1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/DebugCounter.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Transforms/Scalar.h" 35 36 #include <cmath> 37 #include <string> 38 39 using namespace llvm; 40 using namespace PatternMatch; 41 42 #define DEBUG_TYPE "constraint-elimination" 43 44 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 45 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 46 "Controls which conditions are eliminated"); 47 48 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 49 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 50 51 namespace { 52 53 class ConstraintInfo; 54 55 struct StackEntry { 56 unsigned NumIn; 57 unsigned NumOut; 58 bool IsSigned = false; 59 /// Variables that can be removed from the system once the stack entry gets 60 /// removed. 61 SmallVector<Value *, 2> ValuesToRelease; 62 63 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 64 SmallVector<Value *, 2> ValuesToRelease) 65 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 66 ValuesToRelease(ValuesToRelease) {} 67 }; 68 69 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 70 struct PreconditionTy { 71 CmpInst::Predicate Pred; 72 Value *Op0; 73 Value *Op1; 74 75 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 76 : Pred(Pred), Op0(Op0), Op1(Op1) {} 77 }; 78 79 struct ConstraintTy { 80 SmallVector<int64_t, 8> Coefficients; 81 SmallVector<PreconditionTy, 2> Preconditions; 82 83 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 84 85 bool IsSigned = false; 86 bool IsEq = false; 87 88 ConstraintTy() = default; 89 90 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 91 : Coefficients(Coefficients), IsSigned(IsSigned) {} 92 93 unsigned size() const { return Coefficients.size(); } 94 95 unsigned empty() const { return Coefficients.empty(); } 96 97 /// Returns true if all preconditions for this list of constraints are 98 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 99 bool isValid(const ConstraintInfo &Info) const; 100 }; 101 102 /// Wrapper encapsulating separate constraint systems and corresponding value 103 /// mappings for both unsigned and signed information. Facts are added to and 104 /// conditions are checked against the corresponding system depending on the 105 /// signed-ness of their predicates. While the information is kept separate 106 /// based on signed-ness, certain conditions can be transferred between the two 107 /// systems. 108 class ConstraintInfo { 109 DenseMap<Value *, unsigned> UnsignedValue2Index; 110 DenseMap<Value *, unsigned> SignedValue2Index; 111 112 ConstraintSystem UnsignedCS; 113 ConstraintSystem SignedCS; 114 115 const DataLayout &DL; 116 117 public: 118 ConstraintInfo(const DataLayout &DL) : DL(DL) {} 119 120 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 121 return Signed ? SignedValue2Index : UnsignedValue2Index; 122 } 123 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 124 return Signed ? SignedValue2Index : UnsignedValue2Index; 125 } 126 127 ConstraintSystem &getCS(bool Signed) { 128 return Signed ? SignedCS : UnsignedCS; 129 } 130 const ConstraintSystem &getCS(bool Signed) const { 131 return Signed ? SignedCS : UnsignedCS; 132 } 133 134 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 135 void popLastNVariables(bool Signed, unsigned N) { 136 getCS(Signed).popLastNVariables(N); 137 } 138 139 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 140 141 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 142 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 143 144 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 145 /// constraints, using indices from the corresponding constraint system. 146 /// New variables that need to be added to the system are collected in 147 /// \p NewVariables. 148 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 149 SmallVectorImpl<Value *> &NewVariables) const; 150 151 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 152 /// constraints using getConstraint. Returns an empty constraint if the result 153 /// cannot be used to query the existing constraint system, e.g. because it 154 /// would require adding new variables. Also tries to convert signed 155 /// predicates to unsigned ones if possible to allow using the unsigned system 156 /// which increases the effectiveness of the signed <-> unsigned transfer 157 /// logic. 158 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 159 Value *Op1) const; 160 161 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 162 /// system if \p Pred is signed/unsigned. 163 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 164 unsigned NumIn, unsigned NumOut, 165 SmallVectorImpl<StackEntry> &DFSInStack); 166 }; 167 168 /// Represents a (Coefficient * Variable) entry after IR decomposition. 169 struct DecompEntry { 170 int64_t Coefficient; 171 Value *Variable; 172 /// True if the variable is known positive in the current constraint. 173 bool IsKnownPositive; 174 175 DecompEntry(int64_t Coefficient, Value *Variable, 176 bool IsKnownPositive = false) 177 : Coefficient(Coefficient), Variable(Variable), 178 IsKnownPositive(IsKnownPositive) {} 179 }; 180 181 } // namespace 182 183 static SmallVector<DecompEntry, 4> 184 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 185 bool IsSigned, const DataLayout &DL); 186 187 static bool canUseSExt(ConstantInt *CI) { 188 const APInt &Val = CI->getValue(); 189 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 190 } 191 192 static SmallVector<DecompEntry, 4> 193 decomposeGEP(GetElementPtrInst &GEP, 194 SmallVector<PreconditionTy, 4> &Preconditions, bool IsSigned, 195 const DataLayout &DL) { 196 // Do not reason about pointers where the index size is larger than 64 bits, 197 // as the coefficients used to encode constraints are 64 bit integers. 198 unsigned AS = 199 cast<PointerType>(GEP.getPointerOperand()->getType())->getAddressSpace(); 200 if (DL.getIndexSizeInBits(AS) > 64) 201 return {}; 202 203 auto GTI = gep_type_begin(GEP); 204 if (GEP.getNumOperands() != 2 || !GEP.isInBounds() || 205 isa<ScalableVectorType>(GTI.getIndexedType())) 206 return {{0, nullptr}, {1, &GEP}}; 207 208 int64_t Scale = static_cast<int64_t>( 209 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 210 // Handle the (gep (gep ....), C) case by incrementing the constant 211 // coefficient of the inner GEP, if C is a constant. 212 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand()); 213 if (InnerGEP && InnerGEP->getNumOperands() == 2 && 214 isa<ConstantInt>(GEP.getOperand(1))) { 215 APInt Offset = cast<ConstantInt>(GEP.getOperand(1))->getValue(); 216 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 217 Result[0].Coefficient += Scale * Offset.getSExtValue(); 218 if (Offset.isNegative()) { 219 // Add pre-condition ensuring the GEP is increasing monotonically and 220 // can be de-composed. 221 Preconditions.emplace_back( 222 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 223 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 224 -1 * Offset.getSExtValue())); 225 } 226 return Result; 227 } 228 229 Value *Op0, *Op1; 230 ConstantInt *CI; 231 // If the index is zero-extended, it is guaranteed to be positive. 232 if (match(GEP.getOperand(GEP.getNumOperands() - 1), m_ZExt(m_Value(Op0)))) { 233 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) 234 return {{0, nullptr}, 235 {1, GEP.getPointerOperand()}, 236 {Scale * int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op1}}; 237 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) && 238 canUseSExt(CI) && match(Op0, m_NUWAdd(m_Value(), m_Value()))) 239 return {{Scale * CI->getSExtValue(), nullptr}, 240 {1, GEP.getPointerOperand()}, 241 {Scale, Op1}}; 242 243 return {{0, nullptr}, {1, GEP.getPointerOperand()}, {Scale, Op0, true}}; 244 } 245 246 if (match(GEP.getOperand(GEP.getNumOperands() - 1), m_ConstantInt(CI)) && 247 !CI->isNegative() && canUseSExt(CI)) 248 return {{Scale * CI->getSExtValue(), nullptr}, 249 {1, GEP.getPointerOperand()}}; 250 251 SmallVector<DecompEntry, 4> Result; 252 if (match(GEP.getOperand(GEP.getNumOperands() - 1), 253 m_NSWShl(m_Value(Op0), m_ConstantInt(CI))) && 254 canUseSExt(CI)) 255 Result = {{0, nullptr}, 256 {1, GEP.getPointerOperand()}, 257 {Scale * int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op0}}; 258 else if (match(GEP.getOperand(GEP.getNumOperands() - 1), 259 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) && 260 canUseSExt(CI)) 261 Result = {{Scale * CI->getSExtValue(), nullptr}, 262 {1, GEP.getPointerOperand()}, 263 {Scale, Op0}}; 264 else { 265 Op0 = GEP.getOperand(GEP.getNumOperands() - 1); 266 Result = {{0, nullptr}, {1, GEP.getPointerOperand()}, {Scale, Op0}}; 267 } 268 // If Op0 is signed non-negative, the GEP is increasing monotonically and 269 // can be de-composed. 270 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 271 ConstantInt::get(Op0->getType(), 0)); 272 return Result; 273 } 274 275 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable 276 // } where Coefficient * Variable. The sum of the pairs equals \p V. The first 277 // pair is the constant-factor and X must be nullptr. If the expression cannot 278 // be decomposed, returns an empty vector. 279 static SmallVector<DecompEntry, 4> 280 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 281 bool IsSigned, const DataLayout &DL) { 282 283 // Decompose \p V used with a signed predicate. 284 if (IsSigned) { 285 if (auto *CI = dyn_cast<ConstantInt>(V)) { 286 if (canUseSExt(CI)) 287 return {{CI->getSExtValue(), nullptr}}; 288 } 289 290 return {{0, nullptr}, {1, V}}; 291 } 292 293 if (auto *CI = dyn_cast<ConstantInt>(V)) { 294 if (CI->uge(MaxConstraintValue)) 295 return {}; 296 return {{int64_t(CI->getZExtValue()), nullptr}}; 297 } 298 299 if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) 300 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 301 302 Value *Op0; 303 bool IsKnownPositive = false; 304 if (match(V, m_ZExt(m_Value(Op0)))) { 305 IsKnownPositive = true; 306 V = Op0; 307 } 308 309 auto MergeResults = [&Preconditions, IsSigned, 310 DL](Value *A, Value *B, 311 bool IsSignedB) -> SmallVector<DecompEntry, 4> { 312 auto ResA = decompose(A, Preconditions, IsSigned, DL); 313 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 314 if (ResA.empty() || ResB.empty()) 315 return {}; 316 ResA[0].Coefficient += ResB[0].Coefficient; 317 append_range(ResA, drop_begin(ResB)); 318 return ResA; 319 }; 320 Value *Op1; 321 ConstantInt *CI; 322 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 323 return MergeResults(Op0, Op1, IsSigned); 324 } 325 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 326 canUseSExt(CI)) { 327 Preconditions.emplace_back( 328 CmpInst::ICMP_UGE, Op0, 329 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 330 return MergeResults(Op0, CI, true); 331 } 332 333 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 334 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 335 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 336 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 337 338 return {{0, nullptr}, {1, V, IsKnownPositive}}; 339 } 340 341 ConstraintTy 342 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 343 SmallVectorImpl<Value *> &NewVariables) const { 344 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 345 bool IsEq = false; 346 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 347 switch (Pred) { 348 case CmpInst::ICMP_UGT: 349 case CmpInst::ICMP_UGE: 350 case CmpInst::ICMP_SGT: 351 case CmpInst::ICMP_SGE: { 352 Pred = CmpInst::getSwappedPredicate(Pred); 353 std::swap(Op0, Op1); 354 break; 355 } 356 case CmpInst::ICMP_EQ: 357 if (match(Op1, m_Zero())) { 358 Pred = CmpInst::ICMP_ULE; 359 } else { 360 IsEq = true; 361 Pred = CmpInst::ICMP_ULE; 362 } 363 break; 364 case CmpInst::ICMP_NE: 365 if (!match(Op1, m_Zero())) 366 return {}; 367 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 368 std::swap(Op0, Op1); 369 break; 370 default: 371 break; 372 } 373 374 // Only ULE and ULT predicates are supported at the moment. 375 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 376 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 377 return {}; 378 379 SmallVector<PreconditionTy, 4> Preconditions; 380 bool IsSigned = CmpInst::isSigned(Pred); 381 auto &Value2Index = getValue2Index(IsSigned); 382 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 383 Preconditions, IsSigned, DL); 384 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 385 Preconditions, IsSigned, DL); 386 // Skip if decomposing either of the values failed. 387 if (ADec.empty() || BDec.empty()) 388 return {}; 389 390 int64_t Offset1 = ADec[0].Coefficient; 391 int64_t Offset2 = BDec[0].Coefficient; 392 Offset1 *= -1; 393 394 // Create iterator ranges that skip the constant-factor. 395 auto VariablesA = llvm::drop_begin(ADec); 396 auto VariablesB = llvm::drop_begin(BDec); 397 398 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 399 // new entry to NewVariables. 400 DenseMap<Value *, unsigned> NewIndexMap; 401 auto GetOrAddIndex = [&Value2Index, &NewVariables, 402 &NewIndexMap](Value *V) -> unsigned { 403 auto V2I = Value2Index.find(V); 404 if (V2I != Value2Index.end()) 405 return V2I->second; 406 auto Insert = 407 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 408 if (Insert.second) 409 NewVariables.push_back(V); 410 return Insert.first->second; 411 }; 412 413 // Make sure all variables have entries in Value2Index or NewVariables. 414 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 415 GetOrAddIndex(KV.Variable); 416 417 // Build result constraint, by first adding all coefficients from A and then 418 // subtracting all coefficients from B. 419 ConstraintTy Res( 420 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 421 IsSigned); 422 // Collect variables that are known to be positive in all uses in the 423 // constraint. 424 DenseMap<Value *, bool> KnownPositiveVariables; 425 Res.IsEq = IsEq; 426 auto &R = Res.Coefficients; 427 for (const auto &KV : VariablesA) { 428 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 429 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 430 I.first->second &= KV.IsKnownPositive; 431 } 432 433 for (const auto &KV : VariablesB) { 434 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 435 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 436 I.first->second &= KV.IsKnownPositive; 437 } 438 439 int64_t OffsetSum; 440 if (AddOverflow(Offset1, Offset2, OffsetSum)) 441 return {}; 442 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 443 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 444 return {}; 445 R[0] = OffsetSum; 446 Res.Preconditions = std::move(Preconditions); 447 448 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 449 // variables. 450 while (!NewVariables.empty()) { 451 int64_t Last = R.back(); 452 if (Last != 0) 453 break; 454 R.pop_back(); 455 Value *RemovedV = NewVariables.pop_back_val(); 456 NewIndexMap.erase(RemovedV); 457 } 458 459 // Add extra constraints for variables that are known positive. 460 for (auto &KV : KnownPositiveVariables) { 461 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 462 NewIndexMap.find(KV.first) == NewIndexMap.end())) 463 continue; 464 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 465 C[GetOrAddIndex(KV.first)] = -1; 466 Res.ExtraInfo.push_back(C); 467 } 468 return Res; 469 } 470 471 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 472 Value *Op0, 473 Value *Op1) const { 474 // If both operands are known to be non-negative, change signed predicates to 475 // unsigned ones. This increases the reasoning effectiveness in combination 476 // with the signed <-> unsigned transfer logic. 477 if (CmpInst::isSigned(Pred) && 478 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 479 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 480 Pred = CmpInst::getUnsignedPredicate(Pred); 481 482 SmallVector<Value *> NewVariables; 483 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 484 if (R.IsEq || !NewVariables.empty()) 485 return {}; 486 return R; 487 } 488 489 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 490 return Coefficients.size() > 0 && 491 all_of(Preconditions, [&Info](const PreconditionTy &C) { 492 return Info.doesHold(C.Pred, C.Op0, C.Op1); 493 }); 494 } 495 496 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 497 Value *B) const { 498 auto R = getConstraintForSolving(Pred, A, B); 499 return R.Preconditions.empty() && !R.empty() && 500 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 501 } 502 503 void ConstraintInfo::transferToOtherSystem( 504 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 505 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 506 // Check if we can combine facts from the signed and unsigned systems to 507 // derive additional facts. 508 if (!A->getType()->isIntegerTy()) 509 return; 510 // FIXME: This currently depends on the order we add facts. Ideally we 511 // would first add all known facts and only then try to add additional 512 // facts. 513 switch (Pred) { 514 default: 515 break; 516 case CmpInst::ICMP_ULT: 517 // If B is a signed positive constant, A >=s 0 and A <s B. 518 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 519 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 520 NumOut, DFSInStack); 521 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 522 } 523 break; 524 case CmpInst::ICMP_SLT: 525 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 526 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 527 break; 528 case CmpInst::ICMP_SGT: 529 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 530 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 531 NumOut, DFSInStack); 532 break; 533 case CmpInst::ICMP_SGE: 534 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 535 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 536 } 537 break; 538 } 539 } 540 541 namespace { 542 /// Represents either a condition that holds on entry to a block or a basic 543 /// block, with their respective Dominator DFS in and out numbers. 544 struct ConstraintOrBlock { 545 unsigned NumIn; 546 unsigned NumOut; 547 bool IsBlock; 548 bool Not; 549 union { 550 BasicBlock *BB; 551 CmpInst *Condition; 552 }; 553 554 ConstraintOrBlock(DomTreeNode *DTN) 555 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 556 BB(DTN->getBlock()) {} 557 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 558 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 559 Not(Not), Condition(Condition) {} 560 }; 561 562 /// Keep state required to build worklist. 563 struct State { 564 DominatorTree &DT; 565 SmallVector<ConstraintOrBlock, 64> WorkList; 566 567 State(DominatorTree &DT) : DT(DT) {} 568 569 /// Process block \p BB and add known facts to work-list. 570 void addInfoFor(BasicBlock &BB); 571 572 /// Returns true if we can add a known condition from BB to its successor 573 /// block Succ. Each predecessor of Succ can either be BB or be dominated 574 /// by Succ (e.g. the case when adding a condition from a pre-header to a 575 /// loop header). 576 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 577 if (BB.getSingleSuccessor()) { 578 assert(BB.getSingleSuccessor() == Succ); 579 return DT.properlyDominates(&BB, Succ); 580 } 581 return any_of(successors(&BB), 582 [Succ](const BasicBlock *S) { return S != Succ; }) && 583 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 584 return Pred == &BB || DT.dominates(Succ, Pred); 585 }); 586 } 587 }; 588 589 } // namespace 590 591 #ifndef NDEBUG 592 static void dumpWithNames(const ConstraintSystem &CS, 593 DenseMap<Value *, unsigned> &Value2Index) { 594 SmallVector<std::string> Names(Value2Index.size(), ""); 595 for (auto &KV : Value2Index) { 596 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 597 } 598 CS.dump(Names); 599 } 600 601 static void dumpWithNames(ArrayRef<int64_t> C, 602 DenseMap<Value *, unsigned> &Value2Index) { 603 ConstraintSystem CS; 604 CS.addVariableRowFill(C); 605 dumpWithNames(CS, Value2Index); 606 } 607 #endif 608 609 void State::addInfoFor(BasicBlock &BB) { 610 WorkList.emplace_back(DT.getNode(&BB)); 611 612 // True as long as long as the current instruction is guaranteed to execute. 613 bool GuaranteedToExecute = true; 614 // Scan BB for assume calls. 615 // TODO: also use this scan to queue conditions to simplify, so we can 616 // interleave facts from assumes and conditions to simplify in a single 617 // basic block. And to skip another traversal of each basic block when 618 // simplifying. 619 for (Instruction &I : BB) { 620 Value *Cond; 621 // For now, just handle assumes with a single compare as condition. 622 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 623 isa<ICmpInst>(Cond)) { 624 if (GuaranteedToExecute) { 625 // The assume is guaranteed to execute when BB is entered, hence Cond 626 // holds on entry to BB. 627 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 628 } else { 629 // Otherwise the condition only holds in the successors. 630 for (BasicBlock *Succ : successors(&BB)) { 631 if (!canAddSuccessor(BB, Succ)) 632 continue; 633 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false); 634 } 635 } 636 } 637 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 638 } 639 640 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 641 if (!Br || !Br->isConditional()) 642 return; 643 644 Value *Cond = Br->getCondition(); 645 646 // If the condition is a chain of ORs/AND and the successor only has the 647 // current block as predecessor, queue conditions for the successor. 648 Value *Op0, *Op1; 649 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 650 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 651 bool IsOr = match(Cond, m_LogicalOr()); 652 bool IsAnd = match(Cond, m_LogicalAnd()); 653 // If there's a select that matches both AND and OR, we need to commit to 654 // one of the options. Arbitrarily pick OR. 655 if (IsOr && IsAnd) 656 IsAnd = false; 657 658 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 659 if (canAddSuccessor(BB, Successor)) { 660 SmallVector<Value *> CondWorkList; 661 SmallPtrSet<Value *, 8> SeenCond; 662 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 663 if (SeenCond.insert(V).second) 664 CondWorkList.push_back(V); 665 }; 666 QueueValue(Op1); 667 QueueValue(Op0); 668 while (!CondWorkList.empty()) { 669 Value *Cur = CondWorkList.pop_back_val(); 670 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 671 WorkList.emplace_back(DT.getNode(Successor), Cmp, IsOr); 672 continue; 673 } 674 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 675 QueueValue(Op1); 676 QueueValue(Op0); 677 continue; 678 } 679 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 680 QueueValue(Op1); 681 QueueValue(Op0); 682 continue; 683 } 684 } 685 } 686 return; 687 } 688 689 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 690 if (!CmpI) 691 return; 692 if (canAddSuccessor(BB, Br->getSuccessor(0))) 693 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 694 if (canAddSuccessor(BB, Br->getSuccessor(1))) 695 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 696 } 697 698 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 699 unsigned NumIn, unsigned NumOut, 700 SmallVectorImpl<StackEntry> &DFSInStack) { 701 // If the constraint has a pre-condition, skip the constraint if it does not 702 // hold. 703 SmallVector<Value *> NewVariables; 704 auto R = getConstraint(Pred, A, B, NewVariables); 705 if (!R.isValid(*this)) 706 return; 707 708 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; 709 A->printAsOperand(dbgs(), false); dbgs() << ", "; 710 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 711 bool Added = false; 712 auto &CSToUse = getCS(R.IsSigned); 713 if (R.Coefficients.empty()) 714 return; 715 716 Added |= CSToUse.addVariableRowFill(R.Coefficients); 717 718 // If R has been added to the system, add the new variables and queue it for 719 // removal once it goes out-of-scope. 720 if (Added) { 721 SmallVector<Value *, 2> ValuesToRelease; 722 auto &Value2Index = getValue2Index(R.IsSigned); 723 for (Value *V : NewVariables) { 724 Value2Index.insert({V, Value2Index.size() + 1}); 725 ValuesToRelease.push_back(V); 726 } 727 728 LLVM_DEBUG({ 729 dbgs() << " constraint: "; 730 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 731 dbgs() << "\n"; 732 }); 733 734 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease); 735 736 if (R.IsEq) { 737 // Also add the inverted constraint for equality constraints. 738 for (auto &Coeff : R.Coefficients) 739 Coeff *= -1; 740 CSToUse.addVariableRowFill(R.Coefficients); 741 742 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 743 SmallVector<Value *, 2>()); 744 } 745 } 746 } 747 748 static bool 749 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 750 SmallVectorImpl<Instruction *> &ToRemove) { 751 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 752 ConstraintInfo &Info) { 753 auto R = Info.getConstraintForSolving(Pred, A, B); 754 if (R.size() < 2 || !R.isValid(Info)) 755 return false; 756 757 auto &CSToUse = Info.getCS(R.IsSigned); 758 return CSToUse.isConditionImplied(R.Coefficients); 759 }; 760 761 bool Changed = false; 762 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 763 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 764 // can be simplified to a regular sub. 765 Value *A = II->getArgOperand(0); 766 Value *B = II->getArgOperand(1); 767 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 768 !DoesConditionHold(CmpInst::ICMP_SGE, B, 769 ConstantInt::get(A->getType(), 0), Info)) 770 return false; 771 772 IRBuilder<> Builder(II->getParent(), II->getIterator()); 773 Value *Sub = nullptr; 774 for (User *U : make_early_inc_range(II->users())) { 775 if (match(U, m_ExtractValue<0>(m_Value()))) { 776 if (!Sub) 777 Sub = Builder.CreateSub(A, B); 778 U->replaceAllUsesWith(Sub); 779 Changed = true; 780 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 781 U->replaceAllUsesWith(Builder.getFalse()); 782 Changed = true; 783 } else 784 continue; 785 786 if (U->use_empty()) { 787 auto *I = cast<Instruction>(U); 788 ToRemove.push_back(I); 789 I->setOperand(0, PoisonValue::get(II->getType())); 790 Changed = true; 791 } 792 } 793 794 if (II->use_empty()) { 795 II->eraseFromParent(); 796 Changed = true; 797 } 798 } 799 return Changed; 800 } 801 802 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 803 bool Changed = false; 804 DT.updateDFSNumbers(); 805 806 ConstraintInfo Info(F.getParent()->getDataLayout()); 807 State S(DT); 808 809 // First, collect conditions implied by branches and blocks with their 810 // Dominator DFS in and out numbers. 811 for (BasicBlock &BB : F) { 812 if (!DT.getNode(&BB)) 813 continue; 814 S.addInfoFor(BB); 815 } 816 817 // Next, sort worklist by dominance, so that dominating blocks and conditions 818 // come before blocks and conditions dominated by them. If a block and a 819 // condition have the same numbers, the condition comes before the block, as 820 // it holds on entry to the block. Also make sure conditions with constant 821 // operands come before conditions without constant operands. This increases 822 // the effectiveness of the current signed <-> unsigned fact transfer logic. 823 stable_sort( 824 S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 825 auto HasNoConstOp = [](const ConstraintOrBlock &B) { 826 return !B.IsBlock && !isa<ConstantInt>(B.Condition->getOperand(0)) && 827 !isa<ConstantInt>(B.Condition->getOperand(1)); 828 }; 829 bool NoConstOpA = HasNoConstOp(A); 830 bool NoConstOpB = HasNoConstOp(B); 831 return std::tie(A.NumIn, A.IsBlock, NoConstOpA) < 832 std::tie(B.NumIn, B.IsBlock, NoConstOpB); 833 }); 834 835 SmallVector<Instruction *> ToRemove; 836 837 // Finally, process ordered worklist and eliminate implied conditions. 838 SmallVector<StackEntry, 16> DFSInStack; 839 for (ConstraintOrBlock &CB : S.WorkList) { 840 // First, pop entries from the stack that are out-of-scope for CB. Remove 841 // the corresponding entry from the constraint system. 842 while (!DFSInStack.empty()) { 843 auto &E = DFSInStack.back(); 844 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 845 << "\n"); 846 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 847 assert(E.NumIn <= CB.NumIn); 848 if (CB.NumOut <= E.NumOut) 849 break; 850 LLVM_DEBUG({ 851 dbgs() << "Removing "; 852 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 853 Info.getValue2Index(E.IsSigned)); 854 dbgs() << "\n"; 855 }); 856 857 Info.popLastConstraint(E.IsSigned); 858 // Remove variables in the system that went out of scope. 859 auto &Mapping = Info.getValue2Index(E.IsSigned); 860 for (Value *V : E.ValuesToRelease) 861 Mapping.erase(V); 862 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 863 DFSInStack.pop_back(); 864 } 865 866 LLVM_DEBUG({ 867 dbgs() << "Processing "; 868 if (CB.IsBlock) 869 dbgs() << *CB.BB; 870 else 871 dbgs() << *CB.Condition; 872 dbgs() << "\n"; 873 }); 874 875 // For a block, check if any CmpInsts become known based on the current set 876 // of constraints. 877 if (CB.IsBlock) { 878 for (Instruction &I : make_early_inc_range(*CB.BB)) { 879 if (auto *II = dyn_cast<WithOverflowInst>(&I)) { 880 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 881 continue; 882 } 883 auto *Cmp = dyn_cast<ICmpInst>(&I); 884 if (!Cmp) 885 continue; 886 887 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 888 auto R = Info.getConstraintForSolving( 889 Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1)); 890 if (R.empty() || !R.isValid(Info)) 891 continue; 892 893 auto &CSToUse = Info.getCS(R.IsSigned); 894 895 // If there was extra information collected during decomposition, apply 896 // it now and remove it immediately once we are done with reasoning 897 // about the constraint. 898 for (auto &Row : R.ExtraInfo) 899 CSToUse.addVariableRow(Row); 900 auto InfoRestorer = make_scope_exit([&]() { 901 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 902 CSToUse.popLastConstraint(); 903 }); 904 905 if (CSToUse.isConditionImplied(R.Coefficients)) { 906 if (!DebugCounter::shouldExecute(EliminatedCounter)) 907 continue; 908 909 LLVM_DEBUG({ 910 dbgs() << "Condition " << *Cmp 911 << " implied by dominating constraints\n"; 912 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 913 }); 914 Cmp->replaceUsesWithIf( 915 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 916 // Conditions in an assume trivially simplify to true. Skip uses 917 // in assume calls to not destroy the available information. 918 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 919 return !II || II->getIntrinsicID() != Intrinsic::assume; 920 }); 921 NumCondsRemoved++; 922 Changed = true; 923 } 924 if (CSToUse.isConditionImplied( 925 ConstraintSystem::negate(R.Coefficients))) { 926 if (!DebugCounter::shouldExecute(EliminatedCounter)) 927 continue; 928 929 LLVM_DEBUG({ 930 dbgs() << "Condition !" << *Cmp 931 << " implied by dominating constraints\n"; 932 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 933 }); 934 Cmp->replaceAllUsesWith( 935 ConstantInt::getFalse(F.getParent()->getContext())); 936 NumCondsRemoved++; 937 Changed = true; 938 } 939 } 940 continue; 941 } 942 943 ICmpInst::Predicate Pred; 944 Value *A, *B; 945 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 946 // Use the inverse predicate if required. 947 if (CB.Not) 948 Pred = CmpInst::getInversePredicate(Pred); 949 950 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 951 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 952 } 953 } 954 955 #ifndef NDEBUG 956 unsigned SignedEntries = 957 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 958 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 959 "updates to CS and DFSInStack are out of sync"); 960 assert(Info.getCS(true).size() == SignedEntries && 961 "updates to CS and DFSInStack are out of sync"); 962 #endif 963 964 for (Instruction *I : ToRemove) 965 I->eraseFromParent(); 966 return Changed; 967 } 968 969 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 970 FunctionAnalysisManager &AM) { 971 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 972 if (!eliminateConstraints(F, DT)) 973 return PreservedAnalyses::all(); 974 975 PreservedAnalyses PA; 976 PA.preserve<DominatorTreeAnalysis>(); 977 PA.preserveSet<CFGAnalyses>(); 978 return PA; 979 } 980 981 namespace { 982 983 class ConstraintElimination : public FunctionPass { 984 public: 985 static char ID; 986 987 ConstraintElimination() : FunctionPass(ID) { 988 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 989 } 990 991 bool runOnFunction(Function &F) override { 992 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 993 return eliminateConstraints(F, DT); 994 } 995 996 void getAnalysisUsage(AnalysisUsage &AU) const override { 997 AU.setPreservesCFG(); 998 AU.addRequired<DominatorTreeWrapperPass>(); 999 AU.addPreserved<GlobalsAAWrapperPass>(); 1000 AU.addPreserved<DominatorTreeWrapperPass>(); 1001 } 1002 }; 1003 1004 } // end anonymous namespace 1005 1006 char ConstraintElimination::ID = 0; 1007 1008 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 1009 "Constraint Elimination", false, false) 1010 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1011 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 1012 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 1013 "Constraint Elimination", false, false) 1014 1015 FunctionPass *llvm::createConstraintEliminationPass() { 1016 return new ConstraintElimination(); 1017 } 1018