1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DebugCounter.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Scalar.h" 33 34 #include <string> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "constraint-elimination" 40 41 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 42 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 43 "Controls which conditions are eliminated"); 44 45 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 46 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 47 48 namespace { 49 50 class ConstraintInfo; 51 52 struct StackEntry { 53 unsigned NumIn; 54 unsigned NumOut; 55 bool IsNot; 56 bool IsSigned = false; 57 /// Variables that can be removed from the system once the stack entry gets 58 /// removed. 59 SmallVector<Value *, 2> ValuesToRelease; 60 61 StackEntry(unsigned NumIn, unsigned NumOut, bool IsNot, bool IsSigned, 62 SmallVector<Value *, 2> ValuesToRelease) 63 : NumIn(NumIn), NumOut(NumOut), IsNot(IsNot), IsSigned(IsSigned), 64 ValuesToRelease(ValuesToRelease) {} 65 }; 66 67 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 68 struct PreconditionTy { 69 CmpInst::Predicate Pred; 70 Value *Op0; 71 Value *Op1; 72 73 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 74 : Pred(Pred), Op0(Op0), Op1(Op1) {} 75 }; 76 77 struct ConstraintTy { 78 SmallVector<int64_t, 8> Coefficients; 79 SmallVector<PreconditionTy, 2> Preconditions; 80 81 bool IsSigned = false; 82 bool IsEq = false; 83 84 ConstraintTy() = default; 85 86 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 87 : Coefficients(Coefficients), IsSigned(IsSigned) {} 88 89 unsigned size() const { return Coefficients.size(); } 90 91 unsigned empty() const { return Coefficients.empty(); } 92 93 /// Returns true if any constraint has a non-zero coefficient for any of the 94 /// newly added indices. Zero coefficients for new indices are removed. If it 95 /// returns true, no new variable need to be added to the system. 96 bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) { 97 for (unsigned I = 0; I < NewIndices.size(); ++I) { 98 int64_t Last = Coefficients.pop_back_val(); 99 if (Last != 0) 100 return true; 101 } 102 return false; 103 } 104 105 /// Returns true if all preconditions for this list of constraints are 106 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 107 bool isValid(const ConstraintInfo &Info) const; 108 }; 109 110 /// Wrapper encapsulating separate constraint systems and corresponding value 111 /// mappings for both unsigned and signed information. Facts are added to and 112 /// conditions are checked against the corresponding system depending on the 113 /// signed-ness of their predicates. While the information is kept separate 114 /// based on signed-ness, certain conditions can be transferred between the two 115 /// systems. 116 class ConstraintInfo { 117 DenseMap<Value *, unsigned> UnsignedValue2Index; 118 DenseMap<Value *, unsigned> SignedValue2Index; 119 120 ConstraintSystem UnsignedCS; 121 ConstraintSystem SignedCS; 122 123 public: 124 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 125 return Signed ? SignedValue2Index : UnsignedValue2Index; 126 } 127 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 128 return Signed ? SignedValue2Index : UnsignedValue2Index; 129 } 130 131 ConstraintSystem &getCS(bool Signed) { 132 return Signed ? SignedCS : UnsignedCS; 133 } 134 const ConstraintSystem &getCS(bool Signed) const { 135 return Signed ? SignedCS : UnsignedCS; 136 } 137 138 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 139 void popLastNVariables(bool Signed, unsigned N) { 140 getCS(Signed).popLastNVariables(N); 141 } 142 143 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 144 145 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, 146 unsigned NumIn, unsigned NumOut, 147 SmallVectorImpl<StackEntry> &DFSInStack); 148 149 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 150 /// constraints, using indices from the corresponding constraint system. 151 /// Additional indices for newly discovered values are added to \p NewIndices. 152 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 153 DenseMap<Value *, unsigned> &NewIndices) const; 154 155 /// Turn a condition \p CmpI into a vector of constraints, using indices from 156 /// the corresponding constraint system. Additional indices for newly 157 /// discovered values are added to \p NewIndices. 158 ConstraintTy getConstraint(CmpInst *Cmp, 159 DenseMap<Value *, unsigned> &NewIndices) const { 160 return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0), 161 Cmp->getOperand(1), NewIndices); 162 } 163 164 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 165 /// system if \p Pred is signed/unsigned. 166 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 167 bool IsNegated, unsigned NumIn, unsigned NumOut, 168 SmallVectorImpl<StackEntry> &DFSInStack); 169 }; 170 171 /// Represents a (Coefficient * Variable) entry after IR decomposition. 172 struct DecompEntry { 173 int64_t Coefficient; 174 Value *Variable; 175 176 DecompEntry(int64_t Coefficient, Value *Variable) 177 : Coefficient(Coefficient), Variable(Variable) {} 178 }; 179 180 } // namespace 181 182 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable 183 // } where Coefficient * Variable. The sum of the pairs equals \p V. The first 184 // pair is the constant-factor and X must be nullptr. If the expression cannot 185 // be decomposed, returns an empty vector. 186 static SmallVector<DecompEntry, 4> 187 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 188 bool IsSigned) { 189 190 auto CanUseSExt = [](ConstantInt *CI) { 191 const APInt &Val = CI->getValue(); 192 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 193 }; 194 // Decompose \p V used with a signed predicate. 195 if (IsSigned) { 196 if (auto *CI = dyn_cast<ConstantInt>(V)) { 197 if (CanUseSExt(CI)) 198 return {{CI->getSExtValue(), nullptr}}; 199 } 200 201 return {{0, nullptr}, {1, V}}; 202 } 203 204 if (auto *CI = dyn_cast<ConstantInt>(V)) { 205 if (CI->uge(MaxConstraintValue)) 206 return {}; 207 return {{int64_t(CI->getZExtValue()), nullptr}}; 208 } 209 auto *GEP = dyn_cast<GetElementPtrInst>(V); 210 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 211 Value *Op0, *Op1; 212 ConstantInt *CI; 213 214 // If the index is zero-extended, it is guaranteed to be positive. 215 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 216 m_ZExt(m_Value(Op0)))) { 217 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && 218 CanUseSExt(CI)) 219 return {{0, nullptr}, 220 {1, GEP->getPointerOperand()}, 221 {int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op1}}; 222 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) && 223 CanUseSExt(CI)) 224 return {{CI->getSExtValue(), nullptr}, 225 {1, GEP->getPointerOperand()}, 226 {1, Op1}}; 227 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 228 } 229 230 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 231 !CI->isNegative() && CanUseSExt(CI)) 232 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 233 234 SmallVector<DecompEntry, 4> Result; 235 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 236 m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) && 237 CanUseSExt(CI)) 238 Result = {{0, nullptr}, 239 {1, GEP->getPointerOperand()}, 240 {int(std::pow(int64_t(2), CI->getSExtValue())), Op0}}; 241 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 242 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) && 243 CanUseSExt(CI)) 244 Result = {{CI->getSExtValue(), nullptr}, 245 {1, GEP->getPointerOperand()}, 246 {1, Op0}}; 247 else { 248 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 249 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 250 } 251 // If Op0 is signed non-negative, the GEP is increasing monotonically and 252 // can be de-composed. 253 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 254 ConstantInt::get(Op0->getType(), 0)); 255 return Result; 256 } 257 258 Value *Op0; 259 if (match(V, m_ZExt(m_Value(Op0)))) 260 V = Op0; 261 262 Value *Op1; 263 ConstantInt *CI; 264 if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) && 265 !CI->uge(MaxConstraintValue)) 266 return {{int(CI->getZExtValue()), nullptr}, {1, Op0}}; 267 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 268 CanUseSExt(CI)) { 269 Preconditions.emplace_back( 270 CmpInst::ICMP_UGE, Op0, 271 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 272 return {{CI->getSExtValue(), nullptr}, {1, Op0}}; 273 } 274 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) 275 return {{0, nullptr}, {1, Op0}, {1, Op1}}; 276 277 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI)) 278 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 279 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 280 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 281 282 return {{0, nullptr}, {1, V}}; 283 } 284 285 ConstraintTy 286 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 287 DenseMap<Value *, unsigned> &NewIndices) const { 288 bool IsEq = false; 289 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 290 switch (Pred) { 291 case CmpInst::ICMP_UGT: 292 case CmpInst::ICMP_UGE: 293 case CmpInst::ICMP_SGT: 294 case CmpInst::ICMP_SGE: { 295 Pred = CmpInst::getSwappedPredicate(Pred); 296 std::swap(Op0, Op1); 297 break; 298 } 299 case CmpInst::ICMP_EQ: 300 if (match(Op1, m_Zero())) { 301 Pred = CmpInst::ICMP_ULE; 302 } else { 303 IsEq = true; 304 Pred = CmpInst::ICMP_ULE; 305 } 306 break; 307 case CmpInst::ICMP_NE: 308 if (!match(Op1, m_Zero())) 309 return {}; 310 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 311 std::swap(Op0, Op1); 312 break; 313 default: 314 break; 315 } 316 317 // Only ULE and ULT predicates are supported at the moment. 318 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 319 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 320 return {}; 321 322 SmallVector<PreconditionTy, 4> Preconditions; 323 bool IsSigned = CmpInst::isSigned(Pred); 324 auto &Value2Index = getValue2Index(IsSigned); 325 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 326 Preconditions, IsSigned); 327 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 328 Preconditions, IsSigned); 329 // Skip if decomposing either of the values failed. 330 if (ADec.empty() || BDec.empty()) 331 return {}; 332 333 int64_t Offset1 = ADec[0].Coefficient; 334 int64_t Offset2 = BDec[0].Coefficient; 335 Offset1 *= -1; 336 337 // Create iterator ranges that skip the constant-factor. 338 auto VariablesA = llvm::drop_begin(ADec); 339 auto VariablesB = llvm::drop_begin(BDec); 340 341 // First try to look up \p V in Value2Index and NewIndices. Otherwise add a 342 // new entry to NewIndices. 343 auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned { 344 auto V2I = Value2Index.find(V); 345 if (V2I != Value2Index.end()) 346 return V2I->second; 347 auto Insert = 348 NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1}); 349 return Insert.first->second; 350 }; 351 352 // Make sure all variables have entries in Value2Index or NewIndices. 353 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 354 GetOrAddIndex(KV.Variable); 355 356 // Build result constraint, by first adding all coefficients from A and then 357 // subtracting all coefficients from B. 358 ConstraintTy Res( 359 SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0), 360 IsSigned); 361 Res.IsEq = IsEq; 362 auto &R = Res.Coefficients; 363 for (const auto &KV : VariablesA) 364 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 365 366 for (const auto &KV : VariablesB) 367 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 368 369 int64_t OffsetSum; 370 if (AddOverflow(Offset1, Offset2, OffsetSum)) 371 return {}; 372 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 373 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 374 return {}; 375 R[0] = OffsetSum; 376 Res.Preconditions = std::move(Preconditions); 377 return Res; 378 } 379 380 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 381 return Coefficients.size() > 0 && 382 all_of(Preconditions, [&Info](const PreconditionTy &C) { 383 return Info.doesHold(C.Pred, C.Op0, C.Op1); 384 }); 385 } 386 387 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 388 Value *B) const { 389 DenseMap<Value *, unsigned> NewIndices; 390 auto R = getConstraint(Pred, A, B, NewIndices); 391 392 if (!NewIndices.empty()) 393 return false; 394 395 // TODO: properly check NewIndices. 396 return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq && 397 !R.empty() && 398 getCS(CmpInst::isSigned(Pred)).isConditionImplied(R.Coefficients); 399 } 400 401 void ConstraintInfo::transferToOtherSystem( 402 CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn, 403 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 404 // Check if we can combine facts from the signed and unsigned systems to 405 // derive additional facts. 406 if (!A->getType()->isIntegerTy()) 407 return; 408 // FIXME: This currently depends on the order we add facts. Ideally we 409 // would first add all known facts and only then try to add additional 410 // facts. 411 switch (Pred) { 412 default: 413 break; 414 case CmpInst::ICMP_ULT: 415 // If B is a signed positive constant, A >=s 0 and A <s B. 416 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 417 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), 418 IsNegated, NumIn, NumOut, DFSInStack); 419 addFact(CmpInst::ICMP_SLT, A, B, IsNegated, NumIn, NumOut, DFSInStack); 420 } 421 break; 422 case CmpInst::ICMP_SLT: 423 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 424 addFact(CmpInst::ICMP_ULT, A, B, IsNegated, NumIn, NumOut, DFSInStack); 425 break; 426 case CmpInst::ICMP_SGT: 427 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 428 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), 429 IsNegated, NumIn, NumOut, DFSInStack); 430 break; 431 case CmpInst::ICMP_SGE: 432 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 433 addFact(CmpInst::ICMP_UGE, A, B, IsNegated, NumIn, NumOut, DFSInStack); 434 } 435 break; 436 } 437 } 438 439 namespace { 440 /// Represents either a condition that holds on entry to a block or a basic 441 /// block, with their respective Dominator DFS in and out numbers. 442 struct ConstraintOrBlock { 443 unsigned NumIn; 444 unsigned NumOut; 445 bool IsBlock; 446 bool Not; 447 union { 448 BasicBlock *BB; 449 CmpInst *Condition; 450 }; 451 452 ConstraintOrBlock(DomTreeNode *DTN) 453 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 454 BB(DTN->getBlock()) {} 455 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 456 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 457 Not(Not), Condition(Condition) {} 458 }; 459 460 /// Keep state required to build worklist. 461 struct State { 462 DominatorTree &DT; 463 SmallVector<ConstraintOrBlock, 64> WorkList; 464 465 State(DominatorTree &DT) : DT(DT) {} 466 467 /// Process block \p BB and add known facts to work-list. 468 void addInfoFor(BasicBlock &BB); 469 470 /// Returns true if we can add a known condition from BB to its successor 471 /// block Succ. Each predecessor of Succ can either be BB or be dominated 472 /// by Succ (e.g. the case when adding a condition from a pre-header to a 473 /// loop header). 474 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 475 if (BB.getSingleSuccessor()) { 476 assert(BB.getSingleSuccessor() == Succ); 477 return DT.properlyDominates(&BB, Succ); 478 } 479 return any_of(successors(&BB), 480 [Succ](const BasicBlock *S) { return S != Succ; }) && 481 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 482 return Pred == &BB || DT.dominates(Succ, Pred); 483 }); 484 } 485 }; 486 487 } // namespace 488 489 #ifndef NDEBUG 490 static void dumpWithNames(const ConstraintSystem &CS, 491 DenseMap<Value *, unsigned> &Value2Index) { 492 SmallVector<std::string> Names(Value2Index.size(), ""); 493 for (auto &KV : Value2Index) { 494 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 495 } 496 CS.dump(Names); 497 } 498 499 static void dumpWithNames(ArrayRef<int64_t> C, 500 DenseMap<Value *, unsigned> &Value2Index) { 501 ConstraintSystem CS; 502 CS.addVariableRowFill(C); 503 dumpWithNames(CS, Value2Index); 504 } 505 #endif 506 507 void State::addInfoFor(BasicBlock &BB) { 508 WorkList.emplace_back(DT.getNode(&BB)); 509 510 // True as long as long as the current instruction is guaranteed to execute. 511 bool GuaranteedToExecute = true; 512 // Scan BB for assume calls. 513 // TODO: also use this scan to queue conditions to simplify, so we can 514 // interleave facts from assumes and conditions to simplify in a single 515 // basic block. And to skip another traversal of each basic block when 516 // simplifying. 517 for (Instruction &I : BB) { 518 Value *Cond; 519 // For now, just handle assumes with a single compare as condition. 520 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 521 isa<ICmpInst>(Cond)) { 522 if (GuaranteedToExecute) { 523 // The assume is guaranteed to execute when BB is entered, hence Cond 524 // holds on entry to BB. 525 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 526 } else { 527 // Otherwise the condition only holds in the successors. 528 for (BasicBlock *Succ : successors(&BB)) { 529 if (!canAddSuccessor(BB, Succ)) 530 continue; 531 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false); 532 } 533 } 534 } 535 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 536 } 537 538 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 539 if (!Br || !Br->isConditional()) 540 return; 541 542 // If the condition is an OR of 2 compares and the false successor only has 543 // the current block as predecessor, queue both negated conditions for the 544 // false successor. 545 Value *Op0, *Op1; 546 if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && 547 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 548 BasicBlock *FalseSuccessor = Br->getSuccessor(1); 549 if (canAddSuccessor(BB, FalseSuccessor)) { 550 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0), 551 true); 552 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1), 553 true); 554 } 555 return; 556 } 557 558 // If the condition is an AND of 2 compares and the true successor only has 559 // the current block as predecessor, queue both conditions for the true 560 // successor. 561 if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && 562 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 563 BasicBlock *TrueSuccessor = Br->getSuccessor(0); 564 if (canAddSuccessor(BB, TrueSuccessor)) { 565 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0), 566 false); 567 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1), 568 false); 569 } 570 return; 571 } 572 573 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 574 if (!CmpI) 575 return; 576 if (canAddSuccessor(BB, Br->getSuccessor(0))) 577 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 578 if (canAddSuccessor(BB, Br->getSuccessor(1))) 579 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 580 } 581 582 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 583 bool IsNegated, unsigned NumIn, unsigned NumOut, 584 SmallVectorImpl<StackEntry> &DFSInStack) { 585 // If the constraint has a pre-condition, skip the constraint if it does not 586 // hold. 587 DenseMap<Value *, unsigned> NewIndices; 588 auto R = getConstraint(Pred, A, B, NewIndices); 589 if (!R.isValid(*this)) 590 return; 591 592 //LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n"); 593 bool Added = false; 594 assert(CmpInst::isSigned(Pred) == R.IsSigned && 595 "condition and constraint signs must match"); 596 auto &CSToUse = getCS(R.IsSigned); 597 if (R.Coefficients.empty()) 598 return; 599 600 Added |= CSToUse.addVariableRowFill(R.Coefficients); 601 602 // If R has been added to the system, queue it for removal once it goes 603 // out-of-scope. 604 if (Added) { 605 SmallVector<Value *, 2> ValuesToRelease; 606 for (auto &KV : NewIndices) { 607 getValue2Index(R.IsSigned).insert(KV); 608 ValuesToRelease.push_back(KV.first); 609 } 610 611 LLVM_DEBUG({ 612 dbgs() << " constraint: "; 613 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 614 }); 615 616 DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned, 617 ValuesToRelease); 618 619 if (R.IsEq) { 620 // Also add the inverted constraint for equality constraints. 621 for (auto &Coeff : R.Coefficients) 622 Coeff *= -1; 623 CSToUse.addVariableRowFill(R.Coefficients); 624 625 DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned, 626 SmallVector<Value *, 2>()); 627 } 628 } 629 } 630 631 static void 632 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 633 SmallVectorImpl<Instruction *> &ToRemove) { 634 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 635 ConstraintInfo &Info) { 636 DenseMap<Value *, unsigned> NewIndices; 637 auto R = Info.getConstraint(Pred, A, B, NewIndices); 638 if (R.size() < 2 || R.needsNewIndices(NewIndices) || !R.isValid(Info)) 639 return false; 640 641 auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred)); 642 return CSToUse.isConditionImplied(R.Coefficients); 643 }; 644 645 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 646 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 647 // can be simplified to a regular sub. 648 Value *A = II->getArgOperand(0); 649 Value *B = II->getArgOperand(1); 650 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 651 !DoesConditionHold(CmpInst::ICMP_SGE, B, 652 ConstantInt::get(A->getType(), 0), Info)) 653 return; 654 655 IRBuilder<> Builder(II->getParent(), II->getIterator()); 656 Value *Sub = nullptr; 657 for (User *U : make_early_inc_range(II->users())) { 658 if (match(U, m_ExtractValue<0>(m_Value()))) { 659 if (!Sub) 660 Sub = Builder.CreateSub(A, B); 661 U->replaceAllUsesWith(Sub); 662 } else if (match(U, m_ExtractValue<1>(m_Value()))) 663 U->replaceAllUsesWith(Builder.getFalse()); 664 else 665 continue; 666 667 if (U->use_empty()) { 668 auto *I = cast<Instruction>(U); 669 ToRemove.push_back(I); 670 I->setOperand(0, PoisonValue::get(II->getType())); 671 } 672 } 673 674 if (II->use_empty()) 675 II->eraseFromParent(); 676 } 677 } 678 679 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 680 bool Changed = false; 681 DT.updateDFSNumbers(); 682 683 ConstraintInfo Info; 684 State S(DT); 685 686 // First, collect conditions implied by branches and blocks with their 687 // Dominator DFS in and out numbers. 688 for (BasicBlock &BB : F) { 689 if (!DT.getNode(&BB)) 690 continue; 691 S.addInfoFor(BB); 692 } 693 694 // Next, sort worklist by dominance, so that dominating blocks and conditions 695 // come before blocks and conditions dominated by them. If a block and a 696 // condition have the same numbers, the condition comes before the block, as 697 // it holds on entry to the block. 698 stable_sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 699 return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); 700 }); 701 702 SmallVector<Instruction *> ToRemove; 703 704 // Finally, process ordered worklist and eliminate implied conditions. 705 SmallVector<StackEntry, 16> DFSInStack; 706 for (ConstraintOrBlock &CB : S.WorkList) { 707 // First, pop entries from the stack that are out-of-scope for CB. Remove 708 // the corresponding entry from the constraint system. 709 while (!DFSInStack.empty()) { 710 auto &E = DFSInStack.back(); 711 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 712 << "\n"); 713 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 714 assert(E.NumIn <= CB.NumIn); 715 if (CB.NumOut <= E.NumOut) 716 break; 717 LLVM_DEBUG({ 718 dbgs() << "Removing "; 719 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 720 Info.getValue2Index(E.IsSigned)); 721 dbgs() << "\n"; 722 }); 723 724 Info.popLastConstraint(E.IsSigned); 725 // Remove variables in the system that went out of scope. 726 auto &Mapping = Info.getValue2Index(E.IsSigned); 727 for (Value *V : E.ValuesToRelease) 728 Mapping.erase(V); 729 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 730 DFSInStack.pop_back(); 731 } 732 733 LLVM_DEBUG({ 734 dbgs() << "Processing "; 735 if (CB.IsBlock) 736 dbgs() << *CB.BB; 737 else 738 dbgs() << *CB.Condition; 739 dbgs() << "\n"; 740 }); 741 742 // For a block, check if any CmpInsts become known based on the current set 743 // of constraints. 744 if (CB.IsBlock) { 745 for (Instruction &I : make_early_inc_range(*CB.BB)) { 746 if (auto *II = dyn_cast<WithOverflowInst>(&I)) { 747 tryToSimplifyOverflowMath(II, Info, ToRemove); 748 continue; 749 } 750 auto *Cmp = dyn_cast<ICmpInst>(&I); 751 if (!Cmp) 752 continue; 753 754 DenseMap<Value *, unsigned> NewIndices; 755 auto R = Info.getConstraint(Cmp, NewIndices); 756 if (R.IsEq || R.empty() || R.needsNewIndices(NewIndices) || 757 !R.isValid(Info)) 758 continue; 759 760 auto &CSToUse = Info.getCS(R.IsSigned); 761 if (CSToUse.isConditionImplied(R.Coefficients)) { 762 if (!DebugCounter::shouldExecute(EliminatedCounter)) 763 continue; 764 765 LLVM_DEBUG({ 766 dbgs() << "Condition " << *Cmp 767 << " implied by dominating constraints\n"; 768 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 769 }); 770 Cmp->replaceUsesWithIf( 771 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 772 // Conditions in an assume trivially simplify to true. Skip uses 773 // in assume calls to not destroy the available information. 774 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 775 return !II || II->getIntrinsicID() != Intrinsic::assume; 776 }); 777 NumCondsRemoved++; 778 Changed = true; 779 } 780 if (CSToUse.isConditionImplied( 781 ConstraintSystem::negate(R.Coefficients))) { 782 if (!DebugCounter::shouldExecute(EliminatedCounter)) 783 continue; 784 785 LLVM_DEBUG({ 786 dbgs() << "Condition !" << *Cmp 787 << " implied by dominating constraints\n"; 788 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 789 }); 790 Cmp->replaceAllUsesWith( 791 ConstantInt::getFalse(F.getParent()->getContext())); 792 NumCondsRemoved++; 793 Changed = true; 794 } 795 } 796 continue; 797 } 798 799 // Set up a function to restore the predicate at the end of the scope if it 800 // has been negated. Negate the predicate in-place, if required. 801 auto *CI = dyn_cast<ICmpInst>(CB.Condition); 802 auto PredicateRestorer = make_scope_exit([CI, &CB]() { 803 if (CB.Not && CI) 804 CI->setPredicate(CI->getInversePredicate()); 805 }); 806 if (CB.Not) { 807 if (CI) { 808 CI->setPredicate(CI->getInversePredicate()); 809 } else { 810 LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n"); 811 continue; 812 } 813 } 814 815 ICmpInst::Predicate Pred; 816 Value *A, *B; 817 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 818 // Otherwise, add the condition to the system and stack, if we can 819 // transform it into a constraint. 820 Info.addFact(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, DFSInStack); 821 Info.transferToOtherSystem(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, 822 DFSInStack); 823 } 824 } 825 826 #ifndef NDEBUG 827 unsigned SignedEntries = 828 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 829 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 830 "updates to CS and DFSInStack are out of sync"); 831 assert(Info.getCS(true).size() == SignedEntries && 832 "updates to CS and DFSInStack are out of sync"); 833 #endif 834 835 for (Instruction *I : ToRemove) 836 I->eraseFromParent(); 837 return Changed; 838 } 839 840 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 841 FunctionAnalysisManager &AM) { 842 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 843 if (!eliminateConstraints(F, DT)) 844 return PreservedAnalyses::all(); 845 846 PreservedAnalyses PA; 847 PA.preserve<DominatorTreeAnalysis>(); 848 PA.preserveSet<CFGAnalyses>(); 849 return PA; 850 } 851 852 namespace { 853 854 class ConstraintElimination : public FunctionPass { 855 public: 856 static char ID; 857 858 ConstraintElimination() : FunctionPass(ID) { 859 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 860 } 861 862 bool runOnFunction(Function &F) override { 863 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 864 return eliminateConstraints(F, DT); 865 } 866 867 void getAnalysisUsage(AnalysisUsage &AU) const override { 868 AU.setPreservesCFG(); 869 AU.addRequired<DominatorTreeWrapperPass>(); 870 AU.addPreserved<GlobalsAAWrapperPass>(); 871 AU.addPreserved<DominatorTreeWrapperPass>(); 872 } 873 }; 874 875 } // end anonymous namespace 876 877 char ConstraintElimination::ID = 0; 878 879 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 880 "Constraint Elimination", false, false) 881 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 882 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 883 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 884 "Constraint Elimination", false, false) 885 886 FunctionPass *llvm::createConstraintEliminationPass() { 887 return new ConstraintElimination(); 888 } 889