1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/DebugCounter.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Transforms/Scalar.h" 35 36 #include <cmath> 37 #include <string> 38 39 using namespace llvm; 40 using namespace PatternMatch; 41 42 #define DEBUG_TYPE "constraint-elimination" 43 44 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 45 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 46 "Controls which conditions are eliminated"); 47 48 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 49 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 50 51 // A helper to multiply 2 signed integers where overflowing is allowed. 52 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 53 int64_t Result; 54 MulOverflow(A, B, Result); 55 return Result; 56 } 57 58 // A helper to add 2 signed integers where overflowing is allowed. 59 static int64_t addWithOverflow(int64_t A, int64_t B) { 60 int64_t Result; 61 AddOverflow(A, B, Result); 62 return Result; 63 } 64 65 namespace { 66 67 class ConstraintInfo; 68 69 struct StackEntry { 70 unsigned NumIn; 71 unsigned NumOut; 72 bool IsSigned = false; 73 /// Variables that can be removed from the system once the stack entry gets 74 /// removed. 75 SmallVector<Value *, 2> ValuesToRelease; 76 77 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 78 SmallVector<Value *, 2> ValuesToRelease) 79 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 80 ValuesToRelease(ValuesToRelease) {} 81 }; 82 83 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 84 struct PreconditionTy { 85 CmpInst::Predicate Pred; 86 Value *Op0; 87 Value *Op1; 88 89 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 90 : Pred(Pred), Op0(Op0), Op1(Op1) {} 91 }; 92 93 struct ConstraintTy { 94 SmallVector<int64_t, 8> Coefficients; 95 SmallVector<PreconditionTy, 2> Preconditions; 96 97 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 98 99 bool IsSigned = false; 100 bool IsEq = false; 101 102 ConstraintTy() = default; 103 104 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 105 : Coefficients(Coefficients), IsSigned(IsSigned) {} 106 107 unsigned size() const { return Coefficients.size(); } 108 109 unsigned empty() const { return Coefficients.empty(); } 110 111 /// Returns true if all preconditions for this list of constraints are 112 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 113 bool isValid(const ConstraintInfo &Info) const; 114 }; 115 116 /// Wrapper encapsulating separate constraint systems and corresponding value 117 /// mappings for both unsigned and signed information. Facts are added to and 118 /// conditions are checked against the corresponding system depending on the 119 /// signed-ness of their predicates. While the information is kept separate 120 /// based on signed-ness, certain conditions can be transferred between the two 121 /// systems. 122 class ConstraintInfo { 123 DenseMap<Value *, unsigned> UnsignedValue2Index; 124 DenseMap<Value *, unsigned> SignedValue2Index; 125 126 ConstraintSystem UnsignedCS; 127 ConstraintSystem SignedCS; 128 129 const DataLayout &DL; 130 131 public: 132 ConstraintInfo(const DataLayout &DL) : DL(DL) {} 133 134 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 135 return Signed ? SignedValue2Index : UnsignedValue2Index; 136 } 137 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 138 return Signed ? SignedValue2Index : UnsignedValue2Index; 139 } 140 141 ConstraintSystem &getCS(bool Signed) { 142 return Signed ? SignedCS : UnsignedCS; 143 } 144 const ConstraintSystem &getCS(bool Signed) const { 145 return Signed ? SignedCS : UnsignedCS; 146 } 147 148 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 149 void popLastNVariables(bool Signed, unsigned N) { 150 getCS(Signed).popLastNVariables(N); 151 } 152 153 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 154 155 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 156 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 157 158 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 159 /// constraints, using indices from the corresponding constraint system. 160 /// New variables that need to be added to the system are collected in 161 /// \p NewVariables. 162 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 163 SmallVectorImpl<Value *> &NewVariables) const; 164 165 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 166 /// constraints using getConstraint. Returns an empty constraint if the result 167 /// cannot be used to query the existing constraint system, e.g. because it 168 /// would require adding new variables. Also tries to convert signed 169 /// predicates to unsigned ones if possible to allow using the unsigned system 170 /// which increases the effectiveness of the signed <-> unsigned transfer 171 /// logic. 172 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 173 Value *Op1) const; 174 175 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 176 /// system if \p Pred is signed/unsigned. 177 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 178 unsigned NumIn, unsigned NumOut, 179 SmallVectorImpl<StackEntry> &DFSInStack); 180 }; 181 182 /// Represents a (Coefficient * Variable) entry after IR decomposition. 183 struct DecompEntry { 184 int64_t Coefficient; 185 Value *Variable; 186 /// True if the variable is known positive in the current constraint. 187 bool IsKnownPositive; 188 189 DecompEntry(int64_t Coefficient, Value *Variable, 190 bool IsKnownPositive = false) 191 : Coefficient(Coefficient), Variable(Variable), 192 IsKnownPositive(IsKnownPositive) {} 193 }; 194 195 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 196 struct Decomposition { 197 int64_t Offset = 0; 198 SmallVector<DecompEntry, 3> Vars; 199 200 Decomposition(int64_t Offset) : Offset(Offset) {} 201 Decomposition(Value *V, bool IsKnownPositive = false) { 202 Vars.emplace_back(1, V, IsKnownPositive); 203 } 204 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 205 : Offset(Offset), Vars(Vars) {} 206 207 void add(int64_t OtherOffset) { 208 Offset = addWithOverflow(Offset, OtherOffset); 209 } 210 211 void add(const Decomposition &Other) { 212 add(Other.Offset); 213 append_range(Vars, Other.Vars); 214 } 215 216 void mul(int64_t Factor) { 217 Offset = multiplyWithOverflow(Offset, Factor); 218 for (auto &Var : Vars) 219 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 220 } 221 }; 222 223 } // namespace 224 225 static Decomposition decompose(Value *V, 226 SmallVectorImpl<PreconditionTy> &Preconditions, 227 bool IsSigned, const DataLayout &DL); 228 229 static bool canUseSExt(ConstantInt *CI) { 230 const APInt &Val = CI->getValue(); 231 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 232 } 233 234 static Decomposition 235 decomposeGEP(GetElementPtrInst &GEP, 236 SmallVectorImpl<PreconditionTy> &Preconditions, bool IsSigned, 237 const DataLayout &DL) { 238 // Do not reason about pointers where the index size is larger than 64 bits, 239 // as the coefficients used to encode constraints are 64 bit integers. 240 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 241 return &GEP; 242 243 if (!GEP.isInBounds()) 244 return &GEP; 245 246 // Handle the (gep (gep ....), C) case by incrementing the constant 247 // coefficient of the inner GEP, if C is a constant. 248 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand()); 249 if (InnerGEP && GEP.getNumOperands() == 2 && 250 isa<ConstantInt>(GEP.getOperand(1))) { 251 APInt Offset = cast<ConstantInt>(GEP.getOperand(1))->getValue(); 252 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 253 254 auto GTI = gep_type_begin(GEP); 255 // Bail out for scalable vectors for now. 256 if (isa<ScalableVectorType>(GTI.getIndexedType())) 257 return &GEP; 258 int64_t Scale = static_cast<int64_t>( 259 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 260 261 Result.add(multiplyWithOverflow(Scale, Offset.getSExtValue())); 262 if (Offset.isNegative()) { 263 // Add pre-condition ensuring the GEP is increasing monotonically and 264 // can be de-composed. 265 Preconditions.emplace_back( 266 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 267 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 268 -1 * Offset.getSExtValue())); 269 } 270 return Result; 271 } 272 273 Decomposition Result = GEP.getPointerOperand(); 274 gep_type_iterator GTI = gep_type_begin(GEP); 275 for (User::const_op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 276 ++I, ++GTI) { 277 Value *Index = *I; 278 279 // Bail out for scalable vectors for now. 280 if (isa<ScalableVectorType>(GTI.getIndexedType())) 281 return &GEP; 282 283 // Struct indices must be constants (and reference an existing field). Add 284 // them to the constant factor. 285 if (StructType *STy = GTI.getStructTypeOrNull()) { 286 // For a struct, add the member offset. 287 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 288 if (FieldNo == 0) 289 continue; 290 291 // Add offset to constant factor. 292 Result.add(int64_t(DL.getStructLayout(STy)->getElementOffset(FieldNo))); 293 continue; 294 } 295 296 // For an array/pointer, add the element offset, explicitly scaled. 297 unsigned Scale = DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize(); 298 299 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 300 IdxResult.mul(Scale); 301 Result.add(IdxResult); 302 303 // If Op0 is signed non-negative, the GEP is increasing monotonically and 304 // can be de-composed. 305 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 306 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 307 ConstantInt::get(Index->getType(), 0)); 308 } 309 return Result; 310 } 311 312 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable 313 // } where Coefficient * Variable. The sum of the pairs equals \p V. The first 314 // pair is the constant-factor and X must be nullptr. If the expression cannot 315 // be decomposed, returns an empty vector. 316 static Decomposition decompose(Value *V, 317 SmallVectorImpl<PreconditionTy> &Preconditions, 318 bool IsSigned, const DataLayout &DL) { 319 320 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 321 bool IsSignedB) { 322 auto ResA = decompose(A, Preconditions, IsSigned, DL); 323 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 324 ResA.add(ResB); 325 return ResA; 326 }; 327 328 // Decompose \p V used with a signed predicate. 329 if (IsSigned) { 330 if (auto *CI = dyn_cast<ConstantInt>(V)) { 331 if (canUseSExt(CI)) 332 return CI->getSExtValue(); 333 } 334 Value *Op0; 335 Value *Op1; 336 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 337 return MergeResults(Op0, Op1, IsSigned); 338 339 return V; 340 } 341 342 if (auto *CI = dyn_cast<ConstantInt>(V)) { 343 if (CI->uge(MaxConstraintValue)) 344 return V; 345 return int64_t(CI->getZExtValue()); 346 } 347 348 if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) 349 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 350 351 Value *Op0; 352 bool IsKnownPositive = false; 353 if (match(V, m_ZExt(m_Value(Op0)))) { 354 IsKnownPositive = true; 355 V = Op0; 356 } 357 358 Value *Op1; 359 ConstantInt *CI; 360 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 361 return MergeResults(Op0, Op1, IsSigned); 362 } 363 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 364 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 365 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 366 ConstantInt::get(Op0->getType(), 0)); 367 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 368 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 369 ConstantInt::get(Op1->getType(), 0)); 370 371 return MergeResults(Op0, Op1, IsSigned); 372 } 373 374 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 375 canUseSExt(CI)) { 376 Preconditions.emplace_back( 377 CmpInst::ICMP_UGE, Op0, 378 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 379 return MergeResults(Op0, CI, true); 380 } 381 382 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 383 int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue())); 384 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 385 Result.mul(Mult); 386 return Result; 387 } 388 389 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 390 (!CI->isNegative())) { 391 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 392 Result.mul(CI->getSExtValue()); 393 return Result; 394 } 395 396 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 397 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 398 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 399 return {0, {{1, Op0}, {-1, Op1}}}; 400 401 return {V, IsKnownPositive}; 402 } 403 404 ConstraintTy 405 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 406 SmallVectorImpl<Value *> &NewVariables) const { 407 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 408 bool IsEq = false; 409 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 410 switch (Pred) { 411 case CmpInst::ICMP_UGT: 412 case CmpInst::ICMP_UGE: 413 case CmpInst::ICMP_SGT: 414 case CmpInst::ICMP_SGE: { 415 Pred = CmpInst::getSwappedPredicate(Pred); 416 std::swap(Op0, Op1); 417 break; 418 } 419 case CmpInst::ICMP_EQ: 420 if (match(Op1, m_Zero())) { 421 Pred = CmpInst::ICMP_ULE; 422 } else { 423 IsEq = true; 424 Pred = CmpInst::ICMP_ULE; 425 } 426 break; 427 case CmpInst::ICMP_NE: 428 if (!match(Op1, m_Zero())) 429 return {}; 430 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 431 std::swap(Op0, Op1); 432 break; 433 default: 434 break; 435 } 436 437 // Only ULE and ULT predicates are supported at the moment. 438 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 439 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 440 return {}; 441 442 SmallVector<PreconditionTy, 4> Preconditions; 443 bool IsSigned = CmpInst::isSigned(Pred); 444 auto &Value2Index = getValue2Index(IsSigned); 445 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 446 Preconditions, IsSigned, DL); 447 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 448 Preconditions, IsSigned, DL); 449 int64_t Offset1 = ADec.Offset; 450 int64_t Offset2 = BDec.Offset; 451 Offset1 *= -1; 452 453 auto &VariablesA = ADec.Vars; 454 auto &VariablesB = BDec.Vars; 455 456 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 457 // new entry to NewVariables. 458 DenseMap<Value *, unsigned> NewIndexMap; 459 auto GetOrAddIndex = [&Value2Index, &NewVariables, 460 &NewIndexMap](Value *V) -> unsigned { 461 auto V2I = Value2Index.find(V); 462 if (V2I != Value2Index.end()) 463 return V2I->second; 464 auto Insert = 465 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 466 if (Insert.second) 467 NewVariables.push_back(V); 468 return Insert.first->second; 469 }; 470 471 // Make sure all variables have entries in Value2Index or NewVariables. 472 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 473 GetOrAddIndex(KV.Variable); 474 475 // Build result constraint, by first adding all coefficients from A and then 476 // subtracting all coefficients from B. 477 ConstraintTy Res( 478 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 479 IsSigned); 480 // Collect variables that are known to be positive in all uses in the 481 // constraint. 482 DenseMap<Value *, bool> KnownPositiveVariables; 483 Res.IsEq = IsEq; 484 auto &R = Res.Coefficients; 485 for (const auto &KV : VariablesA) { 486 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 487 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 488 I.first->second &= KV.IsKnownPositive; 489 } 490 491 for (const auto &KV : VariablesB) { 492 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 493 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 494 I.first->second &= KV.IsKnownPositive; 495 } 496 497 int64_t OffsetSum; 498 if (AddOverflow(Offset1, Offset2, OffsetSum)) 499 return {}; 500 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 501 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 502 return {}; 503 R[0] = OffsetSum; 504 Res.Preconditions = std::move(Preconditions); 505 506 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 507 // variables. 508 while (!NewVariables.empty()) { 509 int64_t Last = R.back(); 510 if (Last != 0) 511 break; 512 R.pop_back(); 513 Value *RemovedV = NewVariables.pop_back_val(); 514 NewIndexMap.erase(RemovedV); 515 } 516 517 // Add extra constraints for variables that are known positive. 518 for (auto &KV : KnownPositiveVariables) { 519 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 520 NewIndexMap.find(KV.first) == NewIndexMap.end())) 521 continue; 522 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 523 C[GetOrAddIndex(KV.first)] = -1; 524 Res.ExtraInfo.push_back(C); 525 } 526 return Res; 527 } 528 529 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 530 Value *Op0, 531 Value *Op1) const { 532 // If both operands are known to be non-negative, change signed predicates to 533 // unsigned ones. This increases the reasoning effectiveness in combination 534 // with the signed <-> unsigned transfer logic. 535 if (CmpInst::isSigned(Pred) && 536 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 537 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 538 Pred = CmpInst::getUnsignedPredicate(Pred); 539 540 SmallVector<Value *> NewVariables; 541 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 542 if (R.IsEq || !NewVariables.empty()) 543 return {}; 544 return R; 545 } 546 547 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 548 return Coefficients.size() > 0 && 549 all_of(Preconditions, [&Info](const PreconditionTy &C) { 550 return Info.doesHold(C.Pred, C.Op0, C.Op1); 551 }); 552 } 553 554 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 555 Value *B) const { 556 auto R = getConstraintForSolving(Pred, A, B); 557 return R.Preconditions.empty() && !R.empty() && 558 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 559 } 560 561 void ConstraintInfo::transferToOtherSystem( 562 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 563 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 564 // Check if we can combine facts from the signed and unsigned systems to 565 // derive additional facts. 566 if (!A->getType()->isIntegerTy()) 567 return; 568 // FIXME: This currently depends on the order we add facts. Ideally we 569 // would first add all known facts and only then try to add additional 570 // facts. 571 switch (Pred) { 572 default: 573 break; 574 case CmpInst::ICMP_ULT: 575 // If B is a signed positive constant, A >=s 0 and A <s B. 576 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 577 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 578 NumOut, DFSInStack); 579 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 580 } 581 break; 582 case CmpInst::ICMP_SLT: 583 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 584 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 585 break; 586 case CmpInst::ICMP_SGT: 587 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 588 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 589 NumOut, DFSInStack); 590 break; 591 case CmpInst::ICMP_SGE: 592 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 593 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 594 } 595 break; 596 } 597 } 598 599 namespace { 600 /// Represents either a condition that holds on entry to a block or a basic 601 /// block, with their respective Dominator DFS in and out numbers. 602 struct ConstraintOrBlock { 603 unsigned NumIn; 604 unsigned NumOut; 605 bool IsBlock; 606 bool Not; 607 union { 608 BasicBlock *BB; 609 CmpInst *Condition; 610 }; 611 612 ConstraintOrBlock(DomTreeNode *DTN) 613 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 614 BB(DTN->getBlock()) {} 615 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 616 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 617 Not(Not), Condition(Condition) {} 618 }; 619 620 /// Keep state required to build worklist. 621 struct State { 622 DominatorTree &DT; 623 SmallVector<ConstraintOrBlock, 64> WorkList; 624 625 State(DominatorTree &DT) : DT(DT) {} 626 627 /// Process block \p BB and add known facts to work-list. 628 void addInfoFor(BasicBlock &BB); 629 630 /// Returns true if we can add a known condition from BB to its successor 631 /// block Succ. Each predecessor of Succ can either be BB or be dominated 632 /// by Succ (e.g. the case when adding a condition from a pre-header to a 633 /// loop header). 634 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 635 if (BB.getSingleSuccessor()) { 636 assert(BB.getSingleSuccessor() == Succ); 637 return DT.properlyDominates(&BB, Succ); 638 } 639 return any_of(successors(&BB), 640 [Succ](const BasicBlock *S) { return S != Succ; }) && 641 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 642 return Pred == &BB || DT.dominates(Succ, Pred); 643 }); 644 } 645 }; 646 647 } // namespace 648 649 #ifndef NDEBUG 650 static void dumpWithNames(const ConstraintSystem &CS, 651 DenseMap<Value *, unsigned> &Value2Index) { 652 SmallVector<std::string> Names(Value2Index.size(), ""); 653 for (auto &KV : Value2Index) { 654 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 655 } 656 CS.dump(Names); 657 } 658 659 static void dumpWithNames(ArrayRef<int64_t> C, 660 DenseMap<Value *, unsigned> &Value2Index) { 661 ConstraintSystem CS; 662 CS.addVariableRowFill(C); 663 dumpWithNames(CS, Value2Index); 664 } 665 #endif 666 667 void State::addInfoFor(BasicBlock &BB) { 668 WorkList.emplace_back(DT.getNode(&BB)); 669 670 // True as long as long as the current instruction is guaranteed to execute. 671 bool GuaranteedToExecute = true; 672 // Scan BB for assume calls. 673 // TODO: also use this scan to queue conditions to simplify, so we can 674 // interleave facts from assumes and conditions to simplify in a single 675 // basic block. And to skip another traversal of each basic block when 676 // simplifying. 677 for (Instruction &I : BB) { 678 Value *Cond; 679 // For now, just handle assumes with a single compare as condition. 680 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 681 isa<ICmpInst>(Cond)) { 682 if (GuaranteedToExecute) { 683 // The assume is guaranteed to execute when BB is entered, hence Cond 684 // holds on entry to BB. 685 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 686 } else { 687 // Otherwise the condition only holds in the successors. 688 for (BasicBlock *Succ : successors(&BB)) { 689 if (!canAddSuccessor(BB, Succ)) 690 continue; 691 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false); 692 } 693 } 694 } 695 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 696 } 697 698 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 699 if (!Br || !Br->isConditional()) 700 return; 701 702 Value *Cond = Br->getCondition(); 703 704 // If the condition is a chain of ORs/AND and the successor only has the 705 // current block as predecessor, queue conditions for the successor. 706 Value *Op0, *Op1; 707 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 708 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 709 bool IsOr = match(Cond, m_LogicalOr()); 710 bool IsAnd = match(Cond, m_LogicalAnd()); 711 // If there's a select that matches both AND and OR, we need to commit to 712 // one of the options. Arbitrarily pick OR. 713 if (IsOr && IsAnd) 714 IsAnd = false; 715 716 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 717 if (canAddSuccessor(BB, Successor)) { 718 SmallVector<Value *> CondWorkList; 719 SmallPtrSet<Value *, 8> SeenCond; 720 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 721 if (SeenCond.insert(V).second) 722 CondWorkList.push_back(V); 723 }; 724 QueueValue(Op1); 725 QueueValue(Op0); 726 while (!CondWorkList.empty()) { 727 Value *Cur = CondWorkList.pop_back_val(); 728 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 729 WorkList.emplace_back(DT.getNode(Successor), Cmp, IsOr); 730 continue; 731 } 732 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 733 QueueValue(Op1); 734 QueueValue(Op0); 735 continue; 736 } 737 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 738 QueueValue(Op1); 739 QueueValue(Op0); 740 continue; 741 } 742 } 743 } 744 return; 745 } 746 747 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 748 if (!CmpI) 749 return; 750 if (canAddSuccessor(BB, Br->getSuccessor(0))) 751 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 752 if (canAddSuccessor(BB, Br->getSuccessor(1))) 753 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 754 } 755 756 static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) { 757 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 758 759 CmpInst::Predicate Pred = Cmp->getPredicate(); 760 Value *A = Cmp->getOperand(0); 761 Value *B = Cmp->getOperand(1); 762 763 auto R = Info.getConstraintForSolving(Pred, A, B); 764 if (R.empty() || !R.isValid(Info)){ 765 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 766 return false; 767 } 768 769 auto &CSToUse = Info.getCS(R.IsSigned); 770 771 // If there was extra information collected during decomposition, apply 772 // it now and remove it immediately once we are done with reasoning 773 // about the constraint. 774 for (auto &Row : R.ExtraInfo) 775 CSToUse.addVariableRow(Row); 776 auto InfoRestorer = make_scope_exit([&]() { 777 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 778 CSToUse.popLastConstraint(); 779 }); 780 781 bool Changed = false; 782 if (CSToUse.isConditionImplied(R.Coefficients)) { 783 if (!DebugCounter::shouldExecute(EliminatedCounter)) 784 return false; 785 786 LLVM_DEBUG({ 787 dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n"; 788 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 789 }); 790 Constant *TrueC = 791 ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType())); 792 Cmp->replaceUsesWithIf(TrueC, [](Use &U) { 793 // Conditions in an assume trivially simplify to true. Skip uses 794 // in assume calls to not destroy the available information. 795 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 796 return !II || II->getIntrinsicID() != Intrinsic::assume; 797 }); 798 NumCondsRemoved++; 799 Changed = true; 800 } 801 if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) { 802 if (!DebugCounter::shouldExecute(EliminatedCounter)) 803 return false; 804 805 LLVM_DEBUG({ 806 dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n"; 807 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 808 }); 809 Constant *FalseC = 810 ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType())); 811 Cmp->replaceAllUsesWith(FalseC); 812 NumCondsRemoved++; 813 Changed = true; 814 } 815 return Changed; 816 } 817 818 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 819 unsigned NumIn, unsigned NumOut, 820 SmallVectorImpl<StackEntry> &DFSInStack) { 821 // If the constraint has a pre-condition, skip the constraint if it does not 822 // hold. 823 SmallVector<Value *> NewVariables; 824 auto R = getConstraint(Pred, A, B, NewVariables); 825 if (!R.isValid(*this)) 826 return; 827 828 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; 829 A->printAsOperand(dbgs(), false); dbgs() << ", "; 830 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 831 bool Added = false; 832 auto &CSToUse = getCS(R.IsSigned); 833 if (R.Coefficients.empty()) 834 return; 835 836 Added |= CSToUse.addVariableRowFill(R.Coefficients); 837 838 // If R has been added to the system, add the new variables and queue it for 839 // removal once it goes out-of-scope. 840 if (Added) { 841 SmallVector<Value *, 2> ValuesToRelease; 842 auto &Value2Index = getValue2Index(R.IsSigned); 843 for (Value *V : NewVariables) { 844 Value2Index.insert({V, Value2Index.size() + 1}); 845 ValuesToRelease.push_back(V); 846 } 847 848 LLVM_DEBUG({ 849 dbgs() << " constraint: "; 850 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 851 dbgs() << "\n"; 852 }); 853 854 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease); 855 856 if (R.IsEq) { 857 // Also add the inverted constraint for equality constraints. 858 for (auto &Coeff : R.Coefficients) 859 Coeff *= -1; 860 CSToUse.addVariableRowFill(R.Coefficients); 861 862 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 863 SmallVector<Value *, 2>()); 864 } 865 } 866 } 867 868 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 869 SmallVectorImpl<Instruction *> &ToRemove) { 870 bool Changed = false; 871 IRBuilder<> Builder(II->getParent(), II->getIterator()); 872 Value *Sub = nullptr; 873 for (User *U : make_early_inc_range(II->users())) { 874 if (match(U, m_ExtractValue<0>(m_Value()))) { 875 if (!Sub) 876 Sub = Builder.CreateSub(A, B); 877 U->replaceAllUsesWith(Sub); 878 Changed = true; 879 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 880 U->replaceAllUsesWith(Builder.getFalse()); 881 Changed = true; 882 } else 883 continue; 884 885 if (U->use_empty()) { 886 auto *I = cast<Instruction>(U); 887 ToRemove.push_back(I); 888 I->setOperand(0, PoisonValue::get(II->getType())); 889 Changed = true; 890 } 891 } 892 893 if (II->use_empty()) { 894 II->eraseFromParent(); 895 Changed = true; 896 } 897 return Changed; 898 } 899 900 static bool 901 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 902 SmallVectorImpl<Instruction *> &ToRemove) { 903 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 904 ConstraintInfo &Info) { 905 auto R = Info.getConstraintForSolving(Pred, A, B); 906 if (R.size() < 2 || !R.isValid(Info)) 907 return false; 908 909 auto &CSToUse = Info.getCS(R.IsSigned); 910 return CSToUse.isConditionImplied(R.Coefficients); 911 }; 912 913 bool Changed = false; 914 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 915 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 916 // can be simplified to a regular sub. 917 Value *A = II->getArgOperand(0); 918 Value *B = II->getArgOperand(1); 919 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 920 !DoesConditionHold(CmpInst::ICMP_SGE, B, 921 ConstantInt::get(A->getType(), 0), Info)) 922 return false; 923 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 924 } 925 return Changed; 926 } 927 928 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 929 bool Changed = false; 930 DT.updateDFSNumbers(); 931 932 ConstraintInfo Info(F.getParent()->getDataLayout()); 933 State S(DT); 934 935 // First, collect conditions implied by branches and blocks with their 936 // Dominator DFS in and out numbers. 937 for (BasicBlock &BB : F) { 938 if (!DT.getNode(&BB)) 939 continue; 940 S.addInfoFor(BB); 941 } 942 943 // Next, sort worklist by dominance, so that dominating blocks and conditions 944 // come before blocks and conditions dominated by them. If a block and a 945 // condition have the same numbers, the condition comes before the block, as 946 // it holds on entry to the block. Also make sure conditions with constant 947 // operands come before conditions without constant operands. This increases 948 // the effectiveness of the current signed <-> unsigned fact transfer logic. 949 stable_sort( 950 S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 951 auto HasNoConstOp = [](const ConstraintOrBlock &B) { 952 return !B.IsBlock && !isa<ConstantInt>(B.Condition->getOperand(0)) && 953 !isa<ConstantInt>(B.Condition->getOperand(1)); 954 }; 955 bool NoConstOpA = HasNoConstOp(A); 956 bool NoConstOpB = HasNoConstOp(B); 957 return std::tie(A.NumIn, A.IsBlock, NoConstOpA) < 958 std::tie(B.NumIn, B.IsBlock, NoConstOpB); 959 }); 960 961 SmallVector<Instruction *> ToRemove; 962 963 // Finally, process ordered worklist and eliminate implied conditions. 964 SmallVector<StackEntry, 16> DFSInStack; 965 for (ConstraintOrBlock &CB : S.WorkList) { 966 // First, pop entries from the stack that are out-of-scope for CB. Remove 967 // the corresponding entry from the constraint system. 968 while (!DFSInStack.empty()) { 969 auto &E = DFSInStack.back(); 970 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 971 << "\n"); 972 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 973 assert(E.NumIn <= CB.NumIn); 974 if (CB.NumOut <= E.NumOut) 975 break; 976 LLVM_DEBUG({ 977 dbgs() << "Removing "; 978 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 979 Info.getValue2Index(E.IsSigned)); 980 dbgs() << "\n"; 981 }); 982 983 Info.popLastConstraint(E.IsSigned); 984 // Remove variables in the system that went out of scope. 985 auto &Mapping = Info.getValue2Index(E.IsSigned); 986 for (Value *V : E.ValuesToRelease) 987 Mapping.erase(V); 988 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 989 DFSInStack.pop_back(); 990 } 991 992 LLVM_DEBUG({ 993 dbgs() << "Processing "; 994 if (CB.IsBlock) 995 dbgs() << *CB.BB; 996 else 997 dbgs() << *CB.Condition; 998 dbgs() << "\n"; 999 }); 1000 1001 // For a block, check if any CmpInsts become known based on the current set 1002 // of constraints. 1003 if (CB.IsBlock) { 1004 for (Instruction &I : make_early_inc_range(*CB.BB)) { 1005 if (auto *II = dyn_cast<WithOverflowInst>(&I)) { 1006 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1007 continue; 1008 } 1009 auto *Cmp = dyn_cast<ICmpInst>(&I); 1010 if (!Cmp) 1011 continue; 1012 1013 Changed |= checkAndReplaceCondition(Cmp, Info); 1014 } 1015 continue; 1016 } 1017 1018 ICmpInst::Predicate Pred; 1019 Value *A, *B; 1020 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 1021 // Use the inverse predicate if required. 1022 if (CB.Not) 1023 Pred = CmpInst::getInversePredicate(Pred); 1024 1025 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1026 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1027 } 1028 } 1029 1030 #ifndef NDEBUG 1031 unsigned SignedEntries = 1032 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1033 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1034 "updates to CS and DFSInStack are out of sync"); 1035 assert(Info.getCS(true).size() == SignedEntries && 1036 "updates to CS and DFSInStack are out of sync"); 1037 #endif 1038 1039 for (Instruction *I : ToRemove) 1040 I->eraseFromParent(); 1041 return Changed; 1042 } 1043 1044 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1045 FunctionAnalysisManager &AM) { 1046 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1047 if (!eliminateConstraints(F, DT)) 1048 return PreservedAnalyses::all(); 1049 1050 PreservedAnalyses PA; 1051 PA.preserve<DominatorTreeAnalysis>(); 1052 PA.preserveSet<CFGAnalyses>(); 1053 return PA; 1054 } 1055 1056 namespace { 1057 1058 class ConstraintElimination : public FunctionPass { 1059 public: 1060 static char ID; 1061 1062 ConstraintElimination() : FunctionPass(ID) { 1063 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 1064 } 1065 1066 bool runOnFunction(Function &F) override { 1067 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1068 return eliminateConstraints(F, DT); 1069 } 1070 1071 void getAnalysisUsage(AnalysisUsage &AU) const override { 1072 AU.setPreservesCFG(); 1073 AU.addRequired<DominatorTreeWrapperPass>(); 1074 AU.addPreserved<GlobalsAAWrapperPass>(); 1075 AU.addPreserved<DominatorTreeWrapperPass>(); 1076 } 1077 }; 1078 1079 } // end anonymous namespace 1080 1081 char ConstraintElimination::ID = 0; 1082 1083 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 1084 "Constraint Elimination", false, false) 1085 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1086 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 1087 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 1088 "Constraint Elimination", false, false) 1089 1090 FunctionPass *llvm::createConstraintEliminationPass() { 1091 return new ConstraintElimination(); 1092 } 1093