1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DebugCounter.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Scalar.h" 33 34 #include <cmath> 35 #include <string> 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 #define DEBUG_TYPE "constraint-elimination" 41 42 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 43 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 44 "Controls which conditions are eliminated"); 45 46 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 47 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 48 49 namespace { 50 51 class ConstraintInfo; 52 53 struct StackEntry { 54 unsigned NumIn; 55 unsigned NumOut; 56 bool IsSigned = false; 57 /// Variables that can be removed from the system once the stack entry gets 58 /// removed. 59 SmallVector<Value *, 2> ValuesToRelease; 60 61 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 62 SmallVector<Value *, 2> ValuesToRelease) 63 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 64 ValuesToRelease(ValuesToRelease) {} 65 }; 66 67 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 68 struct PreconditionTy { 69 CmpInst::Predicate Pred; 70 Value *Op0; 71 Value *Op1; 72 73 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 74 : Pred(Pred), Op0(Op0), Op1(Op1) {} 75 }; 76 77 struct ConstraintTy { 78 SmallVector<int64_t, 8> Coefficients; 79 SmallVector<PreconditionTy, 2> Preconditions; 80 81 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 82 83 bool IsSigned = false; 84 bool IsEq = false; 85 86 ConstraintTy() = default; 87 88 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 89 : Coefficients(Coefficients), IsSigned(IsSigned) {} 90 91 unsigned size() const { return Coefficients.size(); } 92 93 unsigned empty() const { return Coefficients.empty(); } 94 95 /// Returns true if all preconditions for this list of constraints are 96 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 97 bool isValid(const ConstraintInfo &Info) const; 98 }; 99 100 /// Wrapper encapsulating separate constraint systems and corresponding value 101 /// mappings for both unsigned and signed information. Facts are added to and 102 /// conditions are checked against the corresponding system depending on the 103 /// signed-ness of their predicates. While the information is kept separate 104 /// based on signed-ness, certain conditions can be transferred between the two 105 /// systems. 106 class ConstraintInfo { 107 DenseMap<Value *, unsigned> UnsignedValue2Index; 108 DenseMap<Value *, unsigned> SignedValue2Index; 109 110 ConstraintSystem UnsignedCS; 111 ConstraintSystem SignedCS; 112 113 public: 114 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 115 return Signed ? SignedValue2Index : UnsignedValue2Index; 116 } 117 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 118 return Signed ? SignedValue2Index : UnsignedValue2Index; 119 } 120 121 ConstraintSystem &getCS(bool Signed) { 122 return Signed ? SignedCS : UnsignedCS; 123 } 124 const ConstraintSystem &getCS(bool Signed) const { 125 return Signed ? SignedCS : UnsignedCS; 126 } 127 128 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 129 void popLastNVariables(bool Signed, unsigned N) { 130 getCS(Signed).popLastNVariables(N); 131 } 132 133 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 134 135 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 136 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 137 138 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 139 /// constraints, using indices from the corresponding constraint system. 140 /// New variables that need to be added to the system are collected in 141 /// \p NewVariables. 142 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 143 SmallVectorImpl<Value *> &NewVariables) const; 144 145 /// Turn a condition \p CmpI into a vector of constraints, using indices from 146 /// the corresponding constraint system. New variables that need to be added 147 /// to the system are collected in \p NewVariables. 148 ConstraintTy getConstraint(CmpInst *Cmp, 149 SmallVectorImpl<Value *> &NewVariables) { 150 return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0), 151 Cmp->getOperand(1), NewVariables); 152 } 153 154 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 155 /// system if \p Pred is signed/unsigned. 156 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 157 unsigned NumIn, unsigned NumOut, 158 SmallVectorImpl<StackEntry> &DFSInStack); 159 }; 160 161 /// Represents a (Coefficient * Variable) entry after IR decomposition. 162 struct DecompEntry { 163 int64_t Coefficient; 164 Value *Variable; 165 /// True if the variable is known positive in the current constraint. 166 bool IsKnownPositive; 167 168 DecompEntry(int64_t Coefficient, Value *Variable, 169 bool IsKnownPositive = false) 170 : Coefficient(Coefficient), Variable(Variable), 171 IsKnownPositive(IsKnownPositive) {} 172 }; 173 174 } // namespace 175 176 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable 177 // } where Coefficient * Variable. The sum of the pairs equals \p V. The first 178 // pair is the constant-factor and X must be nullptr. If the expression cannot 179 // be decomposed, returns an empty vector. 180 static SmallVector<DecompEntry, 4> 181 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 182 bool IsSigned) { 183 184 auto CanUseSExt = [](ConstantInt *CI) { 185 const APInt &Val = CI->getValue(); 186 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 187 }; 188 // Decompose \p V used with a signed predicate. 189 if (IsSigned) { 190 if (auto *CI = dyn_cast<ConstantInt>(V)) { 191 if (CanUseSExt(CI)) 192 return {{CI->getSExtValue(), nullptr}}; 193 } 194 195 return {{0, nullptr}, {1, V}}; 196 } 197 198 if (auto *CI = dyn_cast<ConstantInt>(V)) { 199 if (CI->uge(MaxConstraintValue)) 200 return {}; 201 return {{int64_t(CI->getZExtValue()), nullptr}}; 202 } 203 auto *GEP = dyn_cast<GetElementPtrInst>(V); 204 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 205 Value *Op0, *Op1; 206 ConstantInt *CI; 207 208 // If the index is zero-extended, it is guaranteed to be positive. 209 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 210 m_ZExt(m_Value(Op0)))) { 211 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && 212 CanUseSExt(CI)) 213 return {{0, nullptr}, 214 {1, GEP->getPointerOperand()}, 215 {int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op1}}; 216 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) && 217 CanUseSExt(CI)) 218 return {{CI->getSExtValue(), nullptr}, 219 {1, GEP->getPointerOperand()}, 220 {1, Op1}}; 221 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0, true}}; 222 } 223 224 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 225 !CI->isNegative() && CanUseSExt(CI)) 226 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 227 228 SmallVector<DecompEntry, 4> Result; 229 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 230 m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) && 231 CanUseSExt(CI)) 232 Result = {{0, nullptr}, 233 {1, GEP->getPointerOperand()}, 234 {int(std::pow(int64_t(2), CI->getSExtValue())), Op0}}; 235 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 236 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) && 237 CanUseSExt(CI)) 238 Result = {{CI->getSExtValue(), nullptr}, 239 {1, GEP->getPointerOperand()}, 240 {1, Op0}}; 241 else { 242 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 243 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 244 } 245 // If Op0 is signed non-negative, the GEP is increasing monotonically and 246 // can be de-composed. 247 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 248 ConstantInt::get(Op0->getType(), 0)); 249 return Result; 250 } 251 252 Value *Op0; 253 bool IsKnownPositive = false; 254 if (match(V, m_ZExt(m_Value(Op0)))) { 255 IsKnownPositive = true; 256 V = Op0; 257 } 258 259 auto MergeResults = [&Preconditions, IsSigned]( 260 Value *A, Value *B, 261 bool IsSignedB) -> SmallVector<DecompEntry, 4> { 262 auto ResA = decompose(A, Preconditions, IsSigned); 263 auto ResB = decompose(B, Preconditions, IsSignedB); 264 if (ResA.empty() || ResB.empty()) 265 return {}; 266 ResA[0].Coefficient += ResB[0].Coefficient; 267 append_range(ResA, drop_begin(ResB)); 268 return ResA; 269 }; 270 Value *Op1; 271 ConstantInt *CI; 272 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 273 return MergeResults(Op0, Op1, IsSigned); 274 } 275 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 276 CanUseSExt(CI)) { 277 Preconditions.emplace_back( 278 CmpInst::ICMP_UGE, Op0, 279 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 280 return MergeResults(Op0, CI, true); 281 } 282 283 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI)) 284 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 285 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 286 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 287 288 return {{0, nullptr}, {1, V, IsKnownPositive}}; 289 } 290 291 ConstraintTy 292 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 293 SmallVectorImpl<Value *> &NewVariables) const { 294 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 295 bool IsEq = false; 296 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 297 switch (Pred) { 298 case CmpInst::ICMP_UGT: 299 case CmpInst::ICMP_UGE: 300 case CmpInst::ICMP_SGT: 301 case CmpInst::ICMP_SGE: { 302 Pred = CmpInst::getSwappedPredicate(Pred); 303 std::swap(Op0, Op1); 304 break; 305 } 306 case CmpInst::ICMP_EQ: 307 if (match(Op1, m_Zero())) { 308 Pred = CmpInst::ICMP_ULE; 309 } else { 310 IsEq = true; 311 Pred = CmpInst::ICMP_ULE; 312 } 313 break; 314 case CmpInst::ICMP_NE: 315 if (!match(Op1, m_Zero())) 316 return {}; 317 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 318 std::swap(Op0, Op1); 319 break; 320 default: 321 break; 322 } 323 324 // Only ULE and ULT predicates are supported at the moment. 325 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 326 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 327 return {}; 328 329 SmallVector<PreconditionTy, 4> Preconditions; 330 bool IsSigned = CmpInst::isSigned(Pred); 331 auto &Value2Index = getValue2Index(IsSigned); 332 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 333 Preconditions, IsSigned); 334 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 335 Preconditions, IsSigned); 336 // Skip if decomposing either of the values failed. 337 if (ADec.empty() || BDec.empty()) 338 return {}; 339 340 int64_t Offset1 = ADec[0].Coefficient; 341 int64_t Offset2 = BDec[0].Coefficient; 342 Offset1 *= -1; 343 344 // Create iterator ranges that skip the constant-factor. 345 auto VariablesA = llvm::drop_begin(ADec); 346 auto VariablesB = llvm::drop_begin(BDec); 347 348 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 349 // new entry to NewVariables. 350 DenseMap<Value *, unsigned> NewIndexMap; 351 auto GetOrAddIndex = [&Value2Index, &NewVariables, 352 &NewIndexMap](Value *V) -> unsigned { 353 auto V2I = Value2Index.find(V); 354 if (V2I != Value2Index.end()) 355 return V2I->second; 356 auto Insert = 357 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 358 if (Insert.second) 359 NewVariables.push_back(V); 360 return Insert.first->second; 361 }; 362 363 // Make sure all variables have entries in Value2Index or NewVariables. 364 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 365 GetOrAddIndex(KV.Variable); 366 367 // Build result constraint, by first adding all coefficients from A and then 368 // subtracting all coefficients from B. 369 ConstraintTy Res( 370 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 371 IsSigned); 372 // Collect variables that are known to be positive in all uses in the 373 // constraint. 374 DenseMap<Value *, bool> KnownPositiveVariables; 375 Res.IsEq = IsEq; 376 auto &R = Res.Coefficients; 377 for (const auto &KV : VariablesA) { 378 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 379 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 380 I.first->second &= KV.IsKnownPositive; 381 } 382 383 for (const auto &KV : VariablesB) { 384 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 385 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 386 I.first->second &= KV.IsKnownPositive; 387 } 388 389 int64_t OffsetSum; 390 if (AddOverflow(Offset1, Offset2, OffsetSum)) 391 return {}; 392 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 393 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 394 return {}; 395 R[0] = OffsetSum; 396 Res.Preconditions = std::move(Preconditions); 397 398 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 399 // variables. 400 while (!NewVariables.empty()) { 401 int64_t Last = R.back(); 402 if (Last != 0) 403 break; 404 R.pop_back(); 405 Value *RemovedV = NewVariables.pop_back_val(); 406 NewIndexMap.erase(RemovedV); 407 } 408 409 // Add extra constraints for variables that are known positive. 410 for (auto &KV : KnownPositiveVariables) { 411 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 412 NewIndexMap.find(KV.first) == NewIndexMap.end())) 413 continue; 414 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 415 C[GetOrAddIndex(KV.first)] = -1; 416 Res.ExtraInfo.push_back(C); 417 } 418 return Res; 419 } 420 421 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 422 return Coefficients.size() > 0 && 423 all_of(Preconditions, [&Info](const PreconditionTy &C) { 424 return Info.doesHold(C.Pred, C.Op0, C.Op1); 425 }); 426 } 427 428 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 429 Value *B) const { 430 SmallVector<Value *> NewVariables; 431 auto R = getConstraint(Pred, A, B, NewVariables); 432 433 if (!NewVariables.empty()) 434 return false; 435 436 return NewVariables.empty() && R.Preconditions.empty() && !R.IsEq && 437 !R.empty() && getCS(R.IsSigned).isConditionImplied(R.Coefficients); 438 } 439 440 void ConstraintInfo::transferToOtherSystem( 441 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 442 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 443 // Check if we can combine facts from the signed and unsigned systems to 444 // derive additional facts. 445 if (!A->getType()->isIntegerTy()) 446 return; 447 // FIXME: This currently depends on the order we add facts. Ideally we 448 // would first add all known facts and only then try to add additional 449 // facts. 450 switch (Pred) { 451 default: 452 break; 453 case CmpInst::ICMP_ULT: 454 // If B is a signed positive constant, A >=s 0 and A <s B. 455 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 456 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 457 NumOut, DFSInStack); 458 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 459 } 460 break; 461 case CmpInst::ICMP_SLT: 462 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 463 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 464 break; 465 case CmpInst::ICMP_SGT: 466 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 467 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 468 NumOut, DFSInStack); 469 break; 470 case CmpInst::ICMP_SGE: 471 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 472 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 473 } 474 break; 475 } 476 } 477 478 namespace { 479 /// Represents either a condition that holds on entry to a block or a basic 480 /// block, with their respective Dominator DFS in and out numbers. 481 struct ConstraintOrBlock { 482 unsigned NumIn; 483 unsigned NumOut; 484 bool IsBlock; 485 bool Not; 486 union { 487 BasicBlock *BB; 488 CmpInst *Condition; 489 }; 490 491 ConstraintOrBlock(DomTreeNode *DTN) 492 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 493 BB(DTN->getBlock()) {} 494 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 495 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 496 Not(Not), Condition(Condition) {} 497 }; 498 499 /// Keep state required to build worklist. 500 struct State { 501 DominatorTree &DT; 502 SmallVector<ConstraintOrBlock, 64> WorkList; 503 504 State(DominatorTree &DT) : DT(DT) {} 505 506 /// Process block \p BB and add known facts to work-list. 507 void addInfoFor(BasicBlock &BB); 508 509 /// Returns true if we can add a known condition from BB to its successor 510 /// block Succ. Each predecessor of Succ can either be BB or be dominated 511 /// by Succ (e.g. the case when adding a condition from a pre-header to a 512 /// loop header). 513 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 514 if (BB.getSingleSuccessor()) { 515 assert(BB.getSingleSuccessor() == Succ); 516 return DT.properlyDominates(&BB, Succ); 517 } 518 return any_of(successors(&BB), 519 [Succ](const BasicBlock *S) { return S != Succ; }) && 520 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 521 return Pred == &BB || DT.dominates(Succ, Pred); 522 }); 523 } 524 }; 525 526 } // namespace 527 528 #ifndef NDEBUG 529 static void dumpWithNames(const ConstraintSystem &CS, 530 DenseMap<Value *, unsigned> &Value2Index) { 531 SmallVector<std::string> Names(Value2Index.size(), ""); 532 for (auto &KV : Value2Index) { 533 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 534 } 535 CS.dump(Names); 536 } 537 538 static void dumpWithNames(ArrayRef<int64_t> C, 539 DenseMap<Value *, unsigned> &Value2Index) { 540 ConstraintSystem CS; 541 CS.addVariableRowFill(C); 542 dumpWithNames(CS, Value2Index); 543 } 544 #endif 545 546 void State::addInfoFor(BasicBlock &BB) { 547 WorkList.emplace_back(DT.getNode(&BB)); 548 549 // True as long as long as the current instruction is guaranteed to execute. 550 bool GuaranteedToExecute = true; 551 // Scan BB for assume calls. 552 // TODO: also use this scan to queue conditions to simplify, so we can 553 // interleave facts from assumes and conditions to simplify in a single 554 // basic block. And to skip another traversal of each basic block when 555 // simplifying. 556 for (Instruction &I : BB) { 557 Value *Cond; 558 // For now, just handle assumes with a single compare as condition. 559 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 560 isa<ICmpInst>(Cond)) { 561 if (GuaranteedToExecute) { 562 // The assume is guaranteed to execute when BB is entered, hence Cond 563 // holds on entry to BB. 564 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 565 } else { 566 // Otherwise the condition only holds in the successors. 567 for (BasicBlock *Succ : successors(&BB)) { 568 if (!canAddSuccessor(BB, Succ)) 569 continue; 570 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false); 571 } 572 } 573 } 574 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 575 } 576 577 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 578 if (!Br || !Br->isConditional()) 579 return; 580 581 // If the condition is a chain of ORs and the false successor only has 582 // the current block as predecessor, queue the negated conditions for the 583 // false successor. 584 Value *Op0, *Op1; 585 if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 586 BasicBlock *FalseSuccessor = Br->getSuccessor(1); 587 if (canAddSuccessor(BB, FalseSuccessor)) { 588 SmallVector<Value *> CondWorkList; 589 SmallPtrSet<Value *, 8> SeenCond; 590 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 591 if (SeenCond.insert(V).second) 592 CondWorkList.push_back(V); 593 }; 594 QueueValue(Op0); 595 QueueValue(Op1); 596 while (!CondWorkList.empty()) { 597 Value *Cur = CondWorkList.pop_back_val(); 598 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 599 WorkList.emplace_back(DT.getNode(FalseSuccessor), Cmp, true); 600 continue; 601 } 602 if (match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 603 QueueValue(Op0); 604 QueueValue(Op1); 605 } 606 } 607 } 608 return; 609 } 610 611 // If the condition is an AND of 2 compares and the true successor only has 612 // the current block as predecessor, queue both conditions for the true 613 // successor. 614 if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && 615 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 616 BasicBlock *TrueSuccessor = Br->getSuccessor(0); 617 if (canAddSuccessor(BB, TrueSuccessor)) { 618 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0), 619 false); 620 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1), 621 false); 622 } 623 return; 624 } 625 626 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 627 if (!CmpI) 628 return; 629 if (canAddSuccessor(BB, Br->getSuccessor(0))) 630 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 631 if (canAddSuccessor(BB, Br->getSuccessor(1))) 632 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 633 } 634 635 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 636 unsigned NumIn, unsigned NumOut, 637 SmallVectorImpl<StackEntry> &DFSInStack) { 638 // If the constraint has a pre-condition, skip the constraint if it does not 639 // hold. 640 SmallVector<Value *> NewVariables; 641 auto R = getConstraint(Pred, A, B, NewVariables); 642 if (!R.isValid(*this)) 643 return; 644 645 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; 646 A->printAsOperand(dbgs(), false); dbgs() << ", "; 647 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 648 bool Added = false; 649 assert(CmpInst::isSigned(Pred) == R.IsSigned && 650 "condition and constraint signs must match"); 651 auto &CSToUse = getCS(R.IsSigned); 652 if (R.Coefficients.empty()) 653 return; 654 655 Added |= CSToUse.addVariableRowFill(R.Coefficients); 656 657 // If R has been added to the system, add the new variables and queue it for 658 // removal once it goes out-of-scope. 659 if (Added) { 660 SmallVector<Value *, 2> ValuesToRelease; 661 auto &Value2Index = getValue2Index(R.IsSigned); 662 for (Value *V : NewVariables) { 663 Value2Index.insert({V, Value2Index.size() + 1}); 664 ValuesToRelease.push_back(V); 665 } 666 667 LLVM_DEBUG({ 668 dbgs() << " constraint: "; 669 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 670 dbgs() << "\n"; 671 }); 672 673 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease); 674 675 if (R.IsEq) { 676 // Also add the inverted constraint for equality constraints. 677 for (auto &Coeff : R.Coefficients) 678 Coeff *= -1; 679 CSToUse.addVariableRowFill(R.Coefficients); 680 681 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 682 SmallVector<Value *, 2>()); 683 } 684 } 685 } 686 687 static bool 688 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 689 SmallVectorImpl<Instruction *> &ToRemove) { 690 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 691 ConstraintInfo &Info) { 692 SmallVector<Value *> NewVariables; 693 auto R = Info.getConstraint(Pred, A, B, NewVariables); 694 if (R.size() < 2 || !NewVariables.empty() || !R.isValid(Info)) 695 return false; 696 697 auto &CSToUse = Info.getCS(R.IsSigned); 698 return CSToUse.isConditionImplied(R.Coefficients); 699 }; 700 701 bool Changed = false; 702 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 703 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 704 // can be simplified to a regular sub. 705 Value *A = II->getArgOperand(0); 706 Value *B = II->getArgOperand(1); 707 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 708 !DoesConditionHold(CmpInst::ICMP_SGE, B, 709 ConstantInt::get(A->getType(), 0), Info)) 710 return false; 711 712 IRBuilder<> Builder(II->getParent(), II->getIterator()); 713 Value *Sub = nullptr; 714 for (User *U : make_early_inc_range(II->users())) { 715 if (match(U, m_ExtractValue<0>(m_Value()))) { 716 if (!Sub) 717 Sub = Builder.CreateSub(A, B); 718 U->replaceAllUsesWith(Sub); 719 Changed = true; 720 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 721 U->replaceAllUsesWith(Builder.getFalse()); 722 Changed = true; 723 } else 724 continue; 725 726 if (U->use_empty()) { 727 auto *I = cast<Instruction>(U); 728 ToRemove.push_back(I); 729 I->setOperand(0, PoisonValue::get(II->getType())); 730 Changed = true; 731 } 732 } 733 734 if (II->use_empty()) { 735 II->eraseFromParent(); 736 Changed = true; 737 } 738 } 739 return Changed; 740 } 741 742 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 743 bool Changed = false; 744 DT.updateDFSNumbers(); 745 746 ConstraintInfo Info; 747 State S(DT); 748 749 // First, collect conditions implied by branches and blocks with their 750 // Dominator DFS in and out numbers. 751 for (BasicBlock &BB : F) { 752 if (!DT.getNode(&BB)) 753 continue; 754 S.addInfoFor(BB); 755 } 756 757 // Next, sort worklist by dominance, so that dominating blocks and conditions 758 // come before blocks and conditions dominated by them. If a block and a 759 // condition have the same numbers, the condition comes before the block, as 760 // it holds on entry to the block. 761 stable_sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 762 return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); 763 }); 764 765 SmallVector<Instruction *> ToRemove; 766 767 // Finally, process ordered worklist and eliminate implied conditions. 768 SmallVector<StackEntry, 16> DFSInStack; 769 for (ConstraintOrBlock &CB : S.WorkList) { 770 // First, pop entries from the stack that are out-of-scope for CB. Remove 771 // the corresponding entry from the constraint system. 772 while (!DFSInStack.empty()) { 773 auto &E = DFSInStack.back(); 774 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 775 << "\n"); 776 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 777 assert(E.NumIn <= CB.NumIn); 778 if (CB.NumOut <= E.NumOut) 779 break; 780 LLVM_DEBUG({ 781 dbgs() << "Removing "; 782 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 783 Info.getValue2Index(E.IsSigned)); 784 dbgs() << "\n"; 785 }); 786 787 Info.popLastConstraint(E.IsSigned); 788 // Remove variables in the system that went out of scope. 789 auto &Mapping = Info.getValue2Index(E.IsSigned); 790 for (Value *V : E.ValuesToRelease) 791 Mapping.erase(V); 792 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 793 DFSInStack.pop_back(); 794 } 795 796 LLVM_DEBUG({ 797 dbgs() << "Processing "; 798 if (CB.IsBlock) 799 dbgs() << *CB.BB; 800 else 801 dbgs() << *CB.Condition; 802 dbgs() << "\n"; 803 }); 804 805 // For a block, check if any CmpInsts become known based on the current set 806 // of constraints. 807 if (CB.IsBlock) { 808 for (Instruction &I : make_early_inc_range(*CB.BB)) { 809 if (auto *II = dyn_cast<WithOverflowInst>(&I)) { 810 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 811 continue; 812 } 813 auto *Cmp = dyn_cast<ICmpInst>(&I); 814 if (!Cmp) 815 continue; 816 817 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 818 SmallVector<Value *> NewVariables; 819 auto R = Info.getConstraint(Cmp, NewVariables); 820 if (R.IsEq || R.empty() || !NewVariables.empty() || !R.isValid(Info)) 821 continue; 822 823 auto &CSToUse = Info.getCS(R.IsSigned); 824 825 // If there was extra information collected during decomposition, apply 826 // it now and remove it immediately once we are done with reasoning 827 // about the constraint. 828 for (auto &Row : R.ExtraInfo) 829 CSToUse.addVariableRow(Row); 830 auto InfoRestorer = make_scope_exit([&]() { 831 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 832 CSToUse.popLastConstraint(); 833 }); 834 835 if (CSToUse.isConditionImplied(R.Coefficients)) { 836 if (!DebugCounter::shouldExecute(EliminatedCounter)) 837 continue; 838 839 LLVM_DEBUG({ 840 dbgs() << "Condition " << *Cmp 841 << " implied by dominating constraints\n"; 842 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 843 }); 844 Cmp->replaceUsesWithIf( 845 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 846 // Conditions in an assume trivially simplify to true. Skip uses 847 // in assume calls to not destroy the available information. 848 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 849 return !II || II->getIntrinsicID() != Intrinsic::assume; 850 }); 851 NumCondsRemoved++; 852 Changed = true; 853 } 854 if (CSToUse.isConditionImplied( 855 ConstraintSystem::negate(R.Coefficients))) { 856 if (!DebugCounter::shouldExecute(EliminatedCounter)) 857 continue; 858 859 LLVM_DEBUG({ 860 dbgs() << "Condition !" << *Cmp 861 << " implied by dominating constraints\n"; 862 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 863 }); 864 Cmp->replaceAllUsesWith( 865 ConstantInt::getFalse(F.getParent()->getContext())); 866 NumCondsRemoved++; 867 Changed = true; 868 } 869 } 870 continue; 871 } 872 873 ICmpInst::Predicate Pred; 874 Value *A, *B; 875 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 876 // Use the inverse predicate if required. 877 if (CB.Not) 878 Pred = CmpInst::getInversePredicate(Pred); 879 880 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 881 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 882 } 883 } 884 885 #ifndef NDEBUG 886 unsigned SignedEntries = 887 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 888 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 889 "updates to CS and DFSInStack are out of sync"); 890 assert(Info.getCS(true).size() == SignedEntries && 891 "updates to CS and DFSInStack are out of sync"); 892 #endif 893 894 for (Instruction *I : ToRemove) 895 I->eraseFromParent(); 896 return Changed; 897 } 898 899 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 900 FunctionAnalysisManager &AM) { 901 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 902 if (!eliminateConstraints(F, DT)) 903 return PreservedAnalyses::all(); 904 905 PreservedAnalyses PA; 906 PA.preserve<DominatorTreeAnalysis>(); 907 PA.preserveSet<CFGAnalyses>(); 908 return PA; 909 } 910 911 namespace { 912 913 class ConstraintElimination : public FunctionPass { 914 public: 915 static char ID; 916 917 ConstraintElimination() : FunctionPass(ID) { 918 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 919 } 920 921 bool runOnFunction(Function &F) override { 922 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 923 return eliminateConstraints(F, DT); 924 } 925 926 void getAnalysisUsage(AnalysisUsage &AU) const override { 927 AU.setPreservesCFG(); 928 AU.addRequired<DominatorTreeWrapperPass>(); 929 AU.addPreserved<GlobalsAAWrapperPass>(); 930 AU.addPreserved<DominatorTreeWrapperPass>(); 931 } 932 }; 933 934 } // end anonymous namespace 935 936 char ConstraintElimination::ID = 0; 937 938 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 939 "Constraint Elimination", false, false) 940 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 941 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 942 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 943 "Constraint Elimination", false, false) 944 945 FunctionPass *llvm::createConstraintEliminationPass() { 946 return new ConstraintElimination(); 947 } 948