xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 420cf63ead105d024f0dd0e90b67a7ffb1fd64fb)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GetElementPtrTypeIterator.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/DebugCounter.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/ValueMapper.h"
39 
40 #include <cmath>
41 #include <string>
42 
43 using namespace llvm;
44 using namespace PatternMatch;
45 
46 #define DEBUG_TYPE "constraint-elimination"
47 
48 STATISTIC(NumCondsRemoved, "Number of instructions removed");
49 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
50               "Controls which conditions are eliminated");
51 
52 static cl::opt<unsigned>
53     MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
54             cl::desc("Maximum number of rows to keep in constraint system"));
55 
56 static cl::opt<bool> DumpReproducers(
57     "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
58     cl::desc("Dump IR to reproduce successful transformations."));
59 
60 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
61 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
62 
63 // A helper to multiply 2 signed integers where overflowing is allowed.
64 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
65   int64_t Result;
66   MulOverflow(A, B, Result);
67   return Result;
68 }
69 
70 // A helper to add 2 signed integers where overflowing is allowed.
71 static int64_t addWithOverflow(int64_t A, int64_t B) {
72   int64_t Result;
73   AddOverflow(A, B, Result);
74   return Result;
75 }
76 
77 namespace {
78 
79 class ConstraintInfo;
80 
81 struct StackEntry {
82   unsigned NumIn;
83   unsigned NumOut;
84   bool IsSigned = false;
85   /// Variables that can be removed from the system once the stack entry gets
86   /// removed.
87   SmallVector<Value *, 2> ValuesToRelease;
88 
89   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
90              SmallVector<Value *, 2> ValuesToRelease)
91       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
92         ValuesToRelease(ValuesToRelease) {}
93 };
94 
95 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
96 struct PreconditionTy {
97   CmpInst::Predicate Pred;
98   Value *Op0;
99   Value *Op1;
100 
101   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
102       : Pred(Pred), Op0(Op0), Op1(Op1) {}
103 };
104 
105 struct ConstraintTy {
106   SmallVector<int64_t, 8> Coefficients;
107   SmallVector<PreconditionTy, 2> Preconditions;
108 
109   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
110 
111   bool IsSigned = false;
112   bool IsEq = false;
113 
114   ConstraintTy() = default;
115 
116   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
117       : Coefficients(Coefficients), IsSigned(IsSigned) {}
118 
119   unsigned size() const { return Coefficients.size(); }
120 
121   unsigned empty() const { return Coefficients.empty(); }
122 
123   /// Returns true if all preconditions for this list of constraints are
124   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
125   bool isValid(const ConstraintInfo &Info) const;
126 };
127 
128 /// Wrapper encapsulating separate constraint systems and corresponding value
129 /// mappings for both unsigned and signed information. Facts are added to and
130 /// conditions are checked against the corresponding system depending on the
131 /// signed-ness of their predicates. While the information is kept separate
132 /// based on signed-ness, certain conditions can be transferred between the two
133 /// systems.
134 class ConstraintInfo {
135 
136   ConstraintSystem UnsignedCS;
137   ConstraintSystem SignedCS;
138 
139   const DataLayout &DL;
140 
141 public:
142   ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
143       : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {}
144 
145   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
146     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
147   }
148   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
149     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
150   }
151 
152   ConstraintSystem &getCS(bool Signed) {
153     return Signed ? SignedCS : UnsignedCS;
154   }
155   const ConstraintSystem &getCS(bool Signed) const {
156     return Signed ? SignedCS : UnsignedCS;
157   }
158 
159   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
160   void popLastNVariables(bool Signed, unsigned N) {
161     getCS(Signed).popLastNVariables(N);
162   }
163 
164   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
165 
166   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
167                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
168 
169   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
170   /// constraints, using indices from the corresponding constraint system.
171   /// New variables that need to be added to the system are collected in
172   /// \p NewVariables.
173   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
174                              SmallVectorImpl<Value *> &NewVariables) const;
175 
176   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
177   /// constraints using getConstraint. Returns an empty constraint if the result
178   /// cannot be used to query the existing constraint system, e.g. because it
179   /// would require adding new variables. Also tries to convert signed
180   /// predicates to unsigned ones if possible to allow using the unsigned system
181   /// which increases the effectiveness of the signed <-> unsigned transfer
182   /// logic.
183   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
184                                        Value *Op1) const;
185 
186   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
187   /// system if \p Pred is signed/unsigned.
188   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
189                              unsigned NumIn, unsigned NumOut,
190                              SmallVectorImpl<StackEntry> &DFSInStack);
191 };
192 
193 /// Represents a (Coefficient * Variable) entry after IR decomposition.
194 struct DecompEntry {
195   int64_t Coefficient;
196   Value *Variable;
197   /// True if the variable is known positive in the current constraint.
198   bool IsKnownNonNegative;
199 
200   DecompEntry(int64_t Coefficient, Value *Variable,
201               bool IsKnownNonNegative = false)
202       : Coefficient(Coefficient), Variable(Variable),
203         IsKnownNonNegative(IsKnownNonNegative) {}
204 };
205 
206 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
207 struct Decomposition {
208   int64_t Offset = 0;
209   SmallVector<DecompEntry, 3> Vars;
210 
211   Decomposition(int64_t Offset) : Offset(Offset) {}
212   Decomposition(Value *V, bool IsKnownNonNegative = false) {
213     Vars.emplace_back(1, V, IsKnownNonNegative);
214   }
215   Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
216       : Offset(Offset), Vars(Vars) {}
217 
218   void add(int64_t OtherOffset) {
219     Offset = addWithOverflow(Offset, OtherOffset);
220   }
221 
222   void add(const Decomposition &Other) {
223     add(Other.Offset);
224     append_range(Vars, Other.Vars);
225   }
226 
227   void mul(int64_t Factor) {
228     Offset = multiplyWithOverflow(Offset, Factor);
229     for (auto &Var : Vars)
230       Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
231   }
232 };
233 
234 } // namespace
235 
236 static Decomposition decompose(Value *V,
237                                SmallVectorImpl<PreconditionTy> &Preconditions,
238                                bool IsSigned, const DataLayout &DL);
239 
240 static bool canUseSExt(ConstantInt *CI) {
241   const APInt &Val = CI->getValue();
242   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
243 }
244 
245 static Decomposition
246 decomposeGEP(GEPOperator &GEP, SmallVectorImpl<PreconditionTy> &Preconditions,
247              bool IsSigned, const DataLayout &DL) {
248   // Do not reason about pointers where the index size is larger than 64 bits,
249   // as the coefficients used to encode constraints are 64 bit integers.
250   if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
251     return &GEP;
252 
253   if (!GEP.isInBounds())
254     return &GEP;
255 
256   assert(!IsSigned && "The logic below only supports decomposition for "
257                       "unsinged predicates at the moment.");
258   Type *PtrTy = GEP.getType()->getScalarType();
259   unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
260   MapVector<Value *, APInt> VariableOffsets;
261   APInt ConstantOffset(BitWidth, 0);
262   if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
263     return &GEP;
264 
265   // Handle the (gep (gep ....), C) case by incrementing the constant
266   // coefficient of the inner GEP, if C is a constant.
267   auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand());
268   if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) {
269     auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
270     Result.add(ConstantOffset.getSExtValue());
271 
272     if (ConstantOffset.isNegative()) {
273       unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType());
274       int64_t ConstantOffsetI = ConstantOffset.getSExtValue();
275       if (ConstantOffsetI % Scale != 0)
276         return &GEP;
277       // Add pre-condition ensuring the GEP is increasing monotonically and
278       // can be de-composed.
279       // Both sides are normalized by being divided by Scale.
280       Preconditions.emplace_back(
281           CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
282           ConstantInt::get(InnerGEP->getOperand(1)->getType(),
283                            -1 * (ConstantOffsetI / Scale)));
284     }
285     return Result;
286   }
287 
288   Decomposition Result(ConstantOffset.getSExtValue(),
289                        DecompEntry(1, GEP.getPointerOperand()));
290   for (auto [Index, Scale] : VariableOffsets) {
291     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
292     IdxResult.mul(Scale.getSExtValue());
293     Result.add(IdxResult);
294 
295     // If Op0 is signed non-negative, the GEP is increasing monotonically and
296     // can be de-composed.
297     if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
298       Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
299                                  ConstantInt::get(Index->getType(), 0));
300   }
301   return Result;
302 }
303 
304 // Decomposes \p V into a constant offset + list of pairs { Coefficient,
305 // Variable } where Coefficient * Variable. The sum of the constant offset and
306 // pairs equals \p V.
307 static Decomposition decompose(Value *V,
308                                SmallVectorImpl<PreconditionTy> &Preconditions,
309                                bool IsSigned, const DataLayout &DL) {
310 
311   auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
312                                                       bool IsSignedB) {
313     auto ResA = decompose(A, Preconditions, IsSigned, DL);
314     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
315     ResA.add(ResB);
316     return ResA;
317   };
318 
319   // Decompose \p V used with a signed predicate.
320   if (IsSigned) {
321     if (auto *CI = dyn_cast<ConstantInt>(V)) {
322       if (canUseSExt(CI))
323         return CI->getSExtValue();
324     }
325     Value *Op0;
326     Value *Op1;
327     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
328       return MergeResults(Op0, Op1, IsSigned);
329 
330     ConstantInt *CI;
331     if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI)))) {
332       auto Result = decompose(Op0, Preconditions, IsSigned, DL);
333       Result.mul(CI->getSExtValue());
334       return Result;
335     }
336 
337     return V;
338   }
339 
340   if (auto *CI = dyn_cast<ConstantInt>(V)) {
341     if (CI->uge(MaxConstraintValue))
342       return V;
343     return int64_t(CI->getZExtValue());
344   }
345 
346   if (auto *GEP = dyn_cast<GEPOperator>(V))
347     return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
348 
349   Value *Op0;
350   bool IsKnownNonNegative = false;
351   if (match(V, m_ZExt(m_Value(Op0)))) {
352     IsKnownNonNegative = true;
353     V = Op0;
354   }
355 
356   Value *Op1;
357   ConstantInt *CI;
358   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
359     return MergeResults(Op0, Op1, IsSigned);
360   }
361   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
362     if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
363       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
364                                  ConstantInt::get(Op0->getType(), 0));
365     if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
366       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
367                                  ConstantInt::get(Op1->getType(), 0));
368 
369     return MergeResults(Op0, Op1, IsSigned);
370   }
371 
372   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
373       canUseSExt(CI)) {
374     Preconditions.emplace_back(
375         CmpInst::ICMP_UGE, Op0,
376         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
377     return MergeResults(Op0, CI, true);
378   }
379 
380   // Decompose or as an add if there are no common bits between the operands.
381   if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) &&
382       haveNoCommonBitsSet(Op0, CI, DL)) {
383     return MergeResults(Op0, CI, IsSigned);
384   }
385 
386   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
387     if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
388       return {V, IsKnownNonNegative};
389     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
390     Result.mul(int64_t{1} << CI->getSExtValue());
391     return Result;
392   }
393 
394   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
395       (!CI->isNegative())) {
396     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
397     Result.mul(CI->getSExtValue());
398     return Result;
399   }
400 
401   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI))
402     return {-1 * CI->getSExtValue(), {{1, Op0}}};
403   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
404     return {0, {{1, Op0}, {-1, Op1}}};
405 
406   return {V, IsKnownNonNegative};
407 }
408 
409 ConstraintTy
410 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
411                               SmallVectorImpl<Value *> &NewVariables) const {
412   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
413   bool IsEq = false;
414   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
415   switch (Pred) {
416   case CmpInst::ICMP_UGT:
417   case CmpInst::ICMP_UGE:
418   case CmpInst::ICMP_SGT:
419   case CmpInst::ICMP_SGE: {
420     Pred = CmpInst::getSwappedPredicate(Pred);
421     std::swap(Op0, Op1);
422     break;
423   }
424   case CmpInst::ICMP_EQ:
425     if (match(Op1, m_Zero())) {
426       Pred = CmpInst::ICMP_ULE;
427     } else {
428       IsEq = true;
429       Pred = CmpInst::ICMP_ULE;
430     }
431     break;
432   case CmpInst::ICMP_NE:
433     if (!match(Op1, m_Zero()))
434       return {};
435     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
436     std::swap(Op0, Op1);
437     break;
438   default:
439     break;
440   }
441 
442   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
443       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
444     return {};
445 
446   SmallVector<PreconditionTy, 4> Preconditions;
447   bool IsSigned = CmpInst::isSigned(Pred);
448   auto &Value2Index = getValue2Index(IsSigned);
449   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
450                         Preconditions, IsSigned, DL);
451   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
452                         Preconditions, IsSigned, DL);
453   int64_t Offset1 = ADec.Offset;
454   int64_t Offset2 = BDec.Offset;
455   Offset1 *= -1;
456 
457   auto &VariablesA = ADec.Vars;
458   auto &VariablesB = BDec.Vars;
459 
460   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
461   // new entry to NewVariables.
462   DenseMap<Value *, unsigned> NewIndexMap;
463   auto GetOrAddIndex = [&Value2Index, &NewVariables,
464                         &NewIndexMap](Value *V) -> unsigned {
465     auto V2I = Value2Index.find(V);
466     if (V2I != Value2Index.end())
467       return V2I->second;
468     auto Insert =
469         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
470     if (Insert.second)
471       NewVariables.push_back(V);
472     return Insert.first->second;
473   };
474 
475   // Make sure all variables have entries in Value2Index or NewVariables.
476   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
477     GetOrAddIndex(KV.Variable);
478 
479   // Build result constraint, by first adding all coefficients from A and then
480   // subtracting all coefficients from B.
481   ConstraintTy Res(
482       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
483       IsSigned);
484   // Collect variables that are known to be positive in all uses in the
485   // constraint.
486   DenseMap<Value *, bool> KnownNonNegativeVariables;
487   Res.IsEq = IsEq;
488   auto &R = Res.Coefficients;
489   for (const auto &KV : VariablesA) {
490     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
491     auto I =
492         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
493     I.first->second &= KV.IsKnownNonNegative;
494   }
495 
496   for (const auto &KV : VariablesB) {
497     if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient,
498                     R[GetOrAddIndex(KV.Variable)]))
499       return {};
500     auto I =
501         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
502     I.first->second &= KV.IsKnownNonNegative;
503   }
504 
505   int64_t OffsetSum;
506   if (AddOverflow(Offset1, Offset2, OffsetSum))
507     return {};
508   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
509     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
510       return {};
511   R[0] = OffsetSum;
512   Res.Preconditions = std::move(Preconditions);
513 
514   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
515   // variables.
516   while (!NewVariables.empty()) {
517     int64_t Last = R.back();
518     if (Last != 0)
519       break;
520     R.pop_back();
521     Value *RemovedV = NewVariables.pop_back_val();
522     NewIndexMap.erase(RemovedV);
523   }
524 
525   // Add extra constraints for variables that are known positive.
526   for (auto &KV : KnownNonNegativeVariables) {
527     if (!KV.second ||
528         (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
529       continue;
530     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
531     C[GetOrAddIndex(KV.first)] = -1;
532     Res.ExtraInfo.push_back(C);
533   }
534   return Res;
535 }
536 
537 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
538                                                      Value *Op0,
539                                                      Value *Op1) const {
540   // If both operands are known to be non-negative, change signed predicates to
541   // unsigned ones. This increases the reasoning effectiveness in combination
542   // with the signed <-> unsigned transfer logic.
543   if (CmpInst::isSigned(Pred) &&
544       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
545       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
546     Pred = CmpInst::getUnsignedPredicate(Pred);
547 
548   SmallVector<Value *> NewVariables;
549   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
550   if (R.IsEq || !NewVariables.empty())
551     return {};
552   return R;
553 }
554 
555 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
556   return Coefficients.size() > 0 &&
557          all_of(Preconditions, [&Info](const PreconditionTy &C) {
558            return Info.doesHold(C.Pred, C.Op0, C.Op1);
559          });
560 }
561 
562 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
563                               Value *B) const {
564   auto R = getConstraintForSolving(Pred, A, B);
565   return R.Preconditions.empty() && !R.empty() &&
566          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
567 }
568 
569 void ConstraintInfo::transferToOtherSystem(
570     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
571     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
572   // Check if we can combine facts from the signed and unsigned systems to
573   // derive additional facts.
574   if (!A->getType()->isIntegerTy())
575     return;
576   // FIXME: This currently depends on the order we add facts. Ideally we
577   // would first add all known facts and only then try to add additional
578   // facts.
579   switch (Pred) {
580   default:
581     break;
582   case CmpInst::ICMP_ULT:
583     //  If B is a signed positive constant, A >=s 0 and A <s B.
584     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
585       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
586               NumOut, DFSInStack);
587       addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack);
588     }
589     break;
590   case CmpInst::ICMP_SLT:
591     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
592       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
593     break;
594   case CmpInst::ICMP_SGT: {
595     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
596       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
597               NumOut, DFSInStack);
598     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0)))
599       addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
600 
601     break;
602   }
603   case CmpInst::ICMP_SGE:
604     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
605       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
606     }
607     break;
608   }
609 }
610 
611 namespace {
612 /// Represents either
613 ///  * a condition that holds on entry to a block (=conditional fact)
614 ///  * an assume (=assume fact)
615 ///  * an instruction to simplify.
616 /// It also tracks the Dominator DFS in and out numbers for each entry.
617 struct FactOrCheck {
618   Instruction *Inst;
619   unsigned NumIn;
620   unsigned NumOut;
621   bool IsCheck;
622   bool Not;
623 
624   FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool IsCheck, bool Not)
625       : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
626         IsCheck(IsCheck), Not(Not) {}
627 
628   static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst,
629                              bool Not = false) {
630     return FactOrCheck(DTN, Inst, false, Not);
631   }
632 
633   static FactOrCheck getCheck(DomTreeNode *DTN, Instruction *Inst) {
634     return FactOrCheck(DTN, Inst, true, false);
635   }
636 
637   bool isAssumeFact() const {
638     if (!IsCheck && isa<IntrinsicInst>(Inst)) {
639       assert(match(Inst, m_Intrinsic<Intrinsic::assume>()));
640       return true;
641     }
642     return false;
643   }
644 
645   bool isConditionFact() const { return !IsCheck && isa<CmpInst>(Inst); }
646 };
647 
648 /// Keep state required to build worklist.
649 struct State {
650   DominatorTree &DT;
651   SmallVector<FactOrCheck, 64> WorkList;
652 
653   State(DominatorTree &DT) : DT(DT) {}
654 
655   /// Process block \p BB and add known facts to work-list.
656   void addInfoFor(BasicBlock &BB);
657 
658   /// Returns true if we can add a known condition from BB to its successor
659   /// block Succ.
660   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
661     return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
662   }
663 };
664 
665 } // namespace
666 
667 #ifndef NDEBUG
668 
669 static void dumpConstraint(ArrayRef<int64_t> C,
670                            const DenseMap<Value *, unsigned> &Value2Index) {
671   ConstraintSystem CS(Value2Index);
672   CS.addVariableRowFill(C);
673   CS.dump();
674 }
675 #endif
676 
677 void State::addInfoFor(BasicBlock &BB) {
678   // True as long as long as the current instruction is guaranteed to execute.
679   bool GuaranteedToExecute = true;
680   // Queue conditions and assumes.
681   for (Instruction &I : BB) {
682     if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
683       WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), Cmp));
684       continue;
685     }
686 
687     if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) {
688       WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), &I));
689       continue;
690     }
691 
692     Value *Cond;
693     // For now, just handle assumes with a single compare as condition.
694     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
695         isa<ICmpInst>(Cond)) {
696       if (GuaranteedToExecute) {
697         // The assume is guaranteed to execute when BB is entered, hence Cond
698         // holds on entry to BB.
699         WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()),
700                                                    cast<Instruction>(Cond)));
701       } else {
702         WorkList.emplace_back(
703             FactOrCheck::getFact(DT.getNode(I.getParent()), &I));
704       }
705     }
706     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
707   }
708 
709   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
710   if (!Br || !Br->isConditional())
711     return;
712 
713   Value *Cond = Br->getCondition();
714 
715   // If the condition is a chain of ORs/AND and the successor only has the
716   // current block as predecessor, queue conditions for the successor.
717   Value *Op0, *Op1;
718   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
719       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
720     bool IsOr = match(Cond, m_LogicalOr());
721     bool IsAnd = match(Cond, m_LogicalAnd());
722     // If there's a select that matches both AND and OR, we need to commit to
723     // one of the options. Arbitrarily pick OR.
724     if (IsOr && IsAnd)
725       IsAnd = false;
726 
727     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
728     if (canAddSuccessor(BB, Successor)) {
729       SmallVector<Value *> CondWorkList;
730       SmallPtrSet<Value *, 8> SeenCond;
731       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
732         if (SeenCond.insert(V).second)
733           CondWorkList.push_back(V);
734       };
735       QueueValue(Op1);
736       QueueValue(Op0);
737       while (!CondWorkList.empty()) {
738         Value *Cur = CondWorkList.pop_back_val();
739         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
740           WorkList.emplace_back(
741               FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr));
742           continue;
743         }
744         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
745           QueueValue(Op1);
746           QueueValue(Op0);
747           continue;
748         }
749         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
750           QueueValue(Op1);
751           QueueValue(Op0);
752           continue;
753         }
754       }
755     }
756     return;
757   }
758 
759   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
760   if (!CmpI)
761     return;
762   if (canAddSuccessor(BB, Br->getSuccessor(0)))
763     WorkList.emplace_back(
764         FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI));
765   if (canAddSuccessor(BB, Br->getSuccessor(1)))
766     WorkList.emplace_back(
767         FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true));
768 }
769 
770 namespace {
771 /// Helper to keep track of a condition and if it should be treated as negated
772 /// for reproducer construction.
773 struct ReproducerEntry {
774   CmpInst *Cond;
775   bool IsNot;
776 
777   ReproducerEntry(CmpInst *Cond, bool IsNot) : Cond(Cond), IsNot(IsNot) {}
778 };
779 } // namespace
780 
781 /// Helper function to generate a reproducer function for simplifying \p Cond.
782 /// The reproducer function contains a series of @llvm.assume calls, one for
783 /// each condition in \p Stack. For each condition, the operand instruction are
784 /// cloned until we reach operands that have an entry in \p Value2Index. Those
785 /// will then be added as function arguments. \p DT is used to order cloned
786 /// instructions. The reproducer function will get added to \p M, if it is
787 /// non-null. Otherwise no reproducer function is generated.
788 static void generateReproducer(CmpInst *Cond, Module *M,
789                                ArrayRef<ReproducerEntry> Stack,
790                                ConstraintInfo &Info, DominatorTree &DT) {
791   if (!M)
792     return;
793 
794   LLVMContext &Ctx = Cond->getContext();
795 
796   LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
797 
798   ValueToValueMapTy Old2New;
799   SmallVector<Value *> Args;
800   SmallPtrSet<Value *, 8> Seen;
801   // Traverse Cond and its operands recursively until we reach a value that's in
802   // Value2Index or not an instruction, or not a operation that
803   // ConstraintElimination can decompose. Such values will be considered as
804   // external inputs to the reproducer, they are collected and added as function
805   // arguments later.
806   auto CollectArguments = [&](CmpInst *Cond) {
807     if (!Cond)
808       return;
809     auto &Value2Index =
810         Info.getValue2Index(CmpInst::isSigned(Cond->getPredicate()));
811     SmallVector<Value *, 4> WorkList;
812     WorkList.push_back(Cond);
813     while (!WorkList.empty()) {
814       Value *V = WorkList.pop_back_val();
815       if (!Seen.insert(V).second)
816         continue;
817       if (Old2New.find(V) != Old2New.end())
818         continue;
819       if (isa<Constant>(V))
820         continue;
821 
822       auto *I = dyn_cast<Instruction>(V);
823       if (Value2Index.contains(V) || !I ||
824           !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) {
825         Old2New[V] = V;
826         Args.push_back(V);
827         LLVM_DEBUG(dbgs() << "  found external input " << *V << "\n");
828       } else {
829         append_range(WorkList, I->operands());
830       }
831     }
832   };
833 
834   for (auto &Entry : Stack)
835     CollectArguments(Entry.Cond);
836   CollectArguments(Cond);
837 
838   SmallVector<Type *> ParamTys;
839   for (auto *P : Args)
840     ParamTys.push_back(P->getType());
841 
842   FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
843                                         /*isVarArg=*/false);
844   Function *F = Function::Create(FTy, Function::ExternalLinkage,
845                                  Cond->getModule()->getName() +
846                                      Cond->getFunction()->getName() + "repro",
847                                  M);
848   // Add arguments to the reproducer function for each external value collected.
849   for (unsigned I = 0; I < Args.size(); ++I) {
850     F->getArg(I)->setName(Args[I]->getName());
851     Old2New[Args[I]] = F->getArg(I);
852   }
853 
854   BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
855   IRBuilder<> Builder(Entry);
856   Builder.CreateRet(Builder.getTrue());
857   Builder.SetInsertPoint(Entry->getTerminator());
858 
859   // Clone instructions in \p Ops and their operands recursively until reaching
860   // an value in Value2Index (external input to the reproducer). Update Old2New
861   // mapping for the original and cloned instructions. Sort instructions to
862   // clone by dominance, then insert the cloned instructions in the function.
863   auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
864     SmallVector<Value *, 4> WorkList(Ops);
865     SmallVector<Instruction *> ToClone;
866     auto &Value2Index = Info.getValue2Index(IsSigned);
867     while (!WorkList.empty()) {
868       Value *V = WorkList.pop_back_val();
869       if (Old2New.find(V) != Old2New.end())
870         continue;
871 
872       auto *I = dyn_cast<Instruction>(V);
873       if (!Value2Index.contains(V) && I) {
874         Old2New[V] = nullptr;
875         ToClone.push_back(I);
876         append_range(WorkList, I->operands());
877       }
878     }
879 
880     sort(ToClone,
881          [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
882     for (Instruction *I : ToClone) {
883       Instruction *Cloned = I->clone();
884       Old2New[I] = Cloned;
885       Old2New[I]->setName(I->getName());
886       Cloned->insertBefore(&*Builder.GetInsertPoint());
887       Cloned->dropUnknownNonDebugMetadata();
888       Cloned->setDebugLoc({});
889     }
890   };
891 
892   // Materialize the assumptions for the reproducer using the entries in Stack.
893   // That is, first clone the operands of the condition recursively until we
894   // reach an external input to the reproducer and add them to the reproducer
895   // function. Then add an ICmp for the condition (with the inverse predicate if
896   // the entry is negated) and an assert using the ICmp.
897   for (auto &Entry : Stack) {
898     if (!Entry.Cond)
899       continue;
900 
901     LLVM_DEBUG(dbgs() << "  Materializing assumption " << *Entry.Cond << "\n");
902     CmpInst::Predicate Pred = Entry.Cond->getPredicate();
903     if (Entry.IsNot)
904       Pred = CmpInst::getInversePredicate(Pred);
905 
906     CloneInstructions({Entry.Cond->getOperand(0), Entry.Cond->getOperand(1)},
907                       CmpInst::isSigned(Entry.Cond->getPredicate()));
908 
909     auto *Cmp = Builder.CreateICmp(Pred, Entry.Cond->getOperand(0),
910                                    Entry.Cond->getOperand(1));
911     Builder.CreateAssumption(Cmp);
912   }
913 
914   // Finally, clone the condition to reproduce and remap instruction operands in
915   // the reproducer using Old2New.
916   CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
917   Entry->getTerminator()->setOperand(0, Cond);
918   remapInstructionsInBlocks({Entry}, Old2New);
919 
920   assert(!verifyFunction(*F, &dbgs()));
921 }
922 
923 static bool checkAndReplaceCondition(
924     CmpInst *Cmp, ConstraintInfo &Info, Module *ReproducerModule,
925     ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT) {
926   LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
927 
928   CmpInst::Predicate Pred = Cmp->getPredicate();
929   Value *A = Cmp->getOperand(0);
930   Value *B = Cmp->getOperand(1);
931 
932   auto R = Info.getConstraintForSolving(Pred, A, B);
933   if (R.empty() || !R.isValid(Info)){
934     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
935     return false;
936   }
937 
938   auto &CSToUse = Info.getCS(R.IsSigned);
939 
940   // If there was extra information collected during decomposition, apply
941   // it now and remove it immediately once we are done with reasoning
942   // about the constraint.
943   for (auto &Row : R.ExtraInfo)
944     CSToUse.addVariableRow(Row);
945   auto InfoRestorer = make_scope_exit([&]() {
946     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
947       CSToUse.popLastConstraint();
948   });
949 
950   auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
951     if (!DebugCounter::shouldExecute(EliminatedCounter))
952       return false;
953 
954     LLVM_DEBUG({
955       if (IsTrue) {
956         dbgs() << "Condition " << *Cmp;
957       } else {
958         auto InversePred = Cmp->getInversePredicate();
959         dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " "
960                << *A << ", " << *B;
961       }
962       dbgs() << " implied by dominating constraints\n";
963       CSToUse.dump();
964     });
965 
966     generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
967     Constant *ConstantC = ConstantInt::getBool(
968         CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
969     Cmp->replaceUsesWithIf(ConstantC, [](Use &U) {
970       // Conditions in an assume trivially simplify to true. Skip uses
971       // in assume calls to not destroy the available information.
972       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
973       return !II || II->getIntrinsicID() != Intrinsic::assume;
974     });
975     NumCondsRemoved++;
976     return true;
977   };
978 
979   bool Changed = false;
980   bool IsConditionImplied = CSToUse.isConditionImplied(R.Coefficients);
981 
982   if (IsConditionImplied) {
983     Changed = ReplaceCmpWithConstant(Cmp, true);
984     if (!Changed)
985       return false;
986   }
987 
988   // Compute them separately.
989   auto Negated = ConstraintSystem::negate(R.Coefficients);
990   auto IsNegatedImplied =
991       !Negated.empty() && CSToUse.isConditionImplied(Negated);
992 
993   if (IsNegatedImplied) {
994     Changed = ReplaceCmpWithConstant(Cmp, false);
995     if (!Changed)
996       return false;
997   }
998 
999   return Changed;
1000 }
1001 
1002 static void
1003 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
1004                      Module *ReproducerModule,
1005                      SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1006                      SmallVectorImpl<StackEntry> &DFSInStack) {
1007   Info.popLastConstraint(E.IsSigned);
1008   // Remove variables in the system that went out of scope.
1009   auto &Mapping = Info.getValue2Index(E.IsSigned);
1010   for (Value *V : E.ValuesToRelease)
1011     Mapping.erase(V);
1012   Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1013   DFSInStack.pop_back();
1014   if (ReproducerModule)
1015     ReproducerCondStack.pop_back();
1016 }
1017 
1018 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
1019                              unsigned NumIn, unsigned NumOut,
1020                              SmallVectorImpl<StackEntry> &DFSInStack) {
1021   // If the constraint has a pre-condition, skip the constraint if it does not
1022   // hold.
1023   SmallVector<Value *> NewVariables;
1024   auto R = getConstraint(Pred, A, B, NewVariables);
1025   if (!R.isValid(*this))
1026     return;
1027 
1028   LLVM_DEBUG(dbgs() << "Adding '" << Pred << " ";
1029              A->printAsOperand(dbgs(), false); dbgs() << ", ";
1030              B->printAsOperand(dbgs(), false); dbgs() << "'\n");
1031   bool Added = false;
1032   auto &CSToUse = getCS(R.IsSigned);
1033   if (R.Coefficients.empty())
1034     return;
1035 
1036   Added |= CSToUse.addVariableRowFill(R.Coefficients);
1037 
1038   // If R has been added to the system, add the new variables and queue it for
1039   // removal once it goes out-of-scope.
1040   if (Added) {
1041     SmallVector<Value *, 2> ValuesToRelease;
1042     auto &Value2Index = getValue2Index(R.IsSigned);
1043     for (Value *V : NewVariables) {
1044       Value2Index.insert({V, Value2Index.size() + 1});
1045       ValuesToRelease.push_back(V);
1046     }
1047 
1048     LLVM_DEBUG({
1049       dbgs() << "  constraint: ";
1050       dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1051       dbgs() << "\n";
1052     });
1053 
1054     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1055                             std::move(ValuesToRelease));
1056 
1057     if (R.IsEq) {
1058       // Also add the inverted constraint for equality constraints.
1059       for (auto &Coeff : R.Coefficients)
1060         Coeff *= -1;
1061       CSToUse.addVariableRowFill(R.Coefficients);
1062 
1063       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1064                               SmallVector<Value *, 2>());
1065     }
1066   }
1067 }
1068 
1069 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
1070                                    SmallVectorImpl<Instruction *> &ToRemove) {
1071   bool Changed = false;
1072   IRBuilder<> Builder(II->getParent(), II->getIterator());
1073   Value *Sub = nullptr;
1074   for (User *U : make_early_inc_range(II->users())) {
1075     if (match(U, m_ExtractValue<0>(m_Value()))) {
1076       if (!Sub)
1077         Sub = Builder.CreateSub(A, B);
1078       U->replaceAllUsesWith(Sub);
1079       Changed = true;
1080     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
1081       U->replaceAllUsesWith(Builder.getFalse());
1082       Changed = true;
1083     } else
1084       continue;
1085 
1086     if (U->use_empty()) {
1087       auto *I = cast<Instruction>(U);
1088       ToRemove.push_back(I);
1089       I->setOperand(0, PoisonValue::get(II->getType()));
1090       Changed = true;
1091     }
1092   }
1093 
1094   if (II->use_empty()) {
1095     II->eraseFromParent();
1096     Changed = true;
1097   }
1098   return Changed;
1099 }
1100 
1101 static bool
1102 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
1103                           SmallVectorImpl<Instruction *> &ToRemove) {
1104   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1105                               ConstraintInfo &Info) {
1106     auto R = Info.getConstraintForSolving(Pred, A, B);
1107     if (R.size() < 2 || !R.isValid(Info))
1108       return false;
1109 
1110     auto &CSToUse = Info.getCS(R.IsSigned);
1111     return CSToUse.isConditionImplied(R.Coefficients);
1112   };
1113 
1114   bool Changed = false;
1115   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1116     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1117     // can be simplified to a regular sub.
1118     Value *A = II->getArgOperand(0);
1119     Value *B = II->getArgOperand(1);
1120     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1121         !DoesConditionHold(CmpInst::ICMP_SGE, B,
1122                            ConstantInt::get(A->getType(), 0), Info))
1123       return false;
1124     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
1125   }
1126   return Changed;
1127 }
1128 
1129 static bool eliminateConstraints(Function &F, DominatorTree &DT,
1130                                  OptimizationRemarkEmitter &ORE) {
1131   bool Changed = false;
1132   DT.updateDFSNumbers();
1133   SmallVector<Value *> FunctionArgs;
1134   for (Value &Arg : F.args())
1135     FunctionArgs.push_back(&Arg);
1136   ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs);
1137   State S(DT);
1138   std::unique_ptr<Module> ReproducerModule(
1139       DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1140 
1141   // First, collect conditions implied by branches and blocks with their
1142   // Dominator DFS in and out numbers.
1143   for (BasicBlock &BB : F) {
1144     if (!DT.getNode(&BB))
1145       continue;
1146     S.addInfoFor(BB);
1147   }
1148 
1149   // Next, sort worklist by dominance, so that dominating conditions to check
1150   // and facts come before conditions and facts dominated by them. If a
1151   // condition to check and a fact have the same numbers, conditional facts come
1152   // first. Assume facts and checks are ordered according to their relative
1153   // order in the containing basic block. Also make sure conditions with
1154   // constant operands come before conditions without constant operands. This
1155   // increases the effectiveness of the current signed <-> unsigned fact
1156   // transfer logic.
1157   stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1158     auto HasNoConstOp = [](const FactOrCheck &B) {
1159       return !isa<ConstantInt>(B.Inst->getOperand(0)) &&
1160              !isa<ConstantInt>(B.Inst->getOperand(1));
1161     };
1162     // If both entries have the same In numbers, conditional facts come first.
1163     // Otherwise use the relative order in the basic block.
1164     if (A.NumIn == B.NumIn) {
1165       if (A.isConditionFact() && B.isConditionFact()) {
1166         bool NoConstOpA = HasNoConstOp(A);
1167         bool NoConstOpB = HasNoConstOp(B);
1168         return NoConstOpA < NoConstOpB;
1169       }
1170       if (A.isConditionFact())
1171         return true;
1172       if (B.isConditionFact())
1173         return false;
1174       return A.Inst->comesBefore(B.Inst);
1175     }
1176     return A.NumIn < B.NumIn;
1177   });
1178 
1179   SmallVector<Instruction *> ToRemove;
1180 
1181   // Finally, process ordered worklist and eliminate implied conditions.
1182   SmallVector<StackEntry, 16> DFSInStack;
1183   SmallVector<ReproducerEntry> ReproducerCondStack;
1184   for (FactOrCheck &CB : S.WorkList) {
1185     // First, pop entries from the stack that are out-of-scope for CB. Remove
1186     // the corresponding entry from the constraint system.
1187     while (!DFSInStack.empty()) {
1188       auto &E = DFSInStack.back();
1189       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1190                         << "\n");
1191       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1192       assert(E.NumIn <= CB.NumIn);
1193       if (CB.NumOut <= E.NumOut)
1194         break;
1195       LLVM_DEBUG({
1196         dbgs() << "Removing ";
1197         dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1198                        Info.getValue2Index(E.IsSigned));
1199         dbgs() << "\n";
1200       });
1201       removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
1202                            DFSInStack);
1203     }
1204 
1205     LLVM_DEBUG({
1206       dbgs() << "Processing ";
1207       if (CB.IsCheck)
1208         dbgs() << "condition to simplify: " << *CB.Inst;
1209       else
1210         dbgs() << "fact to add to the system: " << *CB.Inst;
1211       dbgs() << "\n";
1212     });
1213 
1214     // For a block, check if any CmpInsts become known based on the current set
1215     // of constraints.
1216     if (CB.IsCheck) {
1217       if (auto *II = dyn_cast<WithOverflowInst>(CB.Inst)) {
1218         Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1219       } else if (auto *Cmp = dyn_cast<ICmpInst>(CB.Inst)) {
1220         Changed |= checkAndReplaceCondition(Cmp, Info, ReproducerModule.get(),
1221                                             ReproducerCondStack, S.DT);
1222       }
1223       continue;
1224     }
1225 
1226     ICmpInst::Predicate Pred;
1227     Value *A, *B;
1228     Value *Cmp = CB.Inst;
1229     match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp)));
1230     if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
1231       if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1232         LLVM_DEBUG(
1233             dbgs()
1234             << "Skip adding constraint because system has too many rows.\n");
1235         continue;
1236       }
1237 
1238       // Use the inverse predicate if required.
1239       if (CB.Not)
1240         Pred = CmpInst::getInversePredicate(Pred);
1241 
1242       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1243       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1244         ReproducerCondStack.emplace_back(cast<CmpInst>(Cmp), CB.Not);
1245 
1246       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1247       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
1248         // Add dummy entries to ReproducerCondStack to keep it in sync with
1249         // DFSInStack.
1250         for (unsigned I = 0,
1251                       E = (DFSInStack.size() - ReproducerCondStack.size());
1252              I < E; ++I) {
1253           ReproducerCondStack.emplace_back(nullptr, false);
1254         }
1255       }
1256     }
1257   }
1258 
1259   if (ReproducerModule && !ReproducerModule->functions().empty()) {
1260     std::string S;
1261     raw_string_ostream StringS(S);
1262     ReproducerModule->print(StringS, nullptr);
1263     StringS.flush();
1264     OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
1265     Rem << ore::NV("module") << S;
1266     ORE.emit(Rem);
1267   }
1268 
1269 #ifndef NDEBUG
1270   unsigned SignedEntries =
1271       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1272   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
1273          "updates to CS and DFSInStack are out of sync");
1274   assert(Info.getCS(true).size() == SignedEntries &&
1275          "updates to CS and DFSInStack are out of sync");
1276 #endif
1277 
1278   for (Instruction *I : ToRemove)
1279     I->eraseFromParent();
1280   return Changed;
1281 }
1282 
1283 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1284                                                  FunctionAnalysisManager &AM) {
1285   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1286   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1287   if (!eliminateConstraints(F, DT, ORE))
1288     return PreservedAnalyses::all();
1289 
1290   PreservedAnalyses PA;
1291   PA.preserve<DominatorTreeAnalysis>();
1292   PA.preserveSet<CFGAnalyses>();
1293   return PA;
1294 }
1295