xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 3c71253eb76b010501bc8fd170b6401c9b551987)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/DebugCounter.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Transforms/Scalar.h"
35 
36 #include <cmath>
37 #include <string>
38 
39 using namespace llvm;
40 using namespace PatternMatch;
41 
42 #define DEBUG_TYPE "constraint-elimination"
43 
44 STATISTIC(NumCondsRemoved, "Number of instructions removed");
45 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
46               "Controls which conditions are eliminated");
47 
48 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
49 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
50 
51 namespace {
52 
53 class ConstraintInfo;
54 
55 struct StackEntry {
56   unsigned NumIn;
57   unsigned NumOut;
58   bool IsSigned = false;
59   /// Variables that can be removed from the system once the stack entry gets
60   /// removed.
61   SmallVector<Value *, 2> ValuesToRelease;
62 
63   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
64              SmallVector<Value *, 2> ValuesToRelease)
65       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
66         ValuesToRelease(ValuesToRelease) {}
67 };
68 
69 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
70 struct PreconditionTy {
71   CmpInst::Predicate Pred;
72   Value *Op0;
73   Value *Op1;
74 
75   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
76       : Pred(Pred), Op0(Op0), Op1(Op1) {}
77 };
78 
79 struct ConstraintTy {
80   SmallVector<int64_t, 8> Coefficients;
81   SmallVector<PreconditionTy, 2> Preconditions;
82 
83   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
84 
85   bool IsSigned = false;
86   bool IsEq = false;
87 
88   ConstraintTy() = default;
89 
90   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
91       : Coefficients(Coefficients), IsSigned(IsSigned) {}
92 
93   unsigned size() const { return Coefficients.size(); }
94 
95   unsigned empty() const { return Coefficients.empty(); }
96 
97   /// Returns true if all preconditions for this list of constraints are
98   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
99   bool isValid(const ConstraintInfo &Info) const;
100 };
101 
102 /// Wrapper encapsulating separate constraint systems and corresponding value
103 /// mappings for both unsigned and signed information. Facts are added to and
104 /// conditions are checked against the corresponding system depending on the
105 /// signed-ness of their predicates. While the information is kept separate
106 /// based on signed-ness, certain conditions can be transferred between the two
107 /// systems.
108 class ConstraintInfo {
109   DenseMap<Value *, unsigned> UnsignedValue2Index;
110   DenseMap<Value *, unsigned> SignedValue2Index;
111 
112   ConstraintSystem UnsignedCS;
113   ConstraintSystem SignedCS;
114 
115   const DataLayout &DL;
116 
117 public:
118   ConstraintInfo(const DataLayout &DL) : DL(DL) {}
119 
120   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
121     return Signed ? SignedValue2Index : UnsignedValue2Index;
122   }
123   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
124     return Signed ? SignedValue2Index : UnsignedValue2Index;
125   }
126 
127   ConstraintSystem &getCS(bool Signed) {
128     return Signed ? SignedCS : UnsignedCS;
129   }
130   const ConstraintSystem &getCS(bool Signed) const {
131     return Signed ? SignedCS : UnsignedCS;
132   }
133 
134   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
135   void popLastNVariables(bool Signed, unsigned N) {
136     getCS(Signed).popLastNVariables(N);
137   }
138 
139   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
140 
141   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
142                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
143 
144   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
145   /// constraints, using indices from the corresponding constraint system.
146   /// New variables that need to be added to the system are collected in
147   /// \p NewVariables.
148   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
149                              SmallVectorImpl<Value *> &NewVariables) const;
150 
151   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
152   /// constraints using getConstraint. Returns an empty constraint if the result
153   /// cannot be used to query the existing constraint system, e.g. because it
154   /// would require adding new variables. Also tries to convert signed
155   /// predicates to unsigned ones if possible to allow using the unsigned system
156   /// which increases the effectiveness of the signed <-> unsigned transfer
157   /// logic.
158   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
159                                        Value *Op1) const;
160 
161   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
162   /// system if \p Pred is signed/unsigned.
163   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
164                              unsigned NumIn, unsigned NumOut,
165                              SmallVectorImpl<StackEntry> &DFSInStack);
166 };
167 
168 /// Represents a (Coefficient * Variable) entry after IR decomposition.
169 struct DecompEntry {
170   int64_t Coefficient;
171   Value *Variable;
172   /// True if the variable is known positive in the current constraint.
173   bool IsKnownPositive;
174 
175   DecompEntry(int64_t Coefficient, Value *Variable,
176               bool IsKnownPositive = false)
177       : Coefficient(Coefficient), Variable(Variable),
178         IsKnownPositive(IsKnownPositive) {}
179 };
180 
181 } // namespace
182 
183 static SmallVector<DecompEntry, 4>
184 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
185           bool IsSigned, const DataLayout &DL);
186 
187 static bool canUseSExt(ConstantInt *CI) {
188   const APInt &Val = CI->getValue();
189   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
190 }
191 
192 // A helper to multiply 2 signed integers where overflowing is allowed.
193 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
194   int64_t Result;
195   MulOverflow(A, B, Result);
196   return Result;
197 }
198 
199 // A helper to add 2 signed integers where overflowing is allowed.
200 static int64_t addWithOverflow(int64_t A, int64_t B) {
201   int64_t Result;
202   AddOverflow(A, B, Result);
203   return Result;
204 }
205 
206 static SmallVector<DecompEntry, 4>
207 decomposeGEP(GetElementPtrInst &GEP,
208              SmallVector<PreconditionTy, 4> &Preconditions, bool IsSigned,
209              const DataLayout &DL) {
210   // Do not reason about pointers where the index size is larger than 64 bits,
211   // as the coefficients used to encode constraints are 64 bit integers.
212   unsigned AS =
213       cast<PointerType>(GEP.getPointerOperand()->getType())->getAddressSpace();
214   if (DL.getIndexSizeInBits(AS) > 64)
215     return {};
216 
217   if (!GEP.isInBounds())
218     return {{0, nullptr}, {1, &GEP}};
219 
220   // Handle the (gep (gep ....), C) case by incrementing the constant
221   // coefficient of the inner GEP, if C is a constant.
222   auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand());
223   if (InnerGEP && InnerGEP->getNumOperands() == 2 &&
224       isa<ConstantInt>(GEP.getOperand(1))) {
225     APInt Offset = cast<ConstantInt>(GEP.getOperand(1))->getValue();
226     auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
227 
228     auto GTI = gep_type_begin(GEP);
229     // Bail out for scalable vectors for now.
230     if (isa<ScalableVectorType>(GTI.getIndexedType()))
231       return {};
232     int64_t Scale = static_cast<int64_t>(
233         DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
234 
235     Result[0].Coefficient =
236         addWithOverflow(Result[0].Coefficient,
237                         multiplyWithOverflow(Scale, Offset.getSExtValue()));
238     if (Offset.isNegative()) {
239       // Add pre-condition ensuring the GEP is increasing monotonically and
240       // can be de-composed.
241       Preconditions.emplace_back(
242           CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
243           ConstantInt::get(InnerGEP->getOperand(1)->getType(),
244                            -1 * Offset.getSExtValue()));
245     }
246     return Result;
247   }
248 
249   SmallVector<DecompEntry, 4> Result = {{0, nullptr},
250                                         {1, GEP.getPointerOperand()}};
251   gep_type_iterator GTI = gep_type_begin(GEP);
252   for (User::const_op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
253        ++I, ++GTI) {
254     Value *Index = *I;
255 
256     // Bail out for scalable vectors for now.
257     if (isa<ScalableVectorType>(GTI.getIndexedType()))
258       return {};
259 
260     // Struct indices must be constants (and reference an existing field). Add
261     // them to the constant factor.
262     if (StructType *STy = GTI.getStructTypeOrNull()) {
263       // For a struct, add the member offset.
264       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
265       if (FieldNo == 0)
266         continue;
267 
268       // Add offset to constant factor.
269       Result[0].Coefficient = addWithOverflow(
270           Result[0].Coefficient,
271           int64_t(DL.getStructLayout(STy)->getElementOffset(FieldNo)));
272       continue;
273     }
274 
275     // For an array/pointer, add the element offset, explicitly scaled.
276     unsigned Scale = DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize();
277 
278     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
279     if (IdxResult.empty()) {
280       Result.emplace_back(Scale, Index);
281     } else {
282       for (auto &KV : IdxResult)
283         KV.Coefficient = multiplyWithOverflow(KV.Coefficient, Scale);
284       Result[0].Coefficient += IdxResult[0].Coefficient;
285       append_range(Result, ArrayRef<DecompEntry>(IdxResult).drop_front());
286     }
287     // If Op0 is signed non-negative, the GEP is increasing monotonically and
288     // can be de-composed.
289     if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
290       Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
291                                  ConstantInt::get(Index->getType(), 0));
292   }
293   return Result;
294 }
295 
296 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable
297 // } where Coefficient * Variable. The sum of the pairs equals \p V.  The first
298 // pair is the constant-factor and X must be nullptr. If the expression cannot
299 // be decomposed, returns an empty vector.
300 static SmallVector<DecompEntry, 4>
301 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
302           bool IsSigned, const DataLayout &DL) {
303 
304   auto MergeResults = [&Preconditions, IsSigned,
305                        &DL](Value *A, Value *B,
306                             bool IsSignedB) -> SmallVector<DecompEntry, 4> {
307     auto ResA = decompose(A, Preconditions, IsSigned, DL);
308     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
309     if (ResA.empty() || ResB.empty())
310       return {};
311     ResA[0].Coefficient += ResB[0].Coefficient;
312     append_range(ResA, drop_begin(ResB));
313     return ResA;
314   };
315 
316   // Decompose \p V used with a signed predicate.
317   if (IsSigned) {
318     if (auto *CI = dyn_cast<ConstantInt>(V)) {
319       if (canUseSExt(CI))
320         return {{CI->getSExtValue(), nullptr}};
321     }
322     Value *Op0;
323     Value *Op1;
324     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
325       return MergeResults(Op0, Op1, IsSigned);
326 
327     return {{0, nullptr}, {1, V}};
328   }
329 
330   if (auto *CI = dyn_cast<ConstantInt>(V)) {
331     if (CI->uge(MaxConstraintValue))
332       return {};
333     return {{int64_t(CI->getZExtValue()), nullptr}};
334   }
335 
336   if (auto *GEP = dyn_cast<GetElementPtrInst>(V))
337     return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
338 
339   Value *Op0;
340   bool IsKnownPositive = false;
341   if (match(V, m_ZExt(m_Value(Op0)))) {
342     IsKnownPositive = true;
343     V = Op0;
344   }
345 
346   Value *Op1;
347   ConstantInt *CI;
348   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
349     return MergeResults(Op0, Op1, IsSigned);
350   }
351   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
352     if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
353       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
354                                  ConstantInt::get(Op0->getType(), 0));
355     if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
356       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
357                                  ConstantInt::get(Op1->getType(), 0));
358 
359     return MergeResults(Op0, Op1, IsSigned);
360   }
361 
362   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
363       canUseSExt(CI)) {
364     Preconditions.emplace_back(
365         CmpInst::ICMP_UGE, Op0,
366         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
367     return MergeResults(Op0, CI, true);
368   }
369 
370   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
371     int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue()));
372     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
373     for (auto &KV : Result)
374       KV.Coefficient *= Mult;
375     return Result;
376   }
377 
378   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
379       (!CI->isNegative())) {
380     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
381     for (auto &KV : Result)
382       KV.Coefficient *= CI->getSExtValue();
383     return Result;
384   }
385 
386   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI))
387     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
388   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
389     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
390 
391   return {{0, nullptr}, {1, V, IsKnownPositive}};
392 }
393 
394 ConstraintTy
395 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
396                               SmallVectorImpl<Value *> &NewVariables) const {
397   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
398   bool IsEq = false;
399   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
400   switch (Pred) {
401   case CmpInst::ICMP_UGT:
402   case CmpInst::ICMP_UGE:
403   case CmpInst::ICMP_SGT:
404   case CmpInst::ICMP_SGE: {
405     Pred = CmpInst::getSwappedPredicate(Pred);
406     std::swap(Op0, Op1);
407     break;
408   }
409   case CmpInst::ICMP_EQ:
410     if (match(Op1, m_Zero())) {
411       Pred = CmpInst::ICMP_ULE;
412     } else {
413       IsEq = true;
414       Pred = CmpInst::ICMP_ULE;
415     }
416     break;
417   case CmpInst::ICMP_NE:
418     if (!match(Op1, m_Zero()))
419       return {};
420     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
421     std::swap(Op0, Op1);
422     break;
423   default:
424     break;
425   }
426 
427   // Only ULE and ULT predicates are supported at the moment.
428   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
429       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
430     return {};
431 
432   SmallVector<PreconditionTy, 4> Preconditions;
433   bool IsSigned = CmpInst::isSigned(Pred);
434   auto &Value2Index = getValue2Index(IsSigned);
435   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
436                         Preconditions, IsSigned, DL);
437   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
438                         Preconditions, IsSigned, DL);
439   // Skip if decomposing either of the values failed.
440   if (ADec.empty() || BDec.empty())
441     return {};
442 
443   int64_t Offset1 = ADec[0].Coefficient;
444   int64_t Offset2 = BDec[0].Coefficient;
445   Offset1 *= -1;
446 
447   // Create iterator ranges that skip the constant-factor.
448   auto VariablesA = llvm::drop_begin(ADec);
449   auto VariablesB = llvm::drop_begin(BDec);
450 
451   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
452   // new entry to NewVariables.
453   DenseMap<Value *, unsigned> NewIndexMap;
454   auto GetOrAddIndex = [&Value2Index, &NewVariables,
455                         &NewIndexMap](Value *V) -> unsigned {
456     auto V2I = Value2Index.find(V);
457     if (V2I != Value2Index.end())
458       return V2I->second;
459     auto Insert =
460         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
461     if (Insert.second)
462       NewVariables.push_back(V);
463     return Insert.first->second;
464   };
465 
466   // Make sure all variables have entries in Value2Index or NewVariables.
467   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
468     GetOrAddIndex(KV.Variable);
469 
470   // Build result constraint, by first adding all coefficients from A and then
471   // subtracting all coefficients from B.
472   ConstraintTy Res(
473       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
474       IsSigned);
475   // Collect variables that are known to be positive in all uses in the
476   // constraint.
477   DenseMap<Value *, bool> KnownPositiveVariables;
478   Res.IsEq = IsEq;
479   auto &R = Res.Coefficients;
480   for (const auto &KV : VariablesA) {
481     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
482     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
483     I.first->second &= KV.IsKnownPositive;
484   }
485 
486   for (const auto &KV : VariablesB) {
487     R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient;
488     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
489     I.first->second &= KV.IsKnownPositive;
490   }
491 
492   int64_t OffsetSum;
493   if (AddOverflow(Offset1, Offset2, OffsetSum))
494     return {};
495   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
496     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
497       return {};
498   R[0] = OffsetSum;
499   Res.Preconditions = std::move(Preconditions);
500 
501   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
502   // variables.
503   while (!NewVariables.empty()) {
504     int64_t Last = R.back();
505     if (Last != 0)
506       break;
507     R.pop_back();
508     Value *RemovedV = NewVariables.pop_back_val();
509     NewIndexMap.erase(RemovedV);
510   }
511 
512   // Add extra constraints for variables that are known positive.
513   for (auto &KV : KnownPositiveVariables) {
514     if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() &&
515                        NewIndexMap.find(KV.first) == NewIndexMap.end()))
516       continue;
517     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
518     C[GetOrAddIndex(KV.first)] = -1;
519     Res.ExtraInfo.push_back(C);
520   }
521   return Res;
522 }
523 
524 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
525                                                      Value *Op0,
526                                                      Value *Op1) const {
527   // If both operands are known to be non-negative, change signed predicates to
528   // unsigned ones. This increases the reasoning effectiveness in combination
529   // with the signed <-> unsigned transfer logic.
530   if (CmpInst::isSigned(Pred) &&
531       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
532       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
533     Pred = CmpInst::getUnsignedPredicate(Pred);
534 
535   SmallVector<Value *> NewVariables;
536   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
537   if (R.IsEq || !NewVariables.empty())
538     return {};
539   return R;
540 }
541 
542 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
543   return Coefficients.size() > 0 &&
544          all_of(Preconditions, [&Info](const PreconditionTy &C) {
545            return Info.doesHold(C.Pred, C.Op0, C.Op1);
546          });
547 }
548 
549 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
550                               Value *B) const {
551   auto R = getConstraintForSolving(Pred, A, B);
552   return R.Preconditions.empty() && !R.empty() &&
553          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
554 }
555 
556 void ConstraintInfo::transferToOtherSystem(
557     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
558     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
559   // Check if we can combine facts from the signed and unsigned systems to
560   // derive additional facts.
561   if (!A->getType()->isIntegerTy())
562     return;
563   // FIXME: This currently depends on the order we add facts. Ideally we
564   // would first add all known facts and only then try to add additional
565   // facts.
566   switch (Pred) {
567   default:
568     break;
569   case CmpInst::ICMP_ULT:
570     //  If B is a signed positive constant, A >=s 0 and A <s B.
571     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
572       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
573               NumOut, DFSInStack);
574       addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack);
575     }
576     break;
577   case CmpInst::ICMP_SLT:
578     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
579       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
580     break;
581   case CmpInst::ICMP_SGT:
582     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
583       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
584               NumOut, DFSInStack);
585     break;
586   case CmpInst::ICMP_SGE:
587     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
588       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
589     }
590     break;
591   }
592 }
593 
594 namespace {
595 /// Represents either a condition that holds on entry to a block or a basic
596 /// block, with their respective Dominator DFS in and out numbers.
597 struct ConstraintOrBlock {
598   unsigned NumIn;
599   unsigned NumOut;
600   bool IsBlock;
601   bool Not;
602   union {
603     BasicBlock *BB;
604     CmpInst *Condition;
605   };
606 
607   ConstraintOrBlock(DomTreeNode *DTN)
608       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
609         BB(DTN->getBlock()) {}
610   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
611       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
612         Not(Not), Condition(Condition) {}
613 };
614 
615 /// Keep state required to build worklist.
616 struct State {
617   DominatorTree &DT;
618   SmallVector<ConstraintOrBlock, 64> WorkList;
619 
620   State(DominatorTree &DT) : DT(DT) {}
621 
622   /// Process block \p BB and add known facts to work-list.
623   void addInfoFor(BasicBlock &BB);
624 
625   /// Returns true if we can add a known condition from BB to its successor
626   /// block Succ. Each predecessor of Succ can either be BB or be dominated
627   /// by Succ (e.g. the case when adding a condition from a pre-header to a
628   /// loop header).
629   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
630     if (BB.getSingleSuccessor()) {
631       assert(BB.getSingleSuccessor() == Succ);
632       return DT.properlyDominates(&BB, Succ);
633     }
634     return any_of(successors(&BB),
635                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
636            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
637              return Pred == &BB || DT.dominates(Succ, Pred);
638            });
639   }
640 };
641 
642 } // namespace
643 
644 #ifndef NDEBUG
645 static void dumpWithNames(const ConstraintSystem &CS,
646                           DenseMap<Value *, unsigned> &Value2Index) {
647   SmallVector<std::string> Names(Value2Index.size(), "");
648   for (auto &KV : Value2Index) {
649     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
650   }
651   CS.dump(Names);
652 }
653 
654 static void dumpWithNames(ArrayRef<int64_t> C,
655                           DenseMap<Value *, unsigned> &Value2Index) {
656   ConstraintSystem CS;
657   CS.addVariableRowFill(C);
658   dumpWithNames(CS, Value2Index);
659 }
660 #endif
661 
662 void State::addInfoFor(BasicBlock &BB) {
663   WorkList.emplace_back(DT.getNode(&BB));
664 
665   // True as long as long as the current instruction is guaranteed to execute.
666   bool GuaranteedToExecute = true;
667   // Scan BB for assume calls.
668   // TODO: also use this scan to queue conditions to simplify, so we can
669   // interleave facts from assumes and conditions to simplify in a single
670   // basic block. And to skip another traversal of each basic block when
671   // simplifying.
672   for (Instruction &I : BB) {
673     Value *Cond;
674     // For now, just handle assumes with a single compare as condition.
675     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
676         isa<ICmpInst>(Cond)) {
677       if (GuaranteedToExecute) {
678         // The assume is guaranteed to execute when BB is entered, hence Cond
679         // holds on entry to BB.
680         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
681       } else {
682         // Otherwise the condition only holds in the successors.
683         for (BasicBlock *Succ : successors(&BB)) {
684           if (!canAddSuccessor(BB, Succ))
685             continue;
686           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
687         }
688       }
689     }
690     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
691   }
692 
693   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
694   if (!Br || !Br->isConditional())
695     return;
696 
697   Value *Cond = Br->getCondition();
698 
699   // If the condition is a chain of ORs/AND and the successor only has the
700   // current block as predecessor, queue conditions for the successor.
701   Value *Op0, *Op1;
702   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
703       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
704     bool IsOr = match(Cond, m_LogicalOr());
705     bool IsAnd = match(Cond, m_LogicalAnd());
706     // If there's a select that matches both AND and OR, we need to commit to
707     // one of the options. Arbitrarily pick OR.
708     if (IsOr && IsAnd)
709       IsAnd = false;
710 
711     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
712     if (canAddSuccessor(BB, Successor)) {
713       SmallVector<Value *> CondWorkList;
714       SmallPtrSet<Value *, 8> SeenCond;
715       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
716         if (SeenCond.insert(V).second)
717           CondWorkList.push_back(V);
718       };
719       QueueValue(Op1);
720       QueueValue(Op0);
721       while (!CondWorkList.empty()) {
722         Value *Cur = CondWorkList.pop_back_val();
723         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
724           WorkList.emplace_back(DT.getNode(Successor), Cmp, IsOr);
725           continue;
726         }
727         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
728           QueueValue(Op1);
729           QueueValue(Op0);
730           continue;
731         }
732         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
733           QueueValue(Op1);
734           QueueValue(Op0);
735           continue;
736         }
737       }
738     }
739     return;
740   }
741 
742   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
743   if (!CmpI)
744     return;
745   if (canAddSuccessor(BB, Br->getSuccessor(0)))
746     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
747   if (canAddSuccessor(BB, Br->getSuccessor(1)))
748     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
749 }
750 
751 static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) {
752   LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
753   CmpInst::Predicate Pred = Cmp->getPredicate();
754   Value *A = Cmp->getOperand(0);
755   Value *B = Cmp->getOperand(1);
756 
757   auto R = Info.getConstraintForSolving(Pred, A, B);
758   if (R.empty() || !R.isValid(Info)){
759     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
760     return false;
761   }
762 
763   auto &CSToUse = Info.getCS(R.IsSigned);
764 
765   // If there was extra information collected during decomposition, apply
766   // it now and remove it immediately once we are done with reasoning
767   // about the constraint.
768   for (auto &Row : R.ExtraInfo)
769     CSToUse.addVariableRow(Row);
770   auto InfoRestorer = make_scope_exit([&]() {
771     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
772       CSToUse.popLastConstraint();
773   });
774 
775   bool Changed = false;
776   LLVMContext &Ctx = Cmp->getModule()->getContext();
777   if (CSToUse.isConditionImplied(R.Coefficients)) {
778     if (!DebugCounter::shouldExecute(EliminatedCounter))
779       return false;
780 
781     LLVM_DEBUG({
782       dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n";
783       dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
784     });
785     Cmp->replaceUsesWithIf(ConstantInt::getTrue(Ctx), [](Use &U) {
786       // Conditions in an assume trivially simplify to true. Skip uses
787       // in assume calls to not destroy the available information.
788       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
789       return !II || II->getIntrinsicID() != Intrinsic::assume;
790     });
791     NumCondsRemoved++;
792     Changed = true;
793   }
794   if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) {
795     if (!DebugCounter::shouldExecute(EliminatedCounter))
796       return false;
797 
798     LLVM_DEBUG({
799       dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n";
800       dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
801     });
802     Cmp->replaceAllUsesWith(ConstantInt::getFalse(Ctx));
803     NumCondsRemoved++;
804     Changed = true;
805   }
806   return Changed;
807 }
808 
809 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
810                              unsigned NumIn, unsigned NumOut,
811                              SmallVectorImpl<StackEntry> &DFSInStack) {
812   // If the constraint has a pre-condition, skip the constraint if it does not
813   // hold.
814   SmallVector<Value *> NewVariables;
815   auto R = getConstraint(Pred, A, B, NewVariables);
816   if (!R.isValid(*this))
817     return;
818 
819   LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " ";
820              A->printAsOperand(dbgs(), false); dbgs() << ", ";
821              B->printAsOperand(dbgs(), false); dbgs() << "'\n");
822   bool Added = false;
823   auto &CSToUse = getCS(R.IsSigned);
824   if (R.Coefficients.empty())
825     return;
826 
827   Added |= CSToUse.addVariableRowFill(R.Coefficients);
828 
829   // If R has been added to the system, add the new variables and queue it for
830   // removal once it goes out-of-scope.
831   if (Added) {
832     SmallVector<Value *, 2> ValuesToRelease;
833     auto &Value2Index = getValue2Index(R.IsSigned);
834     for (Value *V : NewVariables) {
835       Value2Index.insert({V, Value2Index.size() + 1});
836       ValuesToRelease.push_back(V);
837     }
838 
839     LLVM_DEBUG({
840       dbgs() << "  constraint: ";
841       dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
842       dbgs() << "\n";
843     });
844 
845     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease);
846 
847     if (R.IsEq) {
848       // Also add the inverted constraint for equality constraints.
849       for (auto &Coeff : R.Coefficients)
850         Coeff *= -1;
851       CSToUse.addVariableRowFill(R.Coefficients);
852 
853       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
854                               SmallVector<Value *, 2>());
855     }
856   }
857 }
858 
859 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
860                                    SmallVectorImpl<Instruction *> &ToRemove) {
861   bool Changed = false;
862   IRBuilder<> Builder(II->getParent(), II->getIterator());
863   Value *Sub = nullptr;
864   for (User *U : make_early_inc_range(II->users())) {
865     if (match(U, m_ExtractValue<0>(m_Value()))) {
866       if (!Sub)
867         Sub = Builder.CreateSub(A, B);
868       U->replaceAllUsesWith(Sub);
869       Changed = true;
870     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
871       U->replaceAllUsesWith(Builder.getFalse());
872       Changed = true;
873     } else
874       continue;
875 
876     if (U->use_empty()) {
877       auto *I = cast<Instruction>(U);
878       ToRemove.push_back(I);
879       I->setOperand(0, PoisonValue::get(II->getType()));
880       Changed = true;
881     }
882   }
883 
884   if (II->use_empty()) {
885     II->eraseFromParent();
886     Changed = true;
887   }
888   return Changed;
889 }
890 
891 static bool
892 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
893                           SmallVectorImpl<Instruction *> &ToRemove) {
894   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
895                               ConstraintInfo &Info) {
896     auto R = Info.getConstraintForSolving(Pred, A, B);
897     if (R.size() < 2 || !R.isValid(Info))
898       return false;
899 
900     auto &CSToUse = Info.getCS(R.IsSigned);
901     return CSToUse.isConditionImplied(R.Coefficients);
902   };
903 
904   bool Changed = false;
905   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
906     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
907     // can be simplified to a regular sub.
908     Value *A = II->getArgOperand(0);
909     Value *B = II->getArgOperand(1);
910     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
911         !DoesConditionHold(CmpInst::ICMP_SGE, B,
912                            ConstantInt::get(A->getType(), 0), Info))
913       return false;
914     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
915   }
916   return Changed;
917 }
918 
919 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
920   bool Changed = false;
921   DT.updateDFSNumbers();
922 
923   ConstraintInfo Info(F.getParent()->getDataLayout());
924   State S(DT);
925 
926   // First, collect conditions implied by branches and blocks with their
927   // Dominator DFS in and out numbers.
928   for (BasicBlock &BB : F) {
929     if (!DT.getNode(&BB))
930       continue;
931     S.addInfoFor(BB);
932   }
933 
934   // Next, sort worklist by dominance, so that dominating blocks and conditions
935   // come before blocks and conditions dominated by them. If a block and a
936   // condition have the same numbers, the condition comes before the block, as
937   // it holds on entry to the block. Also make sure conditions with constant
938   // operands come before conditions without constant operands. This increases
939   // the effectiveness of the current signed <-> unsigned fact transfer logic.
940   stable_sort(
941       S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
942         auto HasNoConstOp = [](const ConstraintOrBlock &B) {
943           return !B.IsBlock && !isa<ConstantInt>(B.Condition->getOperand(0)) &&
944                  !isa<ConstantInt>(B.Condition->getOperand(1));
945         };
946         bool NoConstOpA = HasNoConstOp(A);
947         bool NoConstOpB = HasNoConstOp(B);
948         return std::tie(A.NumIn, A.IsBlock, NoConstOpA) <
949                std::tie(B.NumIn, B.IsBlock, NoConstOpB);
950       });
951 
952   SmallVector<Instruction *> ToRemove;
953 
954   // Finally, process ordered worklist and eliminate implied conditions.
955   SmallVector<StackEntry, 16> DFSInStack;
956   for (ConstraintOrBlock &CB : S.WorkList) {
957     // First, pop entries from the stack that are out-of-scope for CB. Remove
958     // the corresponding entry from the constraint system.
959     while (!DFSInStack.empty()) {
960       auto &E = DFSInStack.back();
961       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
962                         << "\n");
963       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
964       assert(E.NumIn <= CB.NumIn);
965       if (CB.NumOut <= E.NumOut)
966         break;
967       LLVM_DEBUG({
968         dbgs() << "Removing ";
969         dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
970                       Info.getValue2Index(E.IsSigned));
971         dbgs() << "\n";
972       });
973 
974       Info.popLastConstraint(E.IsSigned);
975       // Remove variables in the system that went out of scope.
976       auto &Mapping = Info.getValue2Index(E.IsSigned);
977       for (Value *V : E.ValuesToRelease)
978         Mapping.erase(V);
979       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
980       DFSInStack.pop_back();
981     }
982 
983     LLVM_DEBUG({
984       dbgs() << "Processing ";
985       if (CB.IsBlock)
986         dbgs() << *CB.BB;
987       else
988         dbgs() << *CB.Condition;
989       dbgs() << "\n";
990     });
991 
992     // For a block, check if any CmpInsts become known based on the current set
993     // of constraints.
994     if (CB.IsBlock) {
995       for (Instruction &I : make_early_inc_range(*CB.BB)) {
996         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
997           Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
998           continue;
999         }
1000         auto *Cmp = dyn_cast<ICmpInst>(&I);
1001         if (!Cmp)
1002           continue;
1003 
1004         Changed |= checkAndReplaceCondition(Cmp, Info);
1005       }
1006       continue;
1007     }
1008 
1009     ICmpInst::Predicate Pred;
1010     Value *A, *B;
1011     if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
1012       // Use the inverse predicate if required.
1013       if (CB.Not)
1014         Pred = CmpInst::getInversePredicate(Pred);
1015 
1016       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1017       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1018     }
1019   }
1020 
1021 #ifndef NDEBUG
1022   unsigned SignedEntries =
1023       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1024   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
1025          "updates to CS and DFSInStack are out of sync");
1026   assert(Info.getCS(true).size() == SignedEntries &&
1027          "updates to CS and DFSInStack are out of sync");
1028 #endif
1029 
1030   for (Instruction *I : ToRemove)
1031     I->eraseFromParent();
1032   return Changed;
1033 }
1034 
1035 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1036                                                  FunctionAnalysisManager &AM) {
1037   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1038   if (!eliminateConstraints(F, DT))
1039     return PreservedAnalyses::all();
1040 
1041   PreservedAnalyses PA;
1042   PA.preserve<DominatorTreeAnalysis>();
1043   PA.preserveSet<CFGAnalyses>();
1044   return PA;
1045 }
1046 
1047 namespace {
1048 
1049 class ConstraintElimination : public FunctionPass {
1050 public:
1051   static char ID;
1052 
1053   ConstraintElimination() : FunctionPass(ID) {
1054     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
1055   }
1056 
1057   bool runOnFunction(Function &F) override {
1058     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1059     return eliminateConstraints(F, DT);
1060   }
1061 
1062   void getAnalysisUsage(AnalysisUsage &AU) const override {
1063     AU.setPreservesCFG();
1064     AU.addRequired<DominatorTreeWrapperPass>();
1065     AU.addPreserved<GlobalsAAWrapperPass>();
1066     AU.addPreserved<DominatorTreeWrapperPass>();
1067   }
1068 };
1069 
1070 } // end anonymous namespace
1071 
1072 char ConstraintElimination::ID = 0;
1073 
1074 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
1075                       "Constraint Elimination", false, false)
1076 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1077 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
1078 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
1079                     "Constraint Elimination", false, false)
1080 
1081 FunctionPass *llvm::createConstraintEliminationPass() {
1082   return new ConstraintElimination();
1083 }
1084