1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Verifier.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/DebugCounter.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 #include "llvm/Transforms/Utils/ValueMapper.h" 41 42 #include <cmath> 43 #include <optional> 44 #include <string> 45 46 using namespace llvm; 47 using namespace PatternMatch; 48 49 #define DEBUG_TYPE "constraint-elimination" 50 51 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 52 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 53 "Controls which conditions are eliminated"); 54 55 static cl::opt<unsigned> 56 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 57 cl::desc("Maximum number of rows to keep in constraint system")); 58 59 static cl::opt<bool> DumpReproducers( 60 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 61 cl::desc("Dump IR to reproduce successful transformations.")); 62 63 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 64 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 65 66 // A helper to multiply 2 signed integers where overflowing is allowed. 67 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 68 int64_t Result; 69 MulOverflow(A, B, Result); 70 return Result; 71 } 72 73 // A helper to add 2 signed integers where overflowing is allowed. 74 static int64_t addWithOverflow(int64_t A, int64_t B) { 75 int64_t Result; 76 AddOverflow(A, B, Result); 77 return Result; 78 } 79 80 static Instruction *getContextInstForUse(Use &U) { 81 Instruction *UserI = cast<Instruction>(U.getUser()); 82 if (auto *Phi = dyn_cast<PHINode>(UserI)) 83 UserI = Phi->getIncomingBlock(U)->getTerminator(); 84 return UserI; 85 } 86 87 namespace { 88 /// Struct to express a condition of the form %Op0 Pred %Op1. 89 struct ConditionTy { 90 CmpInst::Predicate Pred; 91 Value *Op0; 92 Value *Op1; 93 94 ConditionTy() 95 : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {} 96 ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 97 : Pred(Pred), Op0(Op0), Op1(Op1) {} 98 }; 99 100 /// Represents either 101 /// * a condition that holds on entry to a block (=condition fact) 102 /// * an assume (=assume fact) 103 /// * a use of a compare instruction to simplify. 104 /// It also tracks the Dominator DFS in and out numbers for each entry. 105 struct FactOrCheck { 106 enum class EntryTy { 107 ConditionFact, /// A condition that holds on entry to a block. 108 InstFact, /// A fact that holds after Inst executed (e.g. an assume or 109 /// min/mix intrinsic. 110 InstCheck, /// An instruction to simplify (e.g. an overflow math 111 /// intrinsics). 112 UseCheck /// An use of a compare instruction to simplify. 113 }; 114 115 union { 116 Instruction *Inst; 117 Use *U; 118 ConditionTy Cond; 119 }; 120 121 /// A pre-condition that must hold for the current fact to be added to the 122 /// system. 123 ConditionTy DoesHold; 124 125 unsigned NumIn; 126 unsigned NumOut; 127 EntryTy Ty; 128 129 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 130 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 131 Ty(Ty) {} 132 133 FactOrCheck(DomTreeNode *DTN, Use *U) 134 : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr), 135 NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 136 Ty(EntryTy::UseCheck) {} 137 138 FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1, 139 ConditionTy Precond = ConditionTy()) 140 : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()), 141 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 142 143 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 144 Value *Op0, Value *Op1, 145 ConditionTy Precond = ConditionTy()) { 146 return FactOrCheck(DTN, Pred, Op0, Op1, Precond); 147 } 148 149 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 150 return FactOrCheck(EntryTy::InstFact, DTN, Inst); 151 } 152 153 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 154 return FactOrCheck(DTN, U); 155 } 156 157 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 158 return FactOrCheck(EntryTy::InstCheck, DTN, CI); 159 } 160 161 bool isCheck() const { 162 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 163 } 164 165 Instruction *getContextInst() const { 166 if (Ty == EntryTy::UseCheck) 167 return getContextInstForUse(*U); 168 return Inst; 169 } 170 171 Instruction *getInstructionToSimplify() const { 172 assert(isCheck()); 173 if (Ty == EntryTy::InstCheck) 174 return Inst; 175 // The use may have been simplified to a constant already. 176 return dyn_cast<Instruction>(*U); 177 } 178 179 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 180 }; 181 182 /// Keep state required to build worklist. 183 struct State { 184 DominatorTree &DT; 185 LoopInfo &LI; 186 ScalarEvolution &SE; 187 SmallVector<FactOrCheck, 64> WorkList; 188 189 State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE) 190 : DT(DT), LI(LI), SE(SE) {} 191 192 /// Process block \p BB and add known facts to work-list. 193 void addInfoFor(BasicBlock &BB); 194 195 /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares 196 /// controlling the loop header. 197 void addInfoForInductions(BasicBlock &BB); 198 199 /// Returns true if we can add a known condition from BB to its successor 200 /// block Succ. 201 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 202 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 203 } 204 }; 205 206 class ConstraintInfo; 207 208 struct StackEntry { 209 unsigned NumIn; 210 unsigned NumOut; 211 bool IsSigned = false; 212 /// Variables that can be removed from the system once the stack entry gets 213 /// removed. 214 SmallVector<Value *, 2> ValuesToRelease; 215 216 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 217 SmallVector<Value *, 2> ValuesToRelease) 218 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 219 ValuesToRelease(ValuesToRelease) {} 220 }; 221 222 struct ConstraintTy { 223 SmallVector<int64_t, 8> Coefficients; 224 SmallVector<ConditionTy, 2> Preconditions; 225 226 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 227 228 bool IsSigned = false; 229 230 ConstraintTy() = default; 231 232 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 233 bool IsNe) 234 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 235 } 236 237 unsigned size() const { return Coefficients.size(); } 238 239 unsigned empty() const { return Coefficients.empty(); } 240 241 /// Returns true if all preconditions for this list of constraints are 242 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 243 bool isValid(const ConstraintInfo &Info) const; 244 245 bool isEq() const { return IsEq; } 246 247 bool isNe() const { return IsNe; } 248 249 /// Check if the current constraint is implied by the given ConstraintSystem. 250 /// 251 /// \return true or false if the constraint is proven to be respectively true, 252 /// or false. When the constraint cannot be proven to be either true or false, 253 /// std::nullopt is returned. 254 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 255 256 private: 257 bool IsEq = false; 258 bool IsNe = false; 259 }; 260 261 /// Wrapper encapsulating separate constraint systems and corresponding value 262 /// mappings for both unsigned and signed information. Facts are added to and 263 /// conditions are checked against the corresponding system depending on the 264 /// signed-ness of their predicates. While the information is kept separate 265 /// based on signed-ness, certain conditions can be transferred between the two 266 /// systems. 267 class ConstraintInfo { 268 269 ConstraintSystem UnsignedCS; 270 ConstraintSystem SignedCS; 271 272 const DataLayout &DL; 273 274 public: 275 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 276 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) { 277 auto &Value2Index = getValue2Index(false); 278 // Add Arg > -1 constraints to unsigned system for all function arguments. 279 for (Value *Arg : FunctionArgs) { 280 ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0), 281 false, false, false); 282 VarPos.Coefficients[Value2Index[Arg]] = -1; 283 UnsignedCS.addVariableRow(VarPos.Coefficients); 284 } 285 } 286 287 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 288 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 289 } 290 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 291 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 292 } 293 294 ConstraintSystem &getCS(bool Signed) { 295 return Signed ? SignedCS : UnsignedCS; 296 } 297 const ConstraintSystem &getCS(bool Signed) const { 298 return Signed ? SignedCS : UnsignedCS; 299 } 300 301 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 302 void popLastNVariables(bool Signed, unsigned N) { 303 getCS(Signed).popLastNVariables(N); 304 } 305 306 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 307 308 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 309 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 310 311 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 312 /// constraints, using indices from the corresponding constraint system. 313 /// New variables that need to be added to the system are collected in 314 /// \p NewVariables. 315 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 316 SmallVectorImpl<Value *> &NewVariables) const; 317 318 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 319 /// constraints using getConstraint. Returns an empty constraint if the result 320 /// cannot be used to query the existing constraint system, e.g. because it 321 /// would require adding new variables. Also tries to convert signed 322 /// predicates to unsigned ones if possible to allow using the unsigned system 323 /// which increases the effectiveness of the signed <-> unsigned transfer 324 /// logic. 325 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 326 Value *Op1) const; 327 328 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 329 /// system if \p Pred is signed/unsigned. 330 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 331 unsigned NumIn, unsigned NumOut, 332 SmallVectorImpl<StackEntry> &DFSInStack); 333 }; 334 335 /// Represents a (Coefficient * Variable) entry after IR decomposition. 336 struct DecompEntry { 337 int64_t Coefficient; 338 Value *Variable; 339 /// True if the variable is known positive in the current constraint. 340 bool IsKnownNonNegative; 341 342 DecompEntry(int64_t Coefficient, Value *Variable, 343 bool IsKnownNonNegative = false) 344 : Coefficient(Coefficient), Variable(Variable), 345 IsKnownNonNegative(IsKnownNonNegative) {} 346 }; 347 348 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 349 struct Decomposition { 350 int64_t Offset = 0; 351 SmallVector<DecompEntry, 3> Vars; 352 353 Decomposition(int64_t Offset) : Offset(Offset) {} 354 Decomposition(Value *V, bool IsKnownNonNegative = false) { 355 Vars.emplace_back(1, V, IsKnownNonNegative); 356 } 357 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 358 : Offset(Offset), Vars(Vars) {} 359 360 void add(int64_t OtherOffset) { 361 Offset = addWithOverflow(Offset, OtherOffset); 362 } 363 364 void add(const Decomposition &Other) { 365 add(Other.Offset); 366 append_range(Vars, Other.Vars); 367 } 368 369 void sub(const Decomposition &Other) { 370 Decomposition Tmp = Other; 371 Tmp.mul(-1); 372 add(Tmp.Offset); 373 append_range(Vars, Tmp.Vars); 374 } 375 376 void mul(int64_t Factor) { 377 Offset = multiplyWithOverflow(Offset, Factor); 378 for (auto &Var : Vars) 379 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 380 } 381 }; 382 383 // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr. 384 struct OffsetResult { 385 Value *BasePtr; 386 APInt ConstantOffset; 387 MapVector<Value *, APInt> VariableOffsets; 388 bool AllInbounds; 389 390 OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {} 391 392 OffsetResult(GEPOperator &GEP, const DataLayout &DL) 393 : BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) { 394 ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0); 395 } 396 }; 397 } // namespace 398 399 // Try to collect variable and constant offsets for \p GEP, partly traversing 400 // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting 401 // the offset fails. 402 static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) { 403 OffsetResult Result(GEP, DL); 404 unsigned BitWidth = Result.ConstantOffset.getBitWidth(); 405 if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets, 406 Result.ConstantOffset)) 407 return {}; 408 409 // If we have a nested GEP, check if we can combine the constant offset of the 410 // inner GEP with the outer GEP. 411 if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) { 412 MapVector<Value *, APInt> VariableOffsets2; 413 APInt ConstantOffset2(BitWidth, 0); 414 bool CanCollectInner = InnerGEP->collectOffset( 415 DL, BitWidth, VariableOffsets2, ConstantOffset2); 416 // TODO: Support cases with more than 1 variable offset. 417 if (!CanCollectInner || Result.VariableOffsets.size() > 1 || 418 VariableOffsets2.size() > 1 || 419 (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) { 420 // More than 1 variable index, use outer result. 421 return Result; 422 } 423 Result.BasePtr = InnerGEP->getPointerOperand(); 424 Result.ConstantOffset += ConstantOffset2; 425 if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1) 426 Result.VariableOffsets = VariableOffsets2; 427 Result.AllInbounds &= InnerGEP->isInBounds(); 428 } 429 return Result; 430 } 431 432 static Decomposition decompose(Value *V, 433 SmallVectorImpl<ConditionTy> &Preconditions, 434 bool IsSigned, const DataLayout &DL); 435 436 static bool canUseSExt(ConstantInt *CI) { 437 const APInt &Val = CI->getValue(); 438 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 439 } 440 441 static Decomposition decomposeGEP(GEPOperator &GEP, 442 SmallVectorImpl<ConditionTy> &Preconditions, 443 bool IsSigned, const DataLayout &DL) { 444 // Do not reason about pointers where the index size is larger than 64 bits, 445 // as the coefficients used to encode constraints are 64 bit integers. 446 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 447 return &GEP; 448 449 assert(!IsSigned && "The logic below only supports decomposition for " 450 "unsigned predicates at the moment."); 451 const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] = 452 collectOffsets(GEP, DL); 453 if (!BasePtr || !AllInbounds) 454 return &GEP; 455 456 Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr)); 457 for (auto [Index, Scale] : VariableOffsets) { 458 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 459 IdxResult.mul(Scale.getSExtValue()); 460 Result.add(IdxResult); 461 462 // If Op0 is signed non-negative, the GEP is increasing monotonically and 463 // can be de-composed. 464 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 465 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 466 ConstantInt::get(Index->getType(), 0)); 467 } 468 return Result; 469 } 470 471 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 472 // Variable } where Coefficient * Variable. The sum of the constant offset and 473 // pairs equals \p V. 474 static Decomposition decompose(Value *V, 475 SmallVectorImpl<ConditionTy> &Preconditions, 476 bool IsSigned, const DataLayout &DL) { 477 478 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 479 bool IsSignedB) { 480 auto ResA = decompose(A, Preconditions, IsSigned, DL); 481 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 482 ResA.add(ResB); 483 return ResA; 484 }; 485 486 Type *Ty = V->getType()->getScalarType(); 487 if (Ty->isPointerTy() && !IsSigned) { 488 if (auto *GEP = dyn_cast<GEPOperator>(V)) 489 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 490 if (isa<ConstantPointerNull>(V)) 491 return int64_t(0); 492 493 return V; 494 } 495 496 // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so 497 // coefficient add/mul may wrap, while the operation in the full bit width 498 // would not. 499 if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64) 500 return V; 501 502 // Decompose \p V used with a signed predicate. 503 if (IsSigned) { 504 if (auto *CI = dyn_cast<ConstantInt>(V)) { 505 if (canUseSExt(CI)) 506 return CI->getSExtValue(); 507 } 508 Value *Op0; 509 Value *Op1; 510 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 511 return MergeResults(Op0, Op1, IsSigned); 512 513 ConstantInt *CI; 514 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 515 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 516 Result.mul(CI->getSExtValue()); 517 return Result; 518 } 519 520 return V; 521 } 522 523 if (auto *CI = dyn_cast<ConstantInt>(V)) { 524 if (CI->uge(MaxConstraintValue)) 525 return V; 526 return int64_t(CI->getZExtValue()); 527 } 528 529 Value *Op0; 530 bool IsKnownNonNegative = false; 531 if (match(V, m_ZExt(m_Value(Op0)))) { 532 IsKnownNonNegative = true; 533 V = Op0; 534 } 535 536 Value *Op1; 537 ConstantInt *CI; 538 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 539 return MergeResults(Op0, Op1, IsSigned); 540 } 541 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 542 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 543 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 544 ConstantInt::get(Op0->getType(), 0)); 545 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 546 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 547 ConstantInt::get(Op1->getType(), 0)); 548 549 return MergeResults(Op0, Op1, IsSigned); 550 } 551 552 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 553 canUseSExt(CI)) { 554 Preconditions.emplace_back( 555 CmpInst::ICMP_UGE, Op0, 556 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 557 return MergeResults(Op0, CI, true); 558 } 559 560 // Decompose or as an add if there are no common bits between the operands. 561 if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI)))) 562 return MergeResults(Op0, CI, IsSigned); 563 564 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 565 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 566 return {V, IsKnownNonNegative}; 567 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 568 Result.mul(int64_t{1} << CI->getSExtValue()); 569 return Result; 570 } 571 572 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 573 (!CI->isNegative())) { 574 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 575 Result.mul(CI->getSExtValue()); 576 return Result; 577 } 578 579 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) { 580 auto ResA = decompose(Op0, Preconditions, IsSigned, DL); 581 auto ResB = decompose(Op1, Preconditions, IsSigned, DL); 582 ResA.sub(ResB); 583 return ResA; 584 } 585 586 return {V, IsKnownNonNegative}; 587 } 588 589 ConstraintTy 590 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 591 SmallVectorImpl<Value *> &NewVariables) const { 592 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 593 bool IsEq = false; 594 bool IsNe = false; 595 596 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 597 switch (Pred) { 598 case CmpInst::ICMP_UGT: 599 case CmpInst::ICMP_UGE: 600 case CmpInst::ICMP_SGT: 601 case CmpInst::ICMP_SGE: { 602 Pred = CmpInst::getSwappedPredicate(Pred); 603 std::swap(Op0, Op1); 604 break; 605 } 606 case CmpInst::ICMP_EQ: 607 if (match(Op1, m_Zero())) { 608 Pred = CmpInst::ICMP_ULE; 609 } else { 610 IsEq = true; 611 Pred = CmpInst::ICMP_ULE; 612 } 613 break; 614 case CmpInst::ICMP_NE: 615 if (match(Op1, m_Zero())) { 616 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 617 std::swap(Op0, Op1); 618 } else { 619 IsNe = true; 620 Pred = CmpInst::ICMP_ULE; 621 } 622 break; 623 default: 624 break; 625 } 626 627 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 628 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 629 return {}; 630 631 SmallVector<ConditionTy, 4> Preconditions; 632 bool IsSigned = CmpInst::isSigned(Pred); 633 auto &Value2Index = getValue2Index(IsSigned); 634 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 635 Preconditions, IsSigned, DL); 636 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 637 Preconditions, IsSigned, DL); 638 int64_t Offset1 = ADec.Offset; 639 int64_t Offset2 = BDec.Offset; 640 Offset1 *= -1; 641 642 auto &VariablesA = ADec.Vars; 643 auto &VariablesB = BDec.Vars; 644 645 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 646 // new entry to NewVariables. 647 DenseMap<Value *, unsigned> NewIndexMap; 648 auto GetOrAddIndex = [&Value2Index, &NewVariables, 649 &NewIndexMap](Value *V) -> unsigned { 650 auto V2I = Value2Index.find(V); 651 if (V2I != Value2Index.end()) 652 return V2I->second; 653 auto Insert = 654 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 655 if (Insert.second) 656 NewVariables.push_back(V); 657 return Insert.first->second; 658 }; 659 660 // Make sure all variables have entries in Value2Index or NewVariables. 661 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 662 GetOrAddIndex(KV.Variable); 663 664 // Build result constraint, by first adding all coefficients from A and then 665 // subtracting all coefficients from B. 666 ConstraintTy Res( 667 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 668 IsSigned, IsEq, IsNe); 669 // Collect variables that are known to be positive in all uses in the 670 // constraint. 671 DenseMap<Value *, bool> KnownNonNegativeVariables; 672 auto &R = Res.Coefficients; 673 for (const auto &KV : VariablesA) { 674 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 675 auto I = 676 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 677 I.first->second &= KV.IsKnownNonNegative; 678 } 679 680 for (const auto &KV : VariablesB) { 681 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 682 R[GetOrAddIndex(KV.Variable)])) 683 return {}; 684 auto I = 685 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 686 I.first->second &= KV.IsKnownNonNegative; 687 } 688 689 int64_t OffsetSum; 690 if (AddOverflow(Offset1, Offset2, OffsetSum)) 691 return {}; 692 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 693 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 694 return {}; 695 R[0] = OffsetSum; 696 Res.Preconditions = std::move(Preconditions); 697 698 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 699 // variables. 700 while (!NewVariables.empty()) { 701 int64_t Last = R.back(); 702 if (Last != 0) 703 break; 704 R.pop_back(); 705 Value *RemovedV = NewVariables.pop_back_val(); 706 NewIndexMap.erase(RemovedV); 707 } 708 709 // Add extra constraints for variables that are known positive. 710 for (auto &KV : KnownNonNegativeVariables) { 711 if (!KV.second || 712 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 713 continue; 714 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 715 C[GetOrAddIndex(KV.first)] = -1; 716 Res.ExtraInfo.push_back(C); 717 } 718 return Res; 719 } 720 721 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 722 Value *Op0, 723 Value *Op1) const { 724 Constant *NullC = Constant::getNullValue(Op0->getType()); 725 // Handle trivially true compares directly to avoid adding V UGE 0 constraints 726 // for all variables in the unsigned system. 727 if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) || 728 (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) { 729 auto &Value2Index = getValue2Index(false); 730 // Return constraint that's trivially true. 731 return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false, 732 false, false); 733 } 734 735 // If both operands are known to be non-negative, change signed predicates to 736 // unsigned ones. This increases the reasoning effectiveness in combination 737 // with the signed <-> unsigned transfer logic. 738 if (CmpInst::isSigned(Pred) && 739 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 740 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 741 Pred = CmpInst::getUnsignedPredicate(Pred); 742 743 SmallVector<Value *> NewVariables; 744 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 745 if (!NewVariables.empty()) 746 return {}; 747 return R; 748 } 749 750 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 751 return Coefficients.size() > 0 && 752 all_of(Preconditions, [&Info](const ConditionTy &C) { 753 return Info.doesHold(C.Pred, C.Op0, C.Op1); 754 }); 755 } 756 757 std::optional<bool> 758 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 759 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 760 761 if (IsEq || IsNe) { 762 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 763 bool IsNegatedOrEqualImplied = 764 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 765 766 // In order to check that `%a == %b` is true (equality), both conditions `%a 767 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 768 // is true), we return true if they both hold, false in the other cases. 769 if (IsConditionImplied && IsNegatedOrEqualImplied) 770 return IsEq; 771 772 auto Negated = ConstraintSystem::negate(Coefficients); 773 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 774 775 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 776 bool IsStrictLessThanImplied = 777 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 778 779 // In order to check that `%a != %b` is true (non-equality), either 780 // condition `%a > %b` or `%a < %b` must hold true. When checking for 781 // non-equality (`IsNe` is true), we return true if one of the two holds, 782 // false in the other cases. 783 if (IsNegatedImplied || IsStrictLessThanImplied) 784 return IsNe; 785 786 return std::nullopt; 787 } 788 789 if (IsConditionImplied) 790 return true; 791 792 auto Negated = ConstraintSystem::negate(Coefficients); 793 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 794 if (IsNegatedImplied) 795 return false; 796 797 // Neither the condition nor its negated holds, did not prove anything. 798 return std::nullopt; 799 } 800 801 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 802 Value *B) const { 803 auto R = getConstraintForSolving(Pred, A, B); 804 return R.isValid(*this) && 805 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 806 } 807 808 void ConstraintInfo::transferToOtherSystem( 809 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 810 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 811 auto IsKnownNonNegative = [this](Value *V) { 812 return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) || 813 isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1); 814 }; 815 // Check if we can combine facts from the signed and unsigned systems to 816 // derive additional facts. 817 if (!A->getType()->isIntegerTy()) 818 return; 819 // FIXME: This currently depends on the order we add facts. Ideally we 820 // would first add all known facts and only then try to add additional 821 // facts. 822 switch (Pred) { 823 default: 824 break; 825 case CmpInst::ICMP_ULT: 826 case CmpInst::ICMP_ULE: 827 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B. 828 if (IsKnownNonNegative(B)) { 829 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 830 NumOut, DFSInStack); 831 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 832 DFSInStack); 833 } 834 break; 835 case CmpInst::ICMP_UGE: 836 case CmpInst::ICMP_UGT: 837 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B. 838 if (IsKnownNonNegative(A)) { 839 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn, 840 NumOut, DFSInStack); 841 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 842 DFSInStack); 843 } 844 break; 845 case CmpInst::ICMP_SLT: 846 if (IsKnownNonNegative(A)) 847 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 848 break; 849 case CmpInst::ICMP_SGT: { 850 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 851 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 852 NumOut, DFSInStack); 853 if (IsKnownNonNegative(B)) 854 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 855 856 break; 857 } 858 case CmpInst::ICMP_SGE: 859 if (IsKnownNonNegative(B)) 860 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 861 break; 862 } 863 } 864 865 #ifndef NDEBUG 866 867 static void dumpConstraint(ArrayRef<int64_t> C, 868 const DenseMap<Value *, unsigned> &Value2Index) { 869 ConstraintSystem CS(Value2Index); 870 CS.addVariableRowFill(C); 871 CS.dump(); 872 } 873 #endif 874 875 void State::addInfoForInductions(BasicBlock &BB) { 876 auto *L = LI.getLoopFor(&BB); 877 if (!L || L->getHeader() != &BB) 878 return; 879 880 Value *A; 881 Value *B; 882 CmpInst::Predicate Pred; 883 884 if (!match(BB.getTerminator(), 885 m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value()))) 886 return; 887 PHINode *PN = dyn_cast<PHINode>(A); 888 if (!PN) { 889 Pred = CmpInst::getSwappedPredicate(Pred); 890 std::swap(A, B); 891 PN = dyn_cast<PHINode>(A); 892 } 893 894 if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 || 895 !SE.isSCEVable(PN->getType())) 896 return; 897 898 BasicBlock *InLoopSucc = nullptr; 899 if (Pred == CmpInst::ICMP_NE) 900 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0); 901 else if (Pred == CmpInst::ICMP_EQ) 902 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1); 903 else 904 return; 905 906 if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB) 907 return; 908 909 auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN)); 910 BasicBlock *LoopPred = L->getLoopPredecessor(); 911 if (!AR || AR->getLoop() != L || !LoopPred) 912 return; 913 914 const SCEV *StartSCEV = AR->getStart(); 915 Value *StartValue = nullptr; 916 if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) { 917 StartValue = C->getValue(); 918 } else { 919 StartValue = PN->getIncomingValueForBlock(LoopPred); 920 assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value"); 921 } 922 923 DomTreeNode *DTN = DT.getNode(InLoopSucc); 924 auto Inc = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT); 925 bool MonotonicallyIncreasing = 926 Inc && *Inc == ScalarEvolution::MonotonicallyIncreasing; 927 if (MonotonicallyIncreasing) { 928 // SCEV guarantees that AR does not wrap, so PN >= StartValue can be added 929 // unconditionally. 930 WorkList.push_back( 931 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue)); 932 } 933 934 APInt StepOffset; 935 if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 936 StepOffset = C->getAPInt(); 937 else 938 return; 939 940 // Make sure the bound B is loop-invariant. 941 if (!L->isLoopInvariant(B)) 942 return; 943 944 // Handle negative steps. 945 if (StepOffset.isNegative()) { 946 // TODO: Extend to allow steps > -1. 947 if (!(-StepOffset).isOne()) 948 return; 949 950 // AR may wrap. 951 // Add StartValue >= PN conditional on B <= StartValue which guarantees that 952 // the loop exits before wrapping with a step of -1. 953 WorkList.push_back(FactOrCheck::getConditionFact( 954 DTN, CmpInst::ICMP_UGE, StartValue, PN, 955 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 956 // Add PN > B conditional on B <= StartValue which guarantees that the loop 957 // exits when reaching B with a step of -1. 958 WorkList.push_back(FactOrCheck::getConditionFact( 959 DTN, CmpInst::ICMP_UGT, PN, B, 960 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 961 return; 962 } 963 964 // Make sure AR either steps by 1 or that the value we compare against is a 965 // GEP based on the same start value and all offsets are a multiple of the 966 // step size, to guarantee that the induction will reach the value. 967 if (StepOffset.isZero() || StepOffset.isNegative()) 968 return; 969 970 if (!StepOffset.isOne()) { 971 auto *UpperGEP = dyn_cast<GetElementPtrInst>(B); 972 if (!UpperGEP || UpperGEP->getPointerOperand() != StartValue || 973 !UpperGEP->isInBounds()) 974 return; 975 976 MapVector<Value *, APInt> UpperVariableOffsets; 977 APInt UpperConstantOffset(StepOffset.getBitWidth(), 0); 978 const DataLayout &DL = BB.getModule()->getDataLayout(); 979 if (!UpperGEP->collectOffset(DL, StepOffset.getBitWidth(), 980 UpperVariableOffsets, UpperConstantOffset)) 981 return; 982 // All variable offsets and the constant offset have to be a multiple of the 983 // step. 984 if (!UpperConstantOffset.urem(StepOffset).isZero() || 985 any_of(UpperVariableOffsets, [&StepOffset](const auto &P) { 986 return !P.second.urem(StepOffset).isZero(); 987 })) 988 return; 989 } 990 991 // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which 992 // guarantees that the loop exits before wrapping in combination with the 993 // restrictions on B and the step above. 994 if (!MonotonicallyIncreasing) { 995 WorkList.push_back(FactOrCheck::getConditionFact( 996 DTN, CmpInst::ICMP_UGE, PN, StartValue, 997 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 998 } 999 WorkList.push_back(FactOrCheck::getConditionFact( 1000 DTN, CmpInst::ICMP_ULT, PN, B, 1001 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 1002 } 1003 1004 void State::addInfoFor(BasicBlock &BB) { 1005 addInfoForInductions(BB); 1006 1007 // True as long as long as the current instruction is guaranteed to execute. 1008 bool GuaranteedToExecute = true; 1009 // Queue conditions and assumes. 1010 for (Instruction &I : BB) { 1011 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 1012 for (Use &U : Cmp->uses()) { 1013 auto *UserI = getContextInstForUse(U); 1014 auto *DTN = DT.getNode(UserI->getParent()); 1015 if (!DTN) 1016 continue; 1017 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 1018 } 1019 continue; 1020 } 1021 1022 auto *II = dyn_cast<IntrinsicInst>(&I); 1023 Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic; 1024 switch (ID) { 1025 case Intrinsic::assume: { 1026 Value *A, *B; 1027 CmpInst::Predicate Pred; 1028 if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1029 break; 1030 if (GuaranteedToExecute) { 1031 // The assume is guaranteed to execute when BB is entered, hence Cond 1032 // holds on entry to BB. 1033 WorkList.emplace_back(FactOrCheck::getConditionFact( 1034 DT.getNode(I.getParent()), Pred, A, B)); 1035 } else { 1036 WorkList.emplace_back( 1037 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 1038 } 1039 break; 1040 } 1041 // Enqueue ssub_with_overflow for simplification. 1042 case Intrinsic::ssub_with_overflow: 1043 WorkList.push_back( 1044 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 1045 break; 1046 // Enqueue the intrinsics to add extra info. 1047 case Intrinsic::abs: 1048 case Intrinsic::umin: 1049 case Intrinsic::umax: 1050 case Intrinsic::smin: 1051 case Intrinsic::smax: 1052 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 1053 break; 1054 } 1055 1056 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 1057 } 1058 1059 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 1060 for (auto &Case : Switch->cases()) { 1061 BasicBlock *Succ = Case.getCaseSuccessor(); 1062 Value *V = Case.getCaseValue(); 1063 if (!canAddSuccessor(BB, Succ)) 1064 continue; 1065 WorkList.emplace_back(FactOrCheck::getConditionFact( 1066 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 1067 } 1068 return; 1069 } 1070 1071 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 1072 if (!Br || !Br->isConditional()) 1073 return; 1074 1075 Value *Cond = Br->getCondition(); 1076 1077 // If the condition is a chain of ORs/AND and the successor only has the 1078 // current block as predecessor, queue conditions for the successor. 1079 Value *Op0, *Op1; 1080 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 1081 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1082 bool IsOr = match(Cond, m_LogicalOr()); 1083 bool IsAnd = match(Cond, m_LogicalAnd()); 1084 // If there's a select that matches both AND and OR, we need to commit to 1085 // one of the options. Arbitrarily pick OR. 1086 if (IsOr && IsAnd) 1087 IsAnd = false; 1088 1089 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 1090 if (canAddSuccessor(BB, Successor)) { 1091 SmallVector<Value *> CondWorkList; 1092 SmallPtrSet<Value *, 8> SeenCond; 1093 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 1094 if (SeenCond.insert(V).second) 1095 CondWorkList.push_back(V); 1096 }; 1097 QueueValue(Op1); 1098 QueueValue(Op0); 1099 while (!CondWorkList.empty()) { 1100 Value *Cur = CondWorkList.pop_back_val(); 1101 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 1102 WorkList.emplace_back(FactOrCheck::getConditionFact( 1103 DT.getNode(Successor), 1104 IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate()) 1105 : Cmp->getPredicate(), 1106 Cmp->getOperand(0), Cmp->getOperand(1))); 1107 continue; 1108 } 1109 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 1110 QueueValue(Op1); 1111 QueueValue(Op0); 1112 continue; 1113 } 1114 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1115 QueueValue(Op1); 1116 QueueValue(Op0); 1117 continue; 1118 } 1119 } 1120 } 1121 return; 1122 } 1123 1124 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 1125 if (!CmpI) 1126 return; 1127 if (canAddSuccessor(BB, Br->getSuccessor(0))) 1128 WorkList.emplace_back(FactOrCheck::getConditionFact( 1129 DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(), 1130 CmpI->getOperand(0), CmpI->getOperand(1))); 1131 if (canAddSuccessor(BB, Br->getSuccessor(1))) 1132 WorkList.emplace_back(FactOrCheck::getConditionFact( 1133 DT.getNode(Br->getSuccessor(1)), 1134 CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0), 1135 CmpI->getOperand(1))); 1136 } 1137 1138 #ifndef NDEBUG 1139 static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred, 1140 Value *LHS, Value *RHS) { 1141 OS << "icmp " << Pred << ' '; 1142 LHS->printAsOperand(OS, /*PrintType=*/true); 1143 OS << ", "; 1144 RHS->printAsOperand(OS, /*PrintType=*/false); 1145 } 1146 #endif 1147 1148 namespace { 1149 /// Helper to keep track of a condition and if it should be treated as negated 1150 /// for reproducer construction. 1151 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 1152 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 1153 struct ReproducerEntry { 1154 ICmpInst::Predicate Pred; 1155 Value *LHS; 1156 Value *RHS; 1157 1158 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 1159 : Pred(Pred), LHS(LHS), RHS(RHS) {} 1160 }; 1161 } // namespace 1162 1163 /// Helper function to generate a reproducer function for simplifying \p Cond. 1164 /// The reproducer function contains a series of @llvm.assume calls, one for 1165 /// each condition in \p Stack. For each condition, the operand instruction are 1166 /// cloned until we reach operands that have an entry in \p Value2Index. Those 1167 /// will then be added as function arguments. \p DT is used to order cloned 1168 /// instructions. The reproducer function will get added to \p M, if it is 1169 /// non-null. Otherwise no reproducer function is generated. 1170 static void generateReproducer(CmpInst *Cond, Module *M, 1171 ArrayRef<ReproducerEntry> Stack, 1172 ConstraintInfo &Info, DominatorTree &DT) { 1173 if (!M) 1174 return; 1175 1176 LLVMContext &Ctx = Cond->getContext(); 1177 1178 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 1179 1180 ValueToValueMapTy Old2New; 1181 SmallVector<Value *> Args; 1182 SmallPtrSet<Value *, 8> Seen; 1183 // Traverse Cond and its operands recursively until we reach a value that's in 1184 // Value2Index or not an instruction, or not a operation that 1185 // ConstraintElimination can decompose. Such values will be considered as 1186 // external inputs to the reproducer, they are collected and added as function 1187 // arguments later. 1188 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1189 auto &Value2Index = Info.getValue2Index(IsSigned); 1190 SmallVector<Value *, 4> WorkList(Ops); 1191 while (!WorkList.empty()) { 1192 Value *V = WorkList.pop_back_val(); 1193 if (!Seen.insert(V).second) 1194 continue; 1195 if (Old2New.find(V) != Old2New.end()) 1196 continue; 1197 if (isa<Constant>(V)) 1198 continue; 1199 1200 auto *I = dyn_cast<Instruction>(V); 1201 if (Value2Index.contains(V) || !I || 1202 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 1203 Old2New[V] = V; 1204 Args.push_back(V); 1205 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 1206 } else { 1207 append_range(WorkList, I->operands()); 1208 } 1209 } 1210 }; 1211 1212 for (auto &Entry : Stack) 1213 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 1214 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 1215 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 1216 1217 SmallVector<Type *> ParamTys; 1218 for (auto *P : Args) 1219 ParamTys.push_back(P->getType()); 1220 1221 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 1222 /*isVarArg=*/false); 1223 Function *F = Function::Create(FTy, Function::ExternalLinkage, 1224 Cond->getModule()->getName() + 1225 Cond->getFunction()->getName() + "repro", 1226 M); 1227 // Add arguments to the reproducer function for each external value collected. 1228 for (unsigned I = 0; I < Args.size(); ++I) { 1229 F->getArg(I)->setName(Args[I]->getName()); 1230 Old2New[Args[I]] = F->getArg(I); 1231 } 1232 1233 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 1234 IRBuilder<> Builder(Entry); 1235 Builder.CreateRet(Builder.getTrue()); 1236 Builder.SetInsertPoint(Entry->getTerminator()); 1237 1238 // Clone instructions in \p Ops and their operands recursively until reaching 1239 // an value in Value2Index (external input to the reproducer). Update Old2New 1240 // mapping for the original and cloned instructions. Sort instructions to 1241 // clone by dominance, then insert the cloned instructions in the function. 1242 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1243 SmallVector<Value *, 4> WorkList(Ops); 1244 SmallVector<Instruction *> ToClone; 1245 auto &Value2Index = Info.getValue2Index(IsSigned); 1246 while (!WorkList.empty()) { 1247 Value *V = WorkList.pop_back_val(); 1248 if (Old2New.find(V) != Old2New.end()) 1249 continue; 1250 1251 auto *I = dyn_cast<Instruction>(V); 1252 if (!Value2Index.contains(V) && I) { 1253 Old2New[V] = nullptr; 1254 ToClone.push_back(I); 1255 append_range(WorkList, I->operands()); 1256 } 1257 } 1258 1259 sort(ToClone, 1260 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 1261 for (Instruction *I : ToClone) { 1262 Instruction *Cloned = I->clone(); 1263 Old2New[I] = Cloned; 1264 Old2New[I]->setName(I->getName()); 1265 Cloned->insertBefore(&*Builder.GetInsertPoint()); 1266 Cloned->dropUnknownNonDebugMetadata(); 1267 Cloned->setDebugLoc({}); 1268 } 1269 }; 1270 1271 // Materialize the assumptions for the reproducer using the entries in Stack. 1272 // That is, first clone the operands of the condition recursively until we 1273 // reach an external input to the reproducer and add them to the reproducer 1274 // function. Then add an ICmp for the condition (with the inverse predicate if 1275 // the entry is negated) and an assert using the ICmp. 1276 for (auto &Entry : Stack) { 1277 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1278 continue; 1279 1280 LLVM_DEBUG(dbgs() << " Materializing assumption "; 1281 dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS); 1282 dbgs() << "\n"); 1283 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1284 1285 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1286 Builder.CreateAssumption(Cmp); 1287 } 1288 1289 // Finally, clone the condition to reproduce and remap instruction operands in 1290 // the reproducer using Old2New. 1291 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1292 Entry->getTerminator()->setOperand(0, Cond); 1293 remapInstructionsInBlocks({Entry}, Old2New); 1294 1295 assert(!verifyFunction(*F, &dbgs())); 1296 } 1297 1298 static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A, 1299 Value *B, Instruction *CheckInst, 1300 ConstraintInfo &Info, unsigned NumIn, 1301 unsigned NumOut, 1302 Instruction *ContextInst) { 1303 LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n"); 1304 1305 auto R = Info.getConstraintForSolving(Pred, A, B); 1306 if (R.empty() || !R.isValid(Info)){ 1307 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1308 return std::nullopt; 1309 } 1310 1311 auto &CSToUse = Info.getCS(R.IsSigned); 1312 1313 // If there was extra information collected during decomposition, apply 1314 // it now and remove it immediately once we are done with reasoning 1315 // about the constraint. 1316 for (auto &Row : R.ExtraInfo) 1317 CSToUse.addVariableRow(Row); 1318 auto InfoRestorer = make_scope_exit([&]() { 1319 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1320 CSToUse.popLastConstraint(); 1321 }); 1322 1323 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1324 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1325 return std::nullopt; 1326 1327 LLVM_DEBUG({ 1328 dbgs() << "Condition "; 1329 dumpUnpackedICmp( 1330 dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred), 1331 A, B); 1332 dbgs() << " implied by dominating constraints\n"; 1333 CSToUse.dump(); 1334 }); 1335 return ImpliedCondition; 1336 } 1337 1338 return std::nullopt; 1339 } 1340 1341 static bool checkAndReplaceCondition( 1342 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1343 Instruction *ContextInst, Module *ReproducerModule, 1344 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1345 SmallVectorImpl<Instruction *> &ToRemove) { 1346 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1347 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1348 Constant *ConstantC = ConstantInt::getBool( 1349 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1350 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1351 ContextInst](Use &U) { 1352 auto *UserI = getContextInstForUse(U); 1353 auto *DTN = DT.getNode(UserI->getParent()); 1354 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1355 return false; 1356 if (UserI->getParent() == ContextInst->getParent() && 1357 UserI->comesBefore(ContextInst)) 1358 return false; 1359 1360 // Conditions in an assume trivially simplify to true. Skip uses 1361 // in assume calls to not destroy the available information. 1362 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1363 return !II || II->getIntrinsicID() != Intrinsic::assume; 1364 }); 1365 NumCondsRemoved++; 1366 if (Cmp->use_empty()) 1367 ToRemove.push_back(Cmp); 1368 return true; 1369 }; 1370 1371 if (auto ImpliedCondition = checkCondition( 1372 Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1), Cmp, 1373 Info, NumIn, NumOut, ContextInst)) 1374 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1375 return false; 1376 } 1377 1378 static void 1379 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1380 Module *ReproducerModule, 1381 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1382 SmallVectorImpl<StackEntry> &DFSInStack) { 1383 Info.popLastConstraint(E.IsSigned); 1384 // Remove variables in the system that went out of scope. 1385 auto &Mapping = Info.getValue2Index(E.IsSigned); 1386 for (Value *V : E.ValuesToRelease) 1387 Mapping.erase(V); 1388 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1389 DFSInStack.pop_back(); 1390 if (ReproducerModule) 1391 ReproducerCondStack.pop_back(); 1392 } 1393 1394 /// Check if either the first condition of an AND or OR is implied by the 1395 /// (negated in case of OR) second condition or vice versa. 1396 static bool checkOrAndOpImpliedByOther( 1397 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1398 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1399 SmallVectorImpl<StackEntry> &DFSInStack) { 1400 1401 CmpInst::Predicate Pred; 1402 Value *A, *B; 1403 Instruction *JoinOp = CB.getContextInst(); 1404 CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify()); 1405 unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0; 1406 1407 // Don't try to simplify the first condition of a select by the second, as 1408 // this may make the select more poisonous than the original one. 1409 // TODO: check if the first operand may be poison. 1410 if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp)) 1411 return false; 1412 1413 if (!match(JoinOp->getOperand(OtherOpIdx), 1414 m_ICmp(Pred, m_Value(A), m_Value(B)))) 1415 return false; 1416 1417 // For OR, check if the negated condition implies CmpToCheck. 1418 bool IsOr = match(JoinOp, m_LogicalOr()); 1419 if (IsOr) 1420 Pred = CmpInst::getInversePredicate(Pred); 1421 1422 // Optimistically add fact from first condition. 1423 unsigned OldSize = DFSInStack.size(); 1424 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1425 if (OldSize == DFSInStack.size()) 1426 return false; 1427 1428 bool Changed = false; 1429 // Check if the second condition can be simplified now. 1430 if (auto ImpliedCondition = 1431 checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0), 1432 CmpToCheck->getOperand(1), CmpToCheck, Info, CB.NumIn, 1433 CB.NumOut, CB.getContextInst())) { 1434 if (IsOr && isa<SelectInst>(JoinOp)) { 1435 JoinOp->setOperand( 1436 OtherOpIdx == 0 ? 2 : 0, 1437 ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition)); 1438 } else 1439 JoinOp->setOperand( 1440 1 - OtherOpIdx, 1441 ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition)); 1442 1443 Changed = true; 1444 } 1445 1446 // Remove entries again. 1447 while (OldSize < DFSInStack.size()) { 1448 StackEntry E = DFSInStack.back(); 1449 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1450 DFSInStack); 1451 } 1452 return Changed; 1453 } 1454 1455 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1456 unsigned NumIn, unsigned NumOut, 1457 SmallVectorImpl<StackEntry> &DFSInStack) { 1458 // If the constraint has a pre-condition, skip the constraint if it does not 1459 // hold. 1460 SmallVector<Value *> NewVariables; 1461 auto R = getConstraint(Pred, A, B, NewVariables); 1462 1463 // TODO: Support non-equality for facts as well. 1464 if (!R.isValid(*this) || R.isNe()) 1465 return; 1466 1467 LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B); 1468 dbgs() << "'\n"); 1469 bool Added = false; 1470 auto &CSToUse = getCS(R.IsSigned); 1471 if (R.Coefficients.empty()) 1472 return; 1473 1474 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1475 1476 // If R has been added to the system, add the new variables and queue it for 1477 // removal once it goes out-of-scope. 1478 if (Added) { 1479 SmallVector<Value *, 2> ValuesToRelease; 1480 auto &Value2Index = getValue2Index(R.IsSigned); 1481 for (Value *V : NewVariables) { 1482 Value2Index.insert({V, Value2Index.size() + 1}); 1483 ValuesToRelease.push_back(V); 1484 } 1485 1486 LLVM_DEBUG({ 1487 dbgs() << " constraint: "; 1488 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1489 dbgs() << "\n"; 1490 }); 1491 1492 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1493 std::move(ValuesToRelease)); 1494 1495 if (!R.IsSigned) { 1496 for (Value *V : NewVariables) { 1497 ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0), 1498 false, false, false); 1499 VarPos.Coefficients[Value2Index[V]] = -1; 1500 CSToUse.addVariableRow(VarPos.Coefficients); 1501 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1502 SmallVector<Value *, 2>()); 1503 } 1504 } 1505 1506 if (R.isEq()) { 1507 // Also add the inverted constraint for equality constraints. 1508 for (auto &Coeff : R.Coefficients) 1509 Coeff *= -1; 1510 CSToUse.addVariableRowFill(R.Coefficients); 1511 1512 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1513 SmallVector<Value *, 2>()); 1514 } 1515 } 1516 } 1517 1518 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1519 SmallVectorImpl<Instruction *> &ToRemove) { 1520 bool Changed = false; 1521 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1522 Value *Sub = nullptr; 1523 for (User *U : make_early_inc_range(II->users())) { 1524 if (match(U, m_ExtractValue<0>(m_Value()))) { 1525 if (!Sub) 1526 Sub = Builder.CreateSub(A, B); 1527 U->replaceAllUsesWith(Sub); 1528 Changed = true; 1529 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1530 U->replaceAllUsesWith(Builder.getFalse()); 1531 Changed = true; 1532 } else 1533 continue; 1534 1535 if (U->use_empty()) { 1536 auto *I = cast<Instruction>(U); 1537 ToRemove.push_back(I); 1538 I->setOperand(0, PoisonValue::get(II->getType())); 1539 Changed = true; 1540 } 1541 } 1542 1543 if (II->use_empty()) { 1544 II->eraseFromParent(); 1545 Changed = true; 1546 } 1547 return Changed; 1548 } 1549 1550 static bool 1551 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1552 SmallVectorImpl<Instruction *> &ToRemove) { 1553 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1554 ConstraintInfo &Info) { 1555 auto R = Info.getConstraintForSolving(Pred, A, B); 1556 if (R.size() < 2 || !R.isValid(Info)) 1557 return false; 1558 1559 auto &CSToUse = Info.getCS(R.IsSigned); 1560 return CSToUse.isConditionImplied(R.Coefficients); 1561 }; 1562 1563 bool Changed = false; 1564 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1565 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1566 // can be simplified to a regular sub. 1567 Value *A = II->getArgOperand(0); 1568 Value *B = II->getArgOperand(1); 1569 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1570 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1571 ConstantInt::get(A->getType(), 0), Info)) 1572 return false; 1573 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1574 } 1575 return Changed; 1576 } 1577 1578 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI, 1579 ScalarEvolution &SE, 1580 OptimizationRemarkEmitter &ORE) { 1581 bool Changed = false; 1582 DT.updateDFSNumbers(); 1583 SmallVector<Value *> FunctionArgs; 1584 for (Value &Arg : F.args()) 1585 FunctionArgs.push_back(&Arg); 1586 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1587 State S(DT, LI, SE); 1588 std::unique_ptr<Module> ReproducerModule( 1589 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1590 1591 // First, collect conditions implied by branches and blocks with their 1592 // Dominator DFS in and out numbers. 1593 for (BasicBlock &BB : F) { 1594 if (!DT.getNode(&BB)) 1595 continue; 1596 S.addInfoFor(BB); 1597 } 1598 1599 // Next, sort worklist by dominance, so that dominating conditions to check 1600 // and facts come before conditions and facts dominated by them. If a 1601 // condition to check and a fact have the same numbers, conditional facts come 1602 // first. Assume facts and checks are ordered according to their relative 1603 // order in the containing basic block. Also make sure conditions with 1604 // constant operands come before conditions without constant operands. This 1605 // increases the effectiveness of the current signed <-> unsigned fact 1606 // transfer logic. 1607 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1608 auto HasNoConstOp = [](const FactOrCheck &B) { 1609 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 1610 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 1611 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1612 }; 1613 // If both entries have the same In numbers, conditional facts come first. 1614 // Otherwise use the relative order in the basic block. 1615 if (A.NumIn == B.NumIn) { 1616 if (A.isConditionFact() && B.isConditionFact()) { 1617 bool NoConstOpA = HasNoConstOp(A); 1618 bool NoConstOpB = HasNoConstOp(B); 1619 return NoConstOpA < NoConstOpB; 1620 } 1621 if (A.isConditionFact()) 1622 return true; 1623 if (B.isConditionFact()) 1624 return false; 1625 auto *InstA = A.getContextInst(); 1626 auto *InstB = B.getContextInst(); 1627 return InstA->comesBefore(InstB); 1628 } 1629 return A.NumIn < B.NumIn; 1630 }); 1631 1632 SmallVector<Instruction *> ToRemove; 1633 1634 // Finally, process ordered worklist and eliminate implied conditions. 1635 SmallVector<StackEntry, 16> DFSInStack; 1636 SmallVector<ReproducerEntry> ReproducerCondStack; 1637 for (FactOrCheck &CB : S.WorkList) { 1638 // First, pop entries from the stack that are out-of-scope for CB. Remove 1639 // the corresponding entry from the constraint system. 1640 while (!DFSInStack.empty()) { 1641 auto &E = DFSInStack.back(); 1642 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1643 << "\n"); 1644 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1645 assert(E.NumIn <= CB.NumIn); 1646 if (CB.NumOut <= E.NumOut) 1647 break; 1648 LLVM_DEBUG({ 1649 dbgs() << "Removing "; 1650 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1651 Info.getValue2Index(E.IsSigned)); 1652 dbgs() << "\n"; 1653 }); 1654 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1655 DFSInStack); 1656 } 1657 1658 LLVM_DEBUG(dbgs() << "Processing "); 1659 1660 // For a block, check if any CmpInsts become known based on the current set 1661 // of constraints. 1662 if (CB.isCheck()) { 1663 Instruction *Inst = CB.getInstructionToSimplify(); 1664 if (!Inst) 1665 continue; 1666 LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 1667 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1668 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1669 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1670 bool Simplified = checkAndReplaceCondition( 1671 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1672 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1673 if (!Simplified && 1674 match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) { 1675 Simplified = 1676 checkOrAndOpImpliedByOther(CB, Info, ReproducerModule.get(), 1677 ReproducerCondStack, DFSInStack); 1678 } 1679 Changed |= Simplified; 1680 } 1681 continue; 1682 } 1683 1684 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1685 LLVM_DEBUG(dbgs() << "fact to add to the system: "; 1686 dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n"); 1687 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1688 LLVM_DEBUG( 1689 dbgs() 1690 << "Skip adding constraint because system has too many rows.\n"); 1691 return; 1692 } 1693 1694 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1695 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1696 ReproducerCondStack.emplace_back(Pred, A, B); 1697 1698 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1699 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1700 // Add dummy entries to ReproducerCondStack to keep it in sync with 1701 // DFSInStack. 1702 for (unsigned I = 0, 1703 E = (DFSInStack.size() - ReproducerCondStack.size()); 1704 I < E; ++I) { 1705 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1706 nullptr, nullptr); 1707 } 1708 } 1709 }; 1710 1711 ICmpInst::Predicate Pred; 1712 if (!CB.isConditionFact()) { 1713 Value *X; 1714 if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) { 1715 // TODO: Add CB.Inst >= 0 fact. 1716 AddFact(CmpInst::ICMP_SGE, CB.Inst, X); 1717 continue; 1718 } 1719 1720 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1721 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1722 AddFact(Pred, MinMax, MinMax->getLHS()); 1723 AddFact(Pred, MinMax, MinMax->getRHS()); 1724 continue; 1725 } 1726 } 1727 1728 Value *A = nullptr, *B = nullptr; 1729 if (CB.isConditionFact()) { 1730 Pred = CB.Cond.Pred; 1731 A = CB.Cond.Op0; 1732 B = CB.Cond.Op1; 1733 if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE && 1734 !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) 1735 continue; 1736 } else { 1737 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 1738 m_ICmp(Pred, m_Value(A), m_Value(B)))); 1739 (void)Matched; 1740 assert(Matched && "Must have an assume intrinsic with a icmp operand"); 1741 } 1742 AddFact(Pred, A, B); 1743 } 1744 1745 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1746 std::string S; 1747 raw_string_ostream StringS(S); 1748 ReproducerModule->print(StringS, nullptr); 1749 StringS.flush(); 1750 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1751 Rem << ore::NV("module") << S; 1752 ORE.emit(Rem); 1753 } 1754 1755 #ifndef NDEBUG 1756 unsigned SignedEntries = 1757 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1758 assert(Info.getCS(false).size() - FunctionArgs.size() == 1759 DFSInStack.size() - SignedEntries && 1760 "updates to CS and DFSInStack are out of sync"); 1761 assert(Info.getCS(true).size() == SignedEntries && 1762 "updates to CS and DFSInStack are out of sync"); 1763 #endif 1764 1765 for (Instruction *I : ToRemove) 1766 I->eraseFromParent(); 1767 return Changed; 1768 } 1769 1770 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1771 FunctionAnalysisManager &AM) { 1772 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1773 auto &LI = AM.getResult<LoopAnalysis>(F); 1774 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1775 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1776 if (!eliminateConstraints(F, DT, LI, SE, ORE)) 1777 return PreservedAnalyses::all(); 1778 1779 PreservedAnalyses PA; 1780 PA.preserve<DominatorTreeAnalysis>(); 1781 PA.preserve<LoopAnalysis>(); 1782 PA.preserve<ScalarEvolutionAnalysis>(); 1783 PA.preserveSet<CFGAnalyses>(); 1784 return PA; 1785 } 1786