))
244     V = Op0;
245 
246   Value *Op1;
247   ConstantInt *CI;
248   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
249       !CI->uge(MaxConstraintValue))
250     return {{CI->getZExtValue(), nullptr}, {1, Op0}};
251   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
252       CanUseSExt(CI)) {
253     Preconditions.emplace_back(
254         CmpInst::ICMP_UGE, Op0,
255         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
256     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
257   }
258   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
259     return {{0, nullptr}, {1, Op0}, {1, Op1}};
260 
261   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI))
262     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
263   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
264     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
265 
266   return {{0, nullptr}, {1, V}};
267 }
268 
269 ConstraintTy
270 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
271                               DenseMap<Value *, unsigned> &NewIndices) const {
272   bool IsEq = false;
273   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
274   switch (Pred) {
275   case CmpInst::ICMP_UGT:
276   case CmpInst::ICMP_UGE:
277   case CmpInst::ICMP_SGT:
278   case CmpInst::ICMP_SGE: {
279     Pred = CmpInst::getSwappedPredicate(Pred);
280     std::swap(Op0, Op1);
281     break;
282   }
283   case CmpInst::ICMP_EQ:
284     if (match(Op1, m_Zero())) {
285       Pred = CmpInst::ICMP_ULE;
286     } else {
287       IsEq = true;
288       Pred = CmpInst::ICMP_ULE;
289     }
290     break;
291   case CmpInst::ICMP_NE:
292     if (!match(Op1, m_Zero()))
293       return {};
294     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
295     std::swap(Op0, Op1);
296     break;
297   default:
298     break;
299   }
300 
301   // Only ULE and ULT predicates are supported at the moment.
302   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
303       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
304     return {};
305 
306   SmallVector<PreconditionTy, 4> Preconditions;
307   bool IsSigned = CmpInst::isSigned(Pred);
308   auto &Value2Index = getValue2Index(IsSigned);
309   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
310                         Preconditions, IsSigned);
311   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
312                         Preconditions, IsSigned);
313   // Skip if decomposing either of the values failed.
314   if (ADec.empty() || BDec.empty())
315     return {};
316 
317   int64_t Offset1 = ADec[0].first;
318   int64_t Offset2 = BDec[0].first;
319   Offset1 *= -1;
320 
321   // Create iterator ranges that skip the constant-factor.
322   auto VariablesA = llvm::drop_begin(ADec);
323   auto VariablesB = llvm::drop_begin(BDec);
324 
325   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
326   // new entry to NewIndices.
327   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
328     auto V2I = Value2Index.find(V);
329     if (V2I != Value2Index.end())
330       return V2I->second;
331     auto Insert =
332         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
333     return Insert.first->second;
334   };
335 
336   // Make sure all variables have entries in Value2Index or NewIndices.
337   for (const auto &KV :
338        concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
339     GetOrAddIndex(KV.second);
340 
341   // Build result constraint, by first adding all coefficients from A and then
342   // subtracting all coefficients from B.
343   ConstraintTy Res(
344       SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0),
345       IsSigned);
346   Res.IsEq = IsEq;
347   auto &R = Res.Coefficients;
348   for (const auto &KV : VariablesA)
349     R[GetOrAddIndex(KV.second)] += KV.first;
350 
351   for (const auto &KV : VariablesB)
352     R[GetOrAddIndex(KV.second)] -= KV.first;
353 
354   int64_t OffsetSum;
355   if (AddOverflow(Offset1, Offset2, OffsetSum))
356     return {};
357   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
358     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
359       return {};
360   R[0] = OffsetSum;
361   Res.Preconditions = std::move(Preconditions);
362   return Res;
363 }
364 
365 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
366   return Coefficients.size() > 0 &&
367          all_of(Preconditions, [&Info](const PreconditionTy &C) {
368            return Info.doesHold(C.Pred, C.Op0, C.Op1);
369          });
370 }
371 
372 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
373                               Value *B) const {
374   DenseMap<Value *, unsigned> NewIndices;
375   auto R = getConstraint(Pred, A, B, NewIndices);
376 
377   if (!NewIndices.empty())
378     return false;
379 
380   // TODO: properly check NewIndices.
381   return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq &&
382          !R.empty() &&
383          getCS(CmpInst::isSigned(Pred)).isConditionImplied(R.Coefficients);
384 }
385 
386 namespace {
387 /// Represents either a condition that holds on entry to a block or a basic
388 /// block, with their respective Dominator DFS in and out numbers.
389 struct ConstraintOrBlock {
390   unsigned NumIn;
391   unsigned NumOut;
392   bool IsBlock;
393   bool Not;
394   union {
395     BasicBlock *BB;
396     CmpInst *Condition;
397   };
398 
399   ConstraintOrBlock(DomTreeNode *DTN)
400       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
401         BB(DTN->getBlock()) {}
402   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
403       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
404         Not(Not), Condition(Condition) {}
405 };
406 
407 /// Keep state required to build worklist.
408 struct State {
409   DominatorTree &DT;
410   SmallVector<ConstraintOrBlock, 64> WorkList;
411 
412   State(DominatorTree &DT) : DT(DT) {}
413 
414   /// Process block \p BB and add known facts to work-list.
415   void addInfoFor(BasicBlock &BB);
416 
417   /// Returns true if we can add a known condition from BB to its successor
418   /// block Succ. Each predecessor of Succ can either be BB or be dominated
419   /// by Succ (e.g. the case when adding a condition from a pre-header to a
420   /// loop header).
421   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
422     if (BB.getSingleSuccessor()) {
423       assert(BB.getSingleSuccessor() == Succ);
424       return DT.properlyDominates(&BB, Succ);
425     }
426     return any_of(successors(&BB),
427                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
428            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
429              return Pred == &BB || DT.dominates(Succ, Pred);
430            });
431   }
432 };
433 
434 } // namespace
435 
436 #ifndef NDEBUG
437 static void dumpWithNames(const ConstraintSystem &CS,
438                           DenseMap<Value *, unsigned> &Value2Index) {
439   SmallVector<std::string> Names(Value2Index.size(), "");
440   for (auto &KV : Value2Index) {
441     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
442   }
443   CS.dump(Names);
444 }
445 
446 static void dumpWithNames(ArrayRef<int64_t> C,
447                           DenseMap<Value *, unsigned> &Value2Index) {
448   ConstraintSystem CS;
449   CS.addVariableRowFill(C);
450   dumpWithNames(CS, Value2Index);
451 }
452 #endif
453 
454 void State::addInfoFor(BasicBlock &BB) {
455   WorkList.emplace_back(DT.getNode(&BB));
456 
457   // True as long as long as the current instruction is guaranteed to execute.
458   bool GuaranteedToExecute = true;
459   // Scan BB for assume calls.
460   // TODO: also use this scan to queue conditions to simplify, so we can
461   // interleave facts from assumes and conditions to simplify in a single
462   // basic block. And to skip another traversal of each basic block when
463   // simplifying.
464   for (Instruction &I : BB) {
465     Value *Cond;
466     // For now, just handle assumes with a single compare as condition.
467     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
468         isa<ICmpInst>(Cond)) {
469       if (GuaranteedToExecute) {
470         // The assume is guaranteed to execute when BB is entered, hence Cond
471         // holds on entry to BB.
472         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
473       } else {
474         // Otherwise the condition only holds in the successors.
475         for (BasicBlock *Succ : successors(&BB)) {
476           if (!canAddSuccessor(BB, Succ))
477             continue;
478           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
479         }
480       }
481     }
482     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
483   }
484 
485   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
486   if (!Br || !Br->isConditional())
487     return;
488 
489   // If the condition is an OR of 2 compares and the false successor only has
490   // the current block as predecessor, queue both negated conditions for the
491   // false successor.
492   Value *Op0, *Op1;
493   if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
494       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
495     BasicBlock *FalseSuccessor = Br->getSuccessor(1);
496     if (canAddSuccessor(BB, FalseSuccessor)) {
497       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0),
498                             true);
499       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1),
500                             true);
501     }
502     return;
503   }
504 
505   // If the condition is an AND of 2 compares and the true successor only has
506   // the current block as predecessor, queue both conditions for the true
507   // successor.
508   if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
509       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
510     BasicBlock *TrueSuccessor = Br->getSuccessor(0);
511     if (canAddSuccessor(BB, TrueSuccessor)) {
512       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0),
513                             false);
514       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1),
515                             false);
516     }
517     return;
518   }
519 
520   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
521   if (!CmpI)
522     return;
523   if (canAddSuccessor(BB, Br->getSuccessor(0)))
524     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
525   if (canAddSuccessor(BB, Br->getSuccessor(1)))
526     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
527 }
528 
529 void ConstraintInfo::addFact(CmpInst *Condition, bool IsNegated, unsigned NumIn,
530                              unsigned NumOut,
531                              SmallVectorImpl<StackEntry> &DFSInStack) {
532   // If the constraint has a pre-condition, skip the constraint if it does not
533   // hold.
534   DenseMap<Value *, unsigned> NewIndices;
535   auto R = getConstraint(Condition, NewIndices);
536   if (!R.isValid(*this))
537     return;
538 
539   LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n");
540   bool Added = false;
541   assert(CmpInst::isSigned(Condition->getPredicate()) == R.IsSigned &&
542          "condition and constraint signs must match");
543   auto &CSToUse = getCS(R.IsSigned);
544   if (R.Coefficients.empty())
545     return;
546 
547   Added |= CSToUse.addVariableRowFill(R.Coefficients);
548 
549   // If R has been added to the system, queue it for removal once it goes
550   // out-of-scope.
551   if (Added) {
552     SmallVector<Value *, 2> ValuesToRelease;
553     for (auto &KV : NewIndices) {
554       getValue2Index(R.IsSigned).insert(KV);
555       ValuesToRelease.push_back(KV.first);
556     }
557 
558     LLVM_DEBUG({
559       dbgs() << "  constraint: ";
560       dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
561     });
562 
563     DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned,
564                             ValuesToRelease);
565 
566     if (R.IsEq) {
567       // Also add the inverted constraint for equality constraints.
568       for (auto &Coeff : R.Coefficients)
569         Coeff *= -1;
570       CSToUse.addVariableRowFill(R.Coefficients);
571 
572       DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned,
573                               SmallVector<Value *, 2>());
574     }
575   }
576 }
577 
578 static void
579 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
580                           SmallVectorImpl<Instruction *> &ToRemove) {
581   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
582                               ConstraintInfo &Info) {
583     DenseMap<Value *, unsigned> NewIndices;
584     auto R = Info.getConstraint(Pred, A, B, NewIndices);
585     if (R.size() < 2 || R.needsNewIndices(NewIndices) || !R.isValid(Info))
586       return false;
587 
588     auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred));
589     return CSToUse.isConditionImplied(R.Coefficients);
590   };
591 
592   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
593     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
594     // can be simplified to a regular sub.
595     Value *A = II->getArgOperand(0);
596     Value *B = II->getArgOperand(1);
597     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
598         !DoesConditionHold(CmpInst::ICMP_SGE, B,
599                            ConstantInt::get(A->getType(), 0), Info))
600       return;
601 
602     IRBuilder<> Builder(II->getParent(), II->getIterator());
603     Value *Sub = nullptr;
604     for (User *U : make_early_inc_range(II->users())) {
605       if (match(U, m_ExtractValue<0>(m_Value()))) {
606         if (!Sub)
607           Sub = Builder.CreateSub(A, B);
608         U->replaceAllUsesWith(Sub);
609       } else if (match(U, m_ExtractValue<1>(m_Value())))
610         U->replaceAllUsesWith(Builder.getFalse());
611       else
612         continue;
613 
614       if (U->use_empty()) {
615         auto *I = cast<Instruction>(U);
616         ToRemove.push_back(I);
617         I->setOperand(0, PoisonValue::get(II->getType()));
618       }
619     }
620 
621     if (II->use_empty())
622       II->eraseFromParent();
623   }
624 }
625 
626 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
627   bool Changed = false;
628   DT.updateDFSNumbers();
629 
630   ConstraintInfo Info;
631   State S(DT);
632 
633   // First, collect conditions implied by branches and blocks with their
634   // Dominator DFS in and out numbers.
635   for (BasicBlock &BB : F) {
636     if (!DT.getNode(&BB))
637       continue;
638     S.addInfoFor(BB);
639   }
640 
641   // Next, sort worklist by dominance, so that dominating blocks and conditions
642   // come before blocks and conditions dominated by them. If a block and a
643   // condition have the same numbers, the condition comes before the block, as
644   // it holds on entry to the block.
645   sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
646     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
647   });
648 
649   SmallVector<Instruction *> ToRemove;
650 
651   // Finally, process ordered worklist and eliminate implied conditions.
652   SmallVector<StackEntry, 16> DFSInStack;
653   for (ConstraintOrBlock &CB : S.WorkList) {
654     // First, pop entries from the stack that are out-of-scope for CB. Remove
655     // the corresponding entry from the constraint system.
656     while (!DFSInStack.empty()) {
657       auto &E = DFSInStack.back();
658       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
659                         << "\n");
660       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
661       assert(E.NumIn <= CB.NumIn);
662       if (CB.NumOut <= E.NumOut)
663         break;
664       LLVM_DEBUG({
665         dbgs() << "Removing ";
666         dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
667                       Info.getValue2Index(E.IsSigned));
668         dbgs() << "\n";
669       });
670 
671       Info.popLastConstraint(E.IsSigned);
672       // Remove variables in the system that went out of scope.
673       auto &Mapping = Info.getValue2Index(E.IsSigned);
674       for (Value *V : E.ValuesToRelease)
675         Mapping.erase(V);
676       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
677       DFSInStack.pop_back();
678     }
679 
680     LLVM_DEBUG({
681       dbgs() << "Processing ";
682       if (CB.IsBlock)
683         dbgs() << *CB.BB;
684       else
685         dbgs() << *CB.Condition;
686       dbgs() << "\n";
687     });
688 
689     // For a block, check if any CmpInsts become known based on the current set
690     // of constraints.
691     if (CB.IsBlock) {
692       for (Instruction &I : make_early_inc_range(*CB.BB)) {
693         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
694           tryToSimplifyOverflowMath(II, Info, ToRemove);
695           continue;
696         }
697         auto *Cmp = dyn_cast<ICmpInst>(&I);
698         if (!Cmp)
699           continue;
700 
701         DenseMap<Value *, unsigned> NewIndices;
702         auto R = Info.getConstraint(Cmp, NewIndices);
703         if (R.IsEq || R.empty() || R.needsNewIndices(NewIndices) ||
704             !R.isValid(Info))
705           continue;
706 
707         auto &CSToUse = Info.getCS(R.IsSigned);
708         if (CSToUse.isConditionImplied(R.Coefficients)) {
709           if (!DebugCounter::shouldExecute(EliminatedCounter))
710             continue;
711 
712           LLVM_DEBUG({
713             dbgs() << "Condition " << *Cmp
714                    << " implied by dominating constraints\n";
715             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
716           });
717           Cmp->replaceUsesWithIf(
718               ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
719                 // Conditions in an assume trivially simplify to true. Skip uses
720                 // in assume calls to not destroy the available information.
721                 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
722                 return !II || II->getIntrinsicID() != Intrinsic::assume;
723               });
724           NumCondsRemoved++;
725           Changed = true;
726         }
727         if (CSToUse.isConditionImplied(
728                 ConstraintSystem::negate(R.Coefficients))) {
729           if (!DebugCounter::shouldExecute(EliminatedCounter))
730             continue;
731 
732           LLVM_DEBUG({
733             dbgs() << "Condition !" << *Cmp
734                    << " implied by dominating constraints\n";
735             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
736           });
737           Cmp->replaceAllUsesWith(
738               ConstantInt::getFalse(F.getParent()->getContext()));
739           NumCondsRemoved++;
740           Changed = true;
741         }
742       }
743       continue;
744     }
745 
746     // Set up a function to restore the predicate at the end of the scope if it
747     // has been negated. Negate the predicate in-place, if required.
748     auto *CI = dyn_cast<ICmpInst>(CB.Condition);
749     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
750       if (CB.Not && CI)
751         CI->setPredicate(CI->getInversePredicate());
752     });
753     if (CB.Not) {
754       if (CI) {
755         CI->setPredicate(CI->getInversePredicate());
756       } else {
757         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
758         continue;
759       }
760     }
761 
762     // Otherwise, add the condition to the system and stack, if we can transform
763     // it into a constraint.
764     Info.addFact(CB.Condition, CB.Not, CB.NumIn, CB.NumOut, DFSInStack);
765   }
766 
767 #ifndef NDEBUG
768   unsigned SignedEntries =
769       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
770   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
771          "updates to CS and DFSInStack are out of sync");
772   assert(Info.getCS(true).size() == SignedEntries &&
773          "updates to CS and DFSInStack are out of sync");
774 #endif
775 
776   for (Instruction *I : ToRemove)
777     I->eraseFromParent();
778   return Changed;
779 }
780 
781 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
782                                                  FunctionAnalysisManager &AM) {
783   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
784   if (!eliminateConstraints(F, DT))
785     return PreservedAnalyses::all();
786 
787   PreservedAnalyses PA;
788   PA.preserve<DominatorTreeAnalysis>();
789   PA.preserveSet<CFGAnalyses>();
790   return PA;
791 }
792 
793 namespace {
794 
795 class ConstraintElimination : public FunctionPass {
796 public:
797   static char ID;
798 
799   ConstraintElimination() : FunctionPass(ID) {
800     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
801   }
802 
803   bool runOnFunction(Function &F) override {
804     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
805     return eliminateConstraints(F, DT);
806   }
807 
808   void getAnalysisUsage(AnalysisUsage &AU) const override {
809     AU.setPreservesCFG();
810     AU.addRequired<DominatorTreeWrapperPass>();
811     AU.addPreserved<GlobalsAAWrapperPass>();
812     AU.addPreserved<DominatorTreeWrapperPass>();
813   }
814 };
815 
816 } // end anonymous namespace
817 
818 char ConstraintElimination::ID = 0;
819 
820 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
821                       "Constraint Elimination", false, false)
822 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
823 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
824 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
825                     "Constraint Elimination", false, false)
826 
827 FunctionPass *llvm::createConstraintEliminationPass() {
828   return new ConstraintElimination();
829 }
830