1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/ValueMapper.h" 39 40 #include <cmath> 41 #include <optional> 42 #include <string> 43 44 using namespace llvm; 45 using namespace PatternMatch; 46 47 #define DEBUG_TYPE "constraint-elimination" 48 49 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 50 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 51 "Controls which conditions are eliminated"); 52 53 static cl::opt<unsigned> 54 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 55 cl::desc("Maximum number of rows to keep in constraint system")); 56 57 static cl::opt<bool> DumpReproducers( 58 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 59 cl::desc("Dump IR to reproduce successful transformations.")); 60 61 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 62 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 63 64 // A helper to multiply 2 signed integers where overflowing is allowed. 65 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 66 int64_t Result; 67 MulOverflow(A, B, Result); 68 return Result; 69 } 70 71 // A helper to add 2 signed integers where overflowing is allowed. 72 static int64_t addWithOverflow(int64_t A, int64_t B) { 73 int64_t Result; 74 AddOverflow(A, B, Result); 75 return Result; 76 } 77 78 static Instruction *getContextInstForUse(Use &U) { 79 Instruction *UserI = cast<Instruction>(U.getUser()); 80 if (auto *Phi = dyn_cast<PHINode>(UserI)) 81 UserI = Phi->getIncomingBlock(U)->getTerminator(); 82 return UserI; 83 } 84 85 namespace { 86 /// Struct to express a condition of the form %Op0 Pred %Op1. 87 struct ConditionTy { 88 CmpInst::Predicate Pred; 89 Value *Op0; 90 Value *Op1; 91 92 ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 93 : Pred(Pred), Op0(Op0), Op1(Op1) {} 94 }; 95 96 /// Represents either 97 /// * a condition that holds on entry to a block (=condition fact) 98 /// * an assume (=assume fact) 99 /// * a use of a compare instruction to simplify. 100 /// It also tracks the Dominator DFS in and out numbers for each entry. 101 struct FactOrCheck { 102 enum class EntryTy { 103 ConditionFact, /// A condition that holds on entry to a block. 104 InstFact, /// A fact that holds after Inst executed (e.g. an assume or 105 /// min/mix intrinsic. 106 InstCheck, /// An instruction to simplify (e.g. an overflow math 107 /// intrinsics). 108 UseCheck /// An use of a compare instruction to simplify. 109 }; 110 111 union { 112 Instruction *Inst; 113 Use *U; 114 ConditionTy Cond; 115 }; 116 117 unsigned NumIn; 118 unsigned NumOut; 119 EntryTy Ty; 120 121 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 122 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 123 Ty(Ty) {} 124 125 FactOrCheck(DomTreeNode *DTN, Use *U) 126 : U(U), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 127 Ty(EntryTy::UseCheck) {} 128 129 FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1) 130 : Cond(Pred, Op0, Op1), NumIn(DTN->getDFSNumIn()), 131 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 132 133 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 134 Value *Op0, Value *Op1) { 135 return FactOrCheck(DTN, Pred, Op0, Op1); 136 } 137 138 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 139 return FactOrCheck(EntryTy::InstFact, DTN, Inst); 140 } 141 142 static FactOrCheck getFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 143 Value *Op0, Value *Op1) { 144 return FactOrCheck(DTN, Pred, Op0, Op1); 145 } 146 147 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 148 return FactOrCheck(DTN, U); 149 } 150 151 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 152 return FactOrCheck(EntryTy::InstCheck, DTN, CI); 153 } 154 155 bool isCheck() const { 156 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 157 } 158 159 Instruction *getContextInst() const { 160 if (Ty == EntryTy::UseCheck) 161 return getContextInstForUse(*U); 162 return Inst; 163 } 164 165 Instruction *getInstructionToSimplify() const { 166 assert(isCheck()); 167 if (Ty == EntryTy::InstCheck) 168 return Inst; 169 // The use may have been simplified to a constant already. 170 return dyn_cast<Instruction>(*U); 171 } 172 173 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 174 }; 175 176 /// Keep state required to build worklist. 177 struct State { 178 DominatorTree &DT; 179 SmallVector<FactOrCheck, 64> WorkList; 180 181 State(DominatorTree &DT) : DT(DT) {} 182 183 /// Process block \p BB and add known facts to work-list. 184 void addInfoFor(BasicBlock &BB); 185 186 /// Returns true if we can add a known condition from BB to its successor 187 /// block Succ. 188 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 189 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 190 } 191 }; 192 193 class ConstraintInfo; 194 195 struct StackEntry { 196 unsigned NumIn; 197 unsigned NumOut; 198 bool IsSigned = false; 199 /// Variables that can be removed from the system once the stack entry gets 200 /// removed. 201 SmallVector<Value *, 2> ValuesToRelease; 202 203 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 204 SmallVector<Value *, 2> ValuesToRelease) 205 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 206 ValuesToRelease(ValuesToRelease) {} 207 }; 208 209 struct ConstraintTy { 210 SmallVector<int64_t, 8> Coefficients; 211 SmallVector<ConditionTy, 2> Preconditions; 212 213 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 214 215 bool IsSigned = false; 216 217 ConstraintTy() = default; 218 219 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 220 bool IsNe) 221 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 222 } 223 224 unsigned size() const { return Coefficients.size(); } 225 226 unsigned empty() const { return Coefficients.empty(); } 227 228 /// Returns true if all preconditions for this list of constraints are 229 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 230 bool isValid(const ConstraintInfo &Info) const; 231 232 bool isEq() const { return IsEq; } 233 234 bool isNe() const { return IsNe; } 235 236 /// Check if the current constraint is implied by the given ConstraintSystem. 237 /// 238 /// \return true or false if the constraint is proven to be respectively true, 239 /// or false. When the constraint cannot be proven to be either true or false, 240 /// std::nullopt is returned. 241 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 242 243 private: 244 bool IsEq = false; 245 bool IsNe = false; 246 }; 247 248 /// Wrapper encapsulating separate constraint systems and corresponding value 249 /// mappings for both unsigned and signed information. Facts are added to and 250 /// conditions are checked against the corresponding system depending on the 251 /// signed-ness of their predicates. While the information is kept separate 252 /// based on signed-ness, certain conditions can be transferred between the two 253 /// systems. 254 class ConstraintInfo { 255 256 ConstraintSystem UnsignedCS; 257 ConstraintSystem SignedCS; 258 259 const DataLayout &DL; 260 261 public: 262 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 263 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 264 265 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 266 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 267 } 268 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 269 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 270 } 271 272 ConstraintSystem &getCS(bool Signed) { 273 return Signed ? SignedCS : UnsignedCS; 274 } 275 const ConstraintSystem &getCS(bool Signed) const { 276 return Signed ? SignedCS : UnsignedCS; 277 } 278 279 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 280 void popLastNVariables(bool Signed, unsigned N) { 281 getCS(Signed).popLastNVariables(N); 282 } 283 284 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 285 286 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 287 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 288 289 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 290 /// constraints, using indices from the corresponding constraint system. 291 /// New variables that need to be added to the system are collected in 292 /// \p NewVariables. 293 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 294 SmallVectorImpl<Value *> &NewVariables) const; 295 296 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 297 /// constraints using getConstraint. Returns an empty constraint if the result 298 /// cannot be used to query the existing constraint system, e.g. because it 299 /// would require adding new variables. Also tries to convert signed 300 /// predicates to unsigned ones if possible to allow using the unsigned system 301 /// which increases the effectiveness of the signed <-> unsigned transfer 302 /// logic. 303 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 304 Value *Op1) const; 305 306 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 307 /// system if \p Pred is signed/unsigned. 308 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 309 unsigned NumIn, unsigned NumOut, 310 SmallVectorImpl<StackEntry> &DFSInStack); 311 }; 312 313 /// Represents a (Coefficient * Variable) entry after IR decomposition. 314 struct DecompEntry { 315 int64_t Coefficient; 316 Value *Variable; 317 /// True if the variable is known positive in the current constraint. 318 bool IsKnownNonNegative; 319 320 DecompEntry(int64_t Coefficient, Value *Variable, 321 bool IsKnownNonNegative = false) 322 : Coefficient(Coefficient), Variable(Variable), 323 IsKnownNonNegative(IsKnownNonNegative) {} 324 }; 325 326 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 327 struct Decomposition { 328 int64_t Offset = 0; 329 SmallVector<DecompEntry, 3> Vars; 330 331 Decomposition(int64_t Offset) : Offset(Offset) {} 332 Decomposition(Value *V, bool IsKnownNonNegative = false) { 333 Vars.emplace_back(1, V, IsKnownNonNegative); 334 } 335 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 336 : Offset(Offset), Vars(Vars) {} 337 338 void add(int64_t OtherOffset) { 339 Offset = addWithOverflow(Offset, OtherOffset); 340 } 341 342 void add(const Decomposition &Other) { 343 add(Other.Offset); 344 append_range(Vars, Other.Vars); 345 } 346 347 void mul(int64_t Factor) { 348 Offset = multiplyWithOverflow(Offset, Factor); 349 for (auto &Var : Vars) 350 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 351 } 352 }; 353 354 } // namespace 355 356 static Decomposition decompose(Value *V, 357 SmallVectorImpl<ConditionTy> &Preconditions, 358 bool IsSigned, const DataLayout &DL); 359 360 static bool canUseSExt(ConstantInt *CI) { 361 const APInt &Val = CI->getValue(); 362 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 363 } 364 365 static Decomposition decomposeGEP(GEPOperator &GEP, 366 SmallVectorImpl<ConditionTy> &Preconditions, 367 bool IsSigned, const DataLayout &DL) { 368 // Do not reason about pointers where the index size is larger than 64 bits, 369 // as the coefficients used to encode constraints are 64 bit integers. 370 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 371 return &GEP; 372 373 if (!GEP.isInBounds()) 374 return &GEP; 375 376 assert(!IsSigned && "The logic below only supports decomposition for " 377 "unsinged predicates at the moment."); 378 Type *PtrTy = GEP.getType()->getScalarType(); 379 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 380 MapVector<Value *, APInt> VariableOffsets; 381 APInt ConstantOffset(BitWidth, 0); 382 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 383 return &GEP; 384 385 // Handle the (gep (gep ....), C) case by incrementing the constant 386 // coefficient of the inner GEP, if C is a constant. 387 auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand()); 388 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 389 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 390 Result.add(ConstantOffset.getSExtValue()); 391 392 if (ConstantOffset.isNegative()) { 393 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 394 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 395 if (ConstantOffsetI % Scale != 0) 396 return &GEP; 397 // Add pre-condition ensuring the GEP is increasing monotonically and 398 // can be de-composed. 399 // Both sides are normalized by being divided by Scale. 400 Preconditions.emplace_back( 401 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 402 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 403 -1 * (ConstantOffsetI / Scale))); 404 } 405 return Result; 406 } 407 408 Decomposition Result(ConstantOffset.getSExtValue(), 409 DecompEntry(1, GEP.getPointerOperand())); 410 for (auto [Index, Scale] : VariableOffsets) { 411 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 412 IdxResult.mul(Scale.getSExtValue()); 413 Result.add(IdxResult); 414 415 // If Op0 is signed non-negative, the GEP is increasing monotonically and 416 // can be de-composed. 417 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 418 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 419 ConstantInt::get(Index->getType(), 0)); 420 } 421 return Result; 422 } 423 424 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 425 // Variable } where Coefficient * Variable. The sum of the constant offset and 426 // pairs equals \p V. 427 static Decomposition decompose(Value *V, 428 SmallVectorImpl<ConditionTy> &Preconditions, 429 bool IsSigned, const DataLayout &DL) { 430 431 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 432 bool IsSignedB) { 433 auto ResA = decompose(A, Preconditions, IsSigned, DL); 434 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 435 ResA.add(ResB); 436 return ResA; 437 }; 438 439 // Decompose \p V used with a signed predicate. 440 if (IsSigned) { 441 if (auto *CI = dyn_cast<ConstantInt>(V)) { 442 if (canUseSExt(CI)) 443 return CI->getSExtValue(); 444 } 445 Value *Op0; 446 Value *Op1; 447 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 448 return MergeResults(Op0, Op1, IsSigned); 449 450 ConstantInt *CI; 451 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 452 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 453 Result.mul(CI->getSExtValue()); 454 return Result; 455 } 456 457 return V; 458 } 459 460 if (auto *CI = dyn_cast<ConstantInt>(V)) { 461 if (CI->uge(MaxConstraintValue)) 462 return V; 463 return int64_t(CI->getZExtValue()); 464 } 465 466 if (auto *GEP = dyn_cast<GEPOperator>(V)) 467 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 468 469 Value *Op0; 470 bool IsKnownNonNegative = false; 471 if (match(V, m_ZExt(m_Value(Op0)))) { 472 IsKnownNonNegative = true; 473 V = Op0; 474 } 475 476 Value *Op1; 477 ConstantInt *CI; 478 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 479 return MergeResults(Op0, Op1, IsSigned); 480 } 481 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 482 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 483 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 484 ConstantInt::get(Op0->getType(), 0)); 485 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 486 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 487 ConstantInt::get(Op1->getType(), 0)); 488 489 return MergeResults(Op0, Op1, IsSigned); 490 } 491 492 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 493 canUseSExt(CI)) { 494 Preconditions.emplace_back( 495 CmpInst::ICMP_UGE, Op0, 496 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 497 return MergeResults(Op0, CI, true); 498 } 499 500 // Decompose or as an add if there are no common bits between the operands. 501 if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && 502 haveNoCommonBitsSet(Op0, CI, DL)) { 503 return MergeResults(Op0, CI, IsSigned); 504 } 505 506 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 507 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 508 return {V, IsKnownNonNegative}; 509 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 510 Result.mul(int64_t{1} << CI->getSExtValue()); 511 return Result; 512 } 513 514 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 515 (!CI->isNegative())) { 516 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 517 Result.mul(CI->getSExtValue()); 518 return Result; 519 } 520 521 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 522 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 523 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 524 return {0, {{1, Op0}, {-1, Op1}}}; 525 526 return {V, IsKnownNonNegative}; 527 } 528 529 ConstraintTy 530 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 531 SmallVectorImpl<Value *> &NewVariables) const { 532 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 533 bool IsEq = false; 534 bool IsNe = false; 535 536 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 537 switch (Pred) { 538 case CmpInst::ICMP_UGT: 539 case CmpInst::ICMP_UGE: 540 case CmpInst::ICMP_SGT: 541 case CmpInst::ICMP_SGE: { 542 Pred = CmpInst::getSwappedPredicate(Pred); 543 std::swap(Op0, Op1); 544 break; 545 } 546 case CmpInst::ICMP_EQ: 547 if (match(Op1, m_Zero())) { 548 Pred = CmpInst::ICMP_ULE; 549 } else { 550 IsEq = true; 551 Pred = CmpInst::ICMP_ULE; 552 } 553 break; 554 case CmpInst::ICMP_NE: 555 if (match(Op1, m_Zero())) { 556 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 557 std::swap(Op0, Op1); 558 } else { 559 IsNe = true; 560 Pred = CmpInst::ICMP_ULE; 561 } 562 break; 563 default: 564 break; 565 } 566 567 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 568 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 569 return {}; 570 571 SmallVector<ConditionTy, 4> Preconditions; 572 bool IsSigned = CmpInst::isSigned(Pred); 573 auto &Value2Index = getValue2Index(IsSigned); 574 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 575 Preconditions, IsSigned, DL); 576 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 577 Preconditions, IsSigned, DL); 578 int64_t Offset1 = ADec.Offset; 579 int64_t Offset2 = BDec.Offset; 580 Offset1 *= -1; 581 582 auto &VariablesA = ADec.Vars; 583 auto &VariablesB = BDec.Vars; 584 585 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 586 // new entry to NewVariables. 587 DenseMap<Value *, unsigned> NewIndexMap; 588 auto GetOrAddIndex = [&Value2Index, &NewVariables, 589 &NewIndexMap](Value *V) -> unsigned { 590 auto V2I = Value2Index.find(V); 591 if (V2I != Value2Index.end()) 592 return V2I->second; 593 auto Insert = 594 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 595 if (Insert.second) 596 NewVariables.push_back(V); 597 return Insert.first->second; 598 }; 599 600 // Make sure all variables have entries in Value2Index or NewVariables. 601 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 602 GetOrAddIndex(KV.Variable); 603 604 // Build result constraint, by first adding all coefficients from A and then 605 // subtracting all coefficients from B. 606 ConstraintTy Res( 607 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 608 IsSigned, IsEq, IsNe); 609 // Collect variables that are known to be positive in all uses in the 610 // constraint. 611 DenseMap<Value *, bool> KnownNonNegativeVariables; 612 auto &R = Res.Coefficients; 613 for (const auto &KV : VariablesA) { 614 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 615 auto I = 616 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 617 I.first->second &= KV.IsKnownNonNegative; 618 } 619 620 for (const auto &KV : VariablesB) { 621 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 622 R[GetOrAddIndex(KV.Variable)])) 623 return {}; 624 auto I = 625 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 626 I.first->second &= KV.IsKnownNonNegative; 627 } 628 629 int64_t OffsetSum; 630 if (AddOverflow(Offset1, Offset2, OffsetSum)) 631 return {}; 632 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 633 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 634 return {}; 635 R[0] = OffsetSum; 636 Res.Preconditions = std::move(Preconditions); 637 638 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 639 // variables. 640 while (!NewVariables.empty()) { 641 int64_t Last = R.back(); 642 if (Last != 0) 643 break; 644 R.pop_back(); 645 Value *RemovedV = NewVariables.pop_back_val(); 646 NewIndexMap.erase(RemovedV); 647 } 648 649 // Add extra constraints for variables that are known positive. 650 for (auto &KV : KnownNonNegativeVariables) { 651 if (!KV.second || 652 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 653 continue; 654 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 655 C[GetOrAddIndex(KV.first)] = -1; 656 Res.ExtraInfo.push_back(C); 657 } 658 return Res; 659 } 660 661 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 662 Value *Op0, 663 Value *Op1) const { 664 // If both operands are known to be non-negative, change signed predicates to 665 // unsigned ones. This increases the reasoning effectiveness in combination 666 // with the signed <-> unsigned transfer logic. 667 if (CmpInst::isSigned(Pred) && 668 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 669 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 670 Pred = CmpInst::getUnsignedPredicate(Pred); 671 672 SmallVector<Value *> NewVariables; 673 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 674 if (!NewVariables.empty()) 675 return {}; 676 return R; 677 } 678 679 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 680 return Coefficients.size() > 0 && 681 all_of(Preconditions, [&Info](const ConditionTy &C) { 682 return Info.doesHold(C.Pred, C.Op0, C.Op1); 683 }); 684 } 685 686 std::optional<bool> 687 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 688 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 689 690 if (IsEq || IsNe) { 691 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 692 bool IsNegatedOrEqualImplied = 693 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 694 695 // In order to check that `%a == %b` is true (equality), both conditions `%a 696 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 697 // is true), we return true if they both hold, false in the other cases. 698 if (IsConditionImplied && IsNegatedOrEqualImplied) 699 return IsEq; 700 701 auto Negated = ConstraintSystem::negate(Coefficients); 702 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 703 704 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 705 bool IsStrictLessThanImplied = 706 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 707 708 // In order to check that `%a != %b` is true (non-equality), either 709 // condition `%a > %b` or `%a < %b` must hold true. When checking for 710 // non-equality (`IsNe` is true), we return true if one of the two holds, 711 // false in the other cases. 712 if (IsNegatedImplied || IsStrictLessThanImplied) 713 return IsNe; 714 715 return std::nullopt; 716 } 717 718 if (IsConditionImplied) 719 return true; 720 721 auto Negated = ConstraintSystem::negate(Coefficients); 722 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 723 if (IsNegatedImplied) 724 return false; 725 726 // Neither the condition nor its negated holds, did not prove anything. 727 return std::nullopt; 728 } 729 730 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 731 Value *B) const { 732 auto R = getConstraintForSolving(Pred, A, B); 733 return R.isValid(*this) && 734 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 735 } 736 737 void ConstraintInfo::transferToOtherSystem( 738 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 739 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 740 // Check if we can combine facts from the signed and unsigned systems to 741 // derive additional facts. 742 if (!A->getType()->isIntegerTy()) 743 return; 744 // FIXME: This currently depends on the order we add facts. Ideally we 745 // would first add all known facts and only then try to add additional 746 // facts. 747 switch (Pred) { 748 default: 749 break; 750 case CmpInst::ICMP_ULT: 751 // If B is a signed positive constant, A >=s 0 and A <s B. 752 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 753 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 754 NumOut, DFSInStack); 755 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 756 } 757 break; 758 case CmpInst::ICMP_SLT: 759 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 760 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 761 break; 762 case CmpInst::ICMP_SGT: { 763 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 764 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 765 NumOut, DFSInStack); 766 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) 767 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 768 769 break; 770 } 771 case CmpInst::ICMP_SGE: 772 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 773 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 774 } 775 break; 776 } 777 } 778 779 #ifndef NDEBUG 780 781 static void dumpConstraint(ArrayRef<int64_t> C, 782 const DenseMap<Value *, unsigned> &Value2Index) { 783 ConstraintSystem CS(Value2Index); 784 CS.addVariableRowFill(C); 785 CS.dump(); 786 } 787 #endif 788 789 void State::addInfoFor(BasicBlock &BB) { 790 // True as long as long as the current instruction is guaranteed to execute. 791 bool GuaranteedToExecute = true; 792 // Queue conditions and assumes. 793 for (Instruction &I : BB) { 794 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 795 for (Use &U : Cmp->uses()) { 796 auto *UserI = getContextInstForUse(U); 797 auto *DTN = DT.getNode(UserI->getParent()); 798 if (!DTN) 799 continue; 800 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 801 } 802 continue; 803 } 804 805 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 806 WorkList.push_back( 807 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 808 continue; 809 } 810 811 if (isa<MinMaxIntrinsic>(&I)) { 812 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 813 continue; 814 } 815 816 Value *A, *B; 817 CmpInst::Predicate Pred; 818 // For now, just handle assumes with a single compare as condition. 819 if (match(&I, m_Intrinsic<Intrinsic::assume>( 820 m_ICmp(Pred, m_Value(A), m_Value(B))))) { 821 if (GuaranteedToExecute) { 822 // The assume is guaranteed to execute when BB is entered, hence Cond 823 // holds on entry to BB. 824 WorkList.emplace_back(FactOrCheck::getConditionFact( 825 DT.getNode(I.getParent()), Pred, A, B)); 826 } else { 827 WorkList.emplace_back( 828 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 829 } 830 } 831 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 832 } 833 834 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 835 for (auto &Case : Switch->cases()) { 836 BasicBlock *Succ = Case.getCaseSuccessor(); 837 Value *V = Case.getCaseValue(); 838 if (!canAddSuccessor(BB, Succ)) 839 continue; 840 WorkList.emplace_back(FactOrCheck::getConditionFact( 841 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 842 } 843 return; 844 } 845 846 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 847 if (!Br || !Br->isConditional()) 848 return; 849 850 Value *Cond = Br->getCondition(); 851 852 // If the condition is a chain of ORs/AND and the successor only has the 853 // current block as predecessor, queue conditions for the successor. 854 Value *Op0, *Op1; 855 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 856 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 857 bool IsOr = match(Cond, m_LogicalOr()); 858 bool IsAnd = match(Cond, m_LogicalAnd()); 859 // If there's a select that matches both AND and OR, we need to commit to 860 // one of the options. Arbitrarily pick OR. 861 if (IsOr && IsAnd) 862 IsAnd = false; 863 864 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 865 if (canAddSuccessor(BB, Successor)) { 866 SmallVector<Value *> CondWorkList; 867 SmallPtrSet<Value *, 8> SeenCond; 868 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 869 if (SeenCond.insert(V).second) 870 CondWorkList.push_back(V); 871 }; 872 QueueValue(Op1); 873 QueueValue(Op0); 874 while (!CondWorkList.empty()) { 875 Value *Cur = CondWorkList.pop_back_val(); 876 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 877 WorkList.emplace_back(FactOrCheck::getConditionFact( 878 DT.getNode(Successor), 879 IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate()) 880 : Cmp->getPredicate(), 881 Cmp->getOperand(0), Cmp->getOperand(1))); 882 continue; 883 } 884 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 885 QueueValue(Op1); 886 QueueValue(Op0); 887 continue; 888 } 889 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 890 QueueValue(Op1); 891 QueueValue(Op0); 892 continue; 893 } 894 } 895 } 896 return; 897 } 898 899 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 900 if (!CmpI) 901 return; 902 if (canAddSuccessor(BB, Br->getSuccessor(0))) 903 WorkList.emplace_back(FactOrCheck::getConditionFact( 904 DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(), 905 CmpI->getOperand(0), CmpI->getOperand(1))); 906 if (canAddSuccessor(BB, Br->getSuccessor(1))) 907 WorkList.emplace_back(FactOrCheck::getConditionFact( 908 DT.getNode(Br->getSuccessor(1)), 909 CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0), 910 CmpI->getOperand(1))); 911 } 912 913 namespace { 914 /// Helper to keep track of a condition and if it should be treated as negated 915 /// for reproducer construction. 916 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 917 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 918 struct ReproducerEntry { 919 ICmpInst::Predicate Pred; 920 Value *LHS; 921 Value *RHS; 922 923 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 924 : Pred(Pred), LHS(LHS), RHS(RHS) {} 925 }; 926 } // namespace 927 928 /// Helper function to generate a reproducer function for simplifying \p Cond. 929 /// The reproducer function contains a series of @llvm.assume calls, one for 930 /// each condition in \p Stack. For each condition, the operand instruction are 931 /// cloned until we reach operands that have an entry in \p Value2Index. Those 932 /// will then be added as function arguments. \p DT is used to order cloned 933 /// instructions. The reproducer function will get added to \p M, if it is 934 /// non-null. Otherwise no reproducer function is generated. 935 static void generateReproducer(CmpInst *Cond, Module *M, 936 ArrayRef<ReproducerEntry> Stack, 937 ConstraintInfo &Info, DominatorTree &DT) { 938 if (!M) 939 return; 940 941 LLVMContext &Ctx = Cond->getContext(); 942 943 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 944 945 ValueToValueMapTy Old2New; 946 SmallVector<Value *> Args; 947 SmallPtrSet<Value *, 8> Seen; 948 // Traverse Cond and its operands recursively until we reach a value that's in 949 // Value2Index or not an instruction, or not a operation that 950 // ConstraintElimination can decompose. Such values will be considered as 951 // external inputs to the reproducer, they are collected and added as function 952 // arguments later. 953 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 954 auto &Value2Index = Info.getValue2Index(IsSigned); 955 SmallVector<Value *, 4> WorkList(Ops); 956 while (!WorkList.empty()) { 957 Value *V = WorkList.pop_back_val(); 958 if (!Seen.insert(V).second) 959 continue; 960 if (Old2New.find(V) != Old2New.end()) 961 continue; 962 if (isa<Constant>(V)) 963 continue; 964 965 auto *I = dyn_cast<Instruction>(V); 966 if (Value2Index.contains(V) || !I || 967 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 968 Old2New[V] = V; 969 Args.push_back(V); 970 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 971 } else { 972 append_range(WorkList, I->operands()); 973 } 974 } 975 }; 976 977 for (auto &Entry : Stack) 978 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 979 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 980 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 981 982 SmallVector<Type *> ParamTys; 983 for (auto *P : Args) 984 ParamTys.push_back(P->getType()); 985 986 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 987 /*isVarArg=*/false); 988 Function *F = Function::Create(FTy, Function::ExternalLinkage, 989 Cond->getModule()->getName() + 990 Cond->getFunction()->getName() + "repro", 991 M); 992 // Add arguments to the reproducer function for each external value collected. 993 for (unsigned I = 0; I < Args.size(); ++I) { 994 F->getArg(I)->setName(Args[I]->getName()); 995 Old2New[Args[I]] = F->getArg(I); 996 } 997 998 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 999 IRBuilder<> Builder(Entry); 1000 Builder.CreateRet(Builder.getTrue()); 1001 Builder.SetInsertPoint(Entry->getTerminator()); 1002 1003 // Clone instructions in \p Ops and their operands recursively until reaching 1004 // an value in Value2Index (external input to the reproducer). Update Old2New 1005 // mapping for the original and cloned instructions. Sort instructions to 1006 // clone by dominance, then insert the cloned instructions in the function. 1007 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1008 SmallVector<Value *, 4> WorkList(Ops); 1009 SmallVector<Instruction *> ToClone; 1010 auto &Value2Index = Info.getValue2Index(IsSigned); 1011 while (!WorkList.empty()) { 1012 Value *V = WorkList.pop_back_val(); 1013 if (Old2New.find(V) != Old2New.end()) 1014 continue; 1015 1016 auto *I = dyn_cast<Instruction>(V); 1017 if (!Value2Index.contains(V) && I) { 1018 Old2New[V] = nullptr; 1019 ToClone.push_back(I); 1020 append_range(WorkList, I->operands()); 1021 } 1022 } 1023 1024 sort(ToClone, 1025 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 1026 for (Instruction *I : ToClone) { 1027 Instruction *Cloned = I->clone(); 1028 Old2New[I] = Cloned; 1029 Old2New[I]->setName(I->getName()); 1030 Cloned->insertBefore(&*Builder.GetInsertPoint()); 1031 Cloned->dropUnknownNonDebugMetadata(); 1032 Cloned->setDebugLoc({}); 1033 } 1034 }; 1035 1036 // Materialize the assumptions for the reproducer using the entries in Stack. 1037 // That is, first clone the operands of the condition recursively until we 1038 // reach an external input to the reproducer and add them to the reproducer 1039 // function. Then add an ICmp for the condition (with the inverse predicate if 1040 // the entry is negated) and an assert using the ICmp. 1041 for (auto &Entry : Stack) { 1042 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1043 continue; 1044 1045 LLVM_DEBUG( 1046 dbgs() << " Materializing assumption icmp " << Entry.Pred << ' '; 1047 Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", "; 1048 Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n"); 1049 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1050 1051 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1052 Builder.CreateAssumption(Cmp); 1053 } 1054 1055 // Finally, clone the condition to reproduce and remap instruction operands in 1056 // the reproducer using Old2New. 1057 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1058 Entry->getTerminator()->setOperand(0, Cond); 1059 remapInstructionsInBlocks({Entry}, Old2New); 1060 1061 assert(!verifyFunction(*F, &dbgs())); 1062 } 1063 1064 static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info, 1065 unsigned NumIn, unsigned NumOut, 1066 Instruction *ContextInst) { 1067 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 1068 1069 CmpInst::Predicate Pred = Cmp->getPredicate(); 1070 Value *A = Cmp->getOperand(0); 1071 Value *B = Cmp->getOperand(1); 1072 1073 auto R = Info.getConstraintForSolving(Pred, A, B); 1074 if (R.empty() || !R.isValid(Info)){ 1075 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1076 return std::nullopt; 1077 } 1078 1079 auto &CSToUse = Info.getCS(R.IsSigned); 1080 1081 // If there was extra information collected during decomposition, apply 1082 // it now and remove it immediately once we are done with reasoning 1083 // about the constraint. 1084 for (auto &Row : R.ExtraInfo) 1085 CSToUse.addVariableRow(Row); 1086 auto InfoRestorer = make_scope_exit([&]() { 1087 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1088 CSToUse.popLastConstraint(); 1089 }); 1090 1091 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1092 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1093 return std::nullopt; 1094 1095 LLVM_DEBUG({ 1096 if (*ImpliedCondition) { 1097 dbgs() << "Condition " << *Cmp; 1098 } else { 1099 auto InversePred = Cmp->getInversePredicate(); 1100 dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " " 1101 << *A << ", " << *B; 1102 } 1103 dbgs() << " implied by dominating constraints\n"; 1104 CSToUse.dump(); 1105 }); 1106 return ImpliedCondition; 1107 } 1108 1109 return std::nullopt; 1110 } 1111 1112 static bool checkAndReplaceCondition( 1113 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1114 Instruction *ContextInst, Module *ReproducerModule, 1115 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1116 SmallVectorImpl<Instruction *> &ToRemove) { 1117 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1118 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1119 Constant *ConstantC = ConstantInt::getBool( 1120 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1121 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1122 ContextInst](Use &U) { 1123 auto *UserI = getContextInstForUse(U); 1124 auto *DTN = DT.getNode(UserI->getParent()); 1125 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1126 return false; 1127 if (UserI->getParent() == ContextInst->getParent() && 1128 UserI->comesBefore(ContextInst)) 1129 return false; 1130 1131 // Conditions in an assume trivially simplify to true. Skip uses 1132 // in assume calls to not destroy the available information. 1133 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1134 return !II || II->getIntrinsicID() != Intrinsic::assume; 1135 }); 1136 NumCondsRemoved++; 1137 if (Cmp->use_empty()) 1138 ToRemove.push_back(Cmp); 1139 return true; 1140 }; 1141 1142 if (auto ImpliedCondition = 1143 checkCondition(Cmp, Info, NumIn, NumOut, ContextInst)) 1144 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1145 return false; 1146 } 1147 1148 static void 1149 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1150 Module *ReproducerModule, 1151 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1152 SmallVectorImpl<StackEntry> &DFSInStack) { 1153 Info.popLastConstraint(E.IsSigned); 1154 // Remove variables in the system that went out of scope. 1155 auto &Mapping = Info.getValue2Index(E.IsSigned); 1156 for (Value *V : E.ValuesToRelease) 1157 Mapping.erase(V); 1158 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1159 DFSInStack.pop_back(); 1160 if (ReproducerModule) 1161 ReproducerCondStack.pop_back(); 1162 } 1163 1164 /// Check if the first condition for an AND implies the second. 1165 static bool checkAndSecondOpImpliedByFirst( 1166 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1167 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1168 SmallVectorImpl<StackEntry> &DFSInStack) { 1169 CmpInst::Predicate Pred; 1170 Value *A, *B; 1171 Instruction *And = CB.getContextInst(); 1172 if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1173 return false; 1174 1175 // Optimistically add fact from first condition. 1176 unsigned OldSize = DFSInStack.size(); 1177 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1178 if (OldSize == DFSInStack.size()) 1179 return false; 1180 1181 bool Changed = false; 1182 // Check if the second condition can be simplified now. 1183 if (auto ImpliedCondition = 1184 checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn, 1185 CB.NumOut, CB.getContextInst())) { 1186 And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition)); 1187 Changed = true; 1188 } 1189 1190 // Remove entries again. 1191 while (OldSize < DFSInStack.size()) { 1192 StackEntry E = DFSInStack.back(); 1193 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1194 DFSInStack); 1195 } 1196 return Changed; 1197 } 1198 1199 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1200 unsigned NumIn, unsigned NumOut, 1201 SmallVectorImpl<StackEntry> &DFSInStack) { 1202 // If the constraint has a pre-condition, skip the constraint if it does not 1203 // hold. 1204 SmallVector<Value *> NewVariables; 1205 auto R = getConstraint(Pred, A, B, NewVariables); 1206 1207 // TODO: Support non-equality for facts as well. 1208 if (!R.isValid(*this) || R.isNe()) 1209 return; 1210 1211 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; 1212 A->printAsOperand(dbgs(), false); dbgs() << ", "; 1213 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 1214 bool Added = false; 1215 auto &CSToUse = getCS(R.IsSigned); 1216 if (R.Coefficients.empty()) 1217 return; 1218 1219 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1220 1221 // If R has been added to the system, add the new variables and queue it for 1222 // removal once it goes out-of-scope. 1223 if (Added) { 1224 SmallVector<Value *, 2> ValuesToRelease; 1225 auto &Value2Index = getValue2Index(R.IsSigned); 1226 for (Value *V : NewVariables) { 1227 Value2Index.insert({V, Value2Index.size() + 1}); 1228 ValuesToRelease.push_back(V); 1229 } 1230 1231 LLVM_DEBUG({ 1232 dbgs() << " constraint: "; 1233 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1234 dbgs() << "\n"; 1235 }); 1236 1237 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1238 std::move(ValuesToRelease)); 1239 1240 if (R.isEq()) { 1241 // Also add the inverted constraint for equality constraints. 1242 for (auto &Coeff : R.Coefficients) 1243 Coeff *= -1; 1244 CSToUse.addVariableRowFill(R.Coefficients); 1245 1246 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1247 SmallVector<Value *, 2>()); 1248 } 1249 } 1250 } 1251 1252 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1253 SmallVectorImpl<Instruction *> &ToRemove) { 1254 bool Changed = false; 1255 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1256 Value *Sub = nullptr; 1257 for (User *U : make_early_inc_range(II->users())) { 1258 if (match(U, m_ExtractValue<0>(m_Value()))) { 1259 if (!Sub) 1260 Sub = Builder.CreateSub(A, B); 1261 U->replaceAllUsesWith(Sub); 1262 Changed = true; 1263 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1264 U->replaceAllUsesWith(Builder.getFalse()); 1265 Changed = true; 1266 } else 1267 continue; 1268 1269 if (U->use_empty()) { 1270 auto *I = cast<Instruction>(U); 1271 ToRemove.push_back(I); 1272 I->setOperand(0, PoisonValue::get(II->getType())); 1273 Changed = true; 1274 } 1275 } 1276 1277 if (II->use_empty()) { 1278 II->eraseFromParent(); 1279 Changed = true; 1280 } 1281 return Changed; 1282 } 1283 1284 static bool 1285 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1286 SmallVectorImpl<Instruction *> &ToRemove) { 1287 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1288 ConstraintInfo &Info) { 1289 auto R = Info.getConstraintForSolving(Pred, A, B); 1290 if (R.size() < 2 || !R.isValid(Info)) 1291 return false; 1292 1293 auto &CSToUse = Info.getCS(R.IsSigned); 1294 return CSToUse.isConditionImplied(R.Coefficients); 1295 }; 1296 1297 bool Changed = false; 1298 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1299 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1300 // can be simplified to a regular sub. 1301 Value *A = II->getArgOperand(0); 1302 Value *B = II->getArgOperand(1); 1303 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1304 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1305 ConstantInt::get(A->getType(), 0), Info)) 1306 return false; 1307 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1308 } 1309 return Changed; 1310 } 1311 1312 static bool eliminateConstraints(Function &F, DominatorTree &DT, 1313 OptimizationRemarkEmitter &ORE) { 1314 bool Changed = false; 1315 DT.updateDFSNumbers(); 1316 SmallVector<Value *> FunctionArgs; 1317 for (Value &Arg : F.args()) 1318 FunctionArgs.push_back(&Arg); 1319 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1320 State S(DT); 1321 std::unique_ptr<Module> ReproducerModule( 1322 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1323 1324 // First, collect conditions implied by branches and blocks with their 1325 // Dominator DFS in and out numbers. 1326 for (BasicBlock &BB : F) { 1327 if (!DT.getNode(&BB)) 1328 continue; 1329 S.addInfoFor(BB); 1330 } 1331 1332 // Next, sort worklist by dominance, so that dominating conditions to check 1333 // and facts come before conditions and facts dominated by them. If a 1334 // condition to check and a fact have the same numbers, conditional facts come 1335 // first. Assume facts and checks are ordered according to their relative 1336 // order in the containing basic block. Also make sure conditions with 1337 // constant operands come before conditions without constant operands. This 1338 // increases the effectiveness of the current signed <-> unsigned fact 1339 // transfer logic. 1340 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1341 auto HasNoConstOp = [](const FactOrCheck &B) { 1342 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 1343 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 1344 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1345 }; 1346 // If both entries have the same In numbers, conditional facts come first. 1347 // Otherwise use the relative order in the basic block. 1348 if (A.NumIn == B.NumIn) { 1349 if (A.isConditionFact() && B.isConditionFact()) { 1350 bool NoConstOpA = HasNoConstOp(A); 1351 bool NoConstOpB = HasNoConstOp(B); 1352 return NoConstOpA < NoConstOpB; 1353 } 1354 if (A.isConditionFact()) 1355 return true; 1356 if (B.isConditionFact()) 1357 return false; 1358 auto *InstA = A.getContextInst(); 1359 auto *InstB = B.getContextInst(); 1360 return InstA->comesBefore(InstB); 1361 } 1362 return A.NumIn < B.NumIn; 1363 }); 1364 1365 SmallVector<Instruction *> ToRemove; 1366 1367 // Finally, process ordered worklist and eliminate implied conditions. 1368 SmallVector<StackEntry, 16> DFSInStack; 1369 SmallVector<ReproducerEntry> ReproducerCondStack; 1370 for (FactOrCheck &CB : S.WorkList) { 1371 // First, pop entries from the stack that are out-of-scope for CB. Remove 1372 // the corresponding entry from the constraint system. 1373 while (!DFSInStack.empty()) { 1374 auto &E = DFSInStack.back(); 1375 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1376 << "\n"); 1377 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1378 assert(E.NumIn <= CB.NumIn); 1379 if (CB.NumOut <= E.NumOut) 1380 break; 1381 LLVM_DEBUG({ 1382 dbgs() << "Removing "; 1383 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1384 Info.getValue2Index(E.IsSigned)); 1385 dbgs() << "\n"; 1386 }); 1387 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1388 DFSInStack); 1389 } 1390 1391 LLVM_DEBUG(dbgs() << "Processing "); 1392 1393 // For a block, check if any CmpInsts become known based on the current set 1394 // of constraints. 1395 if (CB.isCheck()) { 1396 Instruction *Inst = CB.getInstructionToSimplify(); 1397 if (!Inst) 1398 continue; 1399 LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 1400 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1401 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1402 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1403 bool Simplified = checkAndReplaceCondition( 1404 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1405 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1406 if (!Simplified && match(CB.getContextInst(), 1407 m_LogicalAnd(m_Value(), m_Specific(Inst)))) { 1408 Simplified = 1409 checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(), 1410 ReproducerCondStack, DFSInStack); 1411 } 1412 Changed |= Simplified; 1413 } 1414 continue; 1415 } 1416 1417 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1418 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1419 LLVM_DEBUG( 1420 dbgs() 1421 << "Skip adding constraint because system has too many rows.\n"); 1422 return; 1423 } 1424 1425 LLVM_DEBUG({ 1426 dbgs() << "Processing fact to add to the system: " << Pred << " "; 1427 A->printAsOperand(dbgs()); 1428 dbgs() << ", "; 1429 B->printAsOperand(dbgs(), false); 1430 dbgs() << "\n"; 1431 }); 1432 1433 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1434 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1435 ReproducerCondStack.emplace_back(Pred, A, B); 1436 1437 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1438 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1439 // Add dummy entries to ReproducerCondStack to keep it in sync with 1440 // DFSInStack. 1441 for (unsigned I = 0, 1442 E = (DFSInStack.size() - ReproducerCondStack.size()); 1443 I < E; ++I) { 1444 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1445 nullptr, nullptr); 1446 } 1447 } 1448 }; 1449 1450 ICmpInst::Predicate Pred; 1451 if (!CB.isConditionFact()) { 1452 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1453 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1454 AddFact(Pred, MinMax, MinMax->getLHS()); 1455 AddFact(Pred, MinMax, MinMax->getRHS()); 1456 continue; 1457 } 1458 } 1459 1460 Value *A = nullptr, *B = nullptr; 1461 if (CB.isConditionFact()) { 1462 Pred = CB.Cond.Pred; 1463 A = CB.Cond.Op0; 1464 B = CB.Cond.Op1; 1465 } else { 1466 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 1467 m_ICmp(Pred, m_Value(A), m_Value(B)))); 1468 (void)Matched; 1469 assert(Matched && "Must have an assume intrinsic with a icmp operand"); 1470 } 1471 AddFact(Pred, A, B); 1472 } 1473 1474 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1475 std::string S; 1476 raw_string_ostream StringS(S); 1477 ReproducerModule->print(StringS, nullptr); 1478 StringS.flush(); 1479 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1480 Rem << ore::NV("module") << S; 1481 ORE.emit(Rem); 1482 } 1483 1484 #ifndef NDEBUG 1485 unsigned SignedEntries = 1486 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1487 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1488 "updates to CS and DFSInStack are out of sync"); 1489 assert(Info.getCS(true).size() == SignedEntries && 1490 "updates to CS and DFSInStack are out of sync"); 1491 #endif 1492 1493 for (Instruction *I : ToRemove) 1494 I->eraseFromParent(); 1495 return Changed; 1496 } 1497 1498 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1499 FunctionAnalysisManager &AM) { 1500 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1501 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1502 if (!eliminateConstraints(F, DT, ORE)) 1503 return PreservedAnalyses::all(); 1504 1505 PreservedAnalyses PA; 1506 PA.preserve<DominatorTreeAnalysis>(); 1507 PA.preserveSet<CFGAnalyses>(); 1508 return PA; 1509 } 1510