1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/DebugCounter.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Transforms/Utils/Cloning.h" 41 #include "llvm/Transforms/Utils/ValueMapper.h" 42 43 #include <cmath> 44 #include <optional> 45 #include <string> 46 47 using namespace llvm; 48 using namespace PatternMatch; 49 50 #define DEBUG_TYPE "constraint-elimination" 51 52 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 53 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 54 "Controls which conditions are eliminated"); 55 56 static cl::opt<unsigned> 57 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 58 cl::desc("Maximum number of rows to keep in constraint system")); 59 60 static cl::opt<bool> DumpReproducers( 61 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 62 cl::desc("Dump IR to reproduce successful transformations.")); 63 64 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 65 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 66 67 // A helper to multiply 2 signed integers where overflowing is allowed. 68 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 69 int64_t Result; 70 MulOverflow(A, B, Result); 71 return Result; 72 } 73 74 // A helper to add 2 signed integers where overflowing is allowed. 75 static int64_t addWithOverflow(int64_t A, int64_t B) { 76 int64_t Result; 77 AddOverflow(A, B, Result); 78 return Result; 79 } 80 81 static Instruction *getContextInstForUse(Use &U) { 82 Instruction *UserI = cast<Instruction>(U.getUser()); 83 if (auto *Phi = dyn_cast<PHINode>(UserI)) 84 UserI = Phi->getIncomingBlock(U)->getTerminator(); 85 return UserI; 86 } 87 88 namespace { 89 /// Struct to express a condition of the form %Op0 Pred %Op1. 90 struct ConditionTy { 91 CmpPredicate Pred; 92 Value *Op0 = nullptr; 93 Value *Op1 = nullptr; 94 95 ConditionTy() = default; 96 ConditionTy(CmpPredicate Pred, Value *Op0, Value *Op1) 97 : Pred(Pred), Op0(Op0), Op1(Op1) {} 98 }; 99 100 /// Represents either 101 /// * a condition that holds on entry to a block (=condition fact) 102 /// * an assume (=assume fact) 103 /// * a use of a compare instruction to simplify. 104 /// It also tracks the Dominator DFS in and out numbers for each entry. 105 struct FactOrCheck { 106 enum class EntryTy { 107 ConditionFact, /// A condition that holds on entry to a block. 108 InstFact, /// A fact that holds after Inst executed (e.g. an assume or 109 /// min/mix intrinsic. 110 InstCheck, /// An instruction to simplify (e.g. an overflow math 111 /// intrinsics). 112 UseCheck /// An use of a compare instruction to simplify. 113 }; 114 115 union { 116 Instruction *Inst; 117 Use *U; 118 ConditionTy Cond; 119 }; 120 121 /// A pre-condition that must hold for the current fact to be added to the 122 /// system. 123 ConditionTy DoesHold; 124 125 unsigned NumIn; 126 unsigned NumOut; 127 EntryTy Ty; 128 129 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 130 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 131 Ty(Ty) {} 132 133 FactOrCheck(DomTreeNode *DTN, Use *U) 134 : U(U), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 135 Ty(EntryTy::UseCheck) {} 136 137 FactOrCheck(DomTreeNode *DTN, CmpPredicate Pred, Value *Op0, Value *Op1, 138 ConditionTy Precond = {}) 139 : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()), 140 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 141 142 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpPredicate Pred, 143 Value *Op0, Value *Op1, 144 ConditionTy Precond = {}) { 145 return FactOrCheck(DTN, Pred, Op0, Op1, Precond); 146 } 147 148 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 149 return FactOrCheck(EntryTy::InstFact, DTN, Inst); 150 } 151 152 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 153 return FactOrCheck(DTN, U); 154 } 155 156 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 157 return FactOrCheck(EntryTy::InstCheck, DTN, CI); 158 } 159 160 bool isCheck() const { 161 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 162 } 163 164 Instruction *getContextInst() const { 165 assert(!isConditionFact()); 166 if (Ty == EntryTy::UseCheck) 167 return getContextInstForUse(*U); 168 return Inst; 169 } 170 171 Instruction *getInstructionToSimplify() const { 172 assert(isCheck()); 173 if (Ty == EntryTy::InstCheck) 174 return Inst; 175 // The use may have been simplified to a constant already. 176 return dyn_cast<Instruction>(*U); 177 } 178 179 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 180 }; 181 182 /// Keep state required to build worklist. 183 struct State { 184 DominatorTree &DT; 185 LoopInfo &LI; 186 ScalarEvolution &SE; 187 SmallVector<FactOrCheck, 64> WorkList; 188 189 State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE) 190 : DT(DT), LI(LI), SE(SE) {} 191 192 /// Process block \p BB and add known facts to work-list. 193 void addInfoFor(BasicBlock &BB); 194 195 /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares 196 /// controlling the loop header. 197 void addInfoForInductions(BasicBlock &BB); 198 199 /// Returns true if we can add a known condition from BB to its successor 200 /// block Succ. 201 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 202 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 203 } 204 }; 205 206 class ConstraintInfo; 207 208 struct StackEntry { 209 unsigned NumIn; 210 unsigned NumOut; 211 bool IsSigned = false; 212 /// Variables that can be removed from the system once the stack entry gets 213 /// removed. 214 SmallVector<Value *, 2> ValuesToRelease; 215 216 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 217 SmallVector<Value *, 2> ValuesToRelease) 218 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 219 ValuesToRelease(std::move(ValuesToRelease)) {} 220 }; 221 222 struct ConstraintTy { 223 SmallVector<int64_t, 8> Coefficients; 224 SmallVector<ConditionTy, 2> Preconditions; 225 226 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 227 228 bool IsSigned = false; 229 230 ConstraintTy() = default; 231 232 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 233 bool IsNe) 234 : Coefficients(std::move(Coefficients)), IsSigned(IsSigned), IsEq(IsEq), 235 IsNe(IsNe) {} 236 237 unsigned size() const { return Coefficients.size(); } 238 239 unsigned empty() const { return Coefficients.empty(); } 240 241 /// Returns true if all preconditions for this list of constraints are 242 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 243 bool isValid(const ConstraintInfo &Info) const; 244 245 bool isEq() const { return IsEq; } 246 247 bool isNe() const { return IsNe; } 248 249 /// Check if the current constraint is implied by the given ConstraintSystem. 250 /// 251 /// \return true or false if the constraint is proven to be respectively true, 252 /// or false. When the constraint cannot be proven to be either true or false, 253 /// std::nullopt is returned. 254 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 255 256 private: 257 bool IsEq = false; 258 bool IsNe = false; 259 }; 260 261 /// Wrapper encapsulating separate constraint systems and corresponding value 262 /// mappings for both unsigned and signed information. Facts are added to and 263 /// conditions are checked against the corresponding system depending on the 264 /// signed-ness of their predicates. While the information is kept separate 265 /// based on signed-ness, certain conditions can be transferred between the two 266 /// systems. 267 class ConstraintInfo { 268 269 ConstraintSystem UnsignedCS; 270 ConstraintSystem SignedCS; 271 272 const DataLayout &DL; 273 274 public: 275 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 276 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) { 277 auto &Value2Index = getValue2Index(false); 278 // Add Arg > -1 constraints to unsigned system for all function arguments. 279 for (Value *Arg : FunctionArgs) { 280 ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0), 281 false, false, false); 282 VarPos.Coefficients[Value2Index[Arg]] = -1; 283 UnsignedCS.addVariableRow(VarPos.Coefficients); 284 } 285 } 286 287 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 288 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 289 } 290 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 291 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 292 } 293 294 ConstraintSystem &getCS(bool Signed) { 295 return Signed ? SignedCS : UnsignedCS; 296 } 297 const ConstraintSystem &getCS(bool Signed) const { 298 return Signed ? SignedCS : UnsignedCS; 299 } 300 301 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 302 void popLastNVariables(bool Signed, unsigned N) { 303 getCS(Signed).popLastNVariables(N); 304 } 305 306 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 307 308 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 309 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 310 311 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 312 /// constraints, using indices from the corresponding constraint system. 313 /// New variables that need to be added to the system are collected in 314 /// \p NewVariables. 315 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 316 SmallVectorImpl<Value *> &NewVariables) const; 317 318 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 319 /// constraints using getConstraint. Returns an empty constraint if the result 320 /// cannot be used to query the existing constraint system, e.g. because it 321 /// would require adding new variables. Also tries to convert signed 322 /// predicates to unsigned ones if possible to allow using the unsigned system 323 /// which increases the effectiveness of the signed <-> unsigned transfer 324 /// logic. 325 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 326 Value *Op1) const; 327 328 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 329 /// system if \p Pred is signed/unsigned. 330 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 331 unsigned NumIn, unsigned NumOut, 332 SmallVectorImpl<StackEntry> &DFSInStack); 333 }; 334 335 /// Represents a (Coefficient * Variable) entry after IR decomposition. 336 struct DecompEntry { 337 int64_t Coefficient; 338 Value *Variable; 339 /// True if the variable is known positive in the current constraint. 340 bool IsKnownNonNegative; 341 342 DecompEntry(int64_t Coefficient, Value *Variable, 343 bool IsKnownNonNegative = false) 344 : Coefficient(Coefficient), Variable(Variable), 345 IsKnownNonNegative(IsKnownNonNegative) {} 346 }; 347 348 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 349 struct Decomposition { 350 int64_t Offset = 0; 351 SmallVector<DecompEntry, 3> Vars; 352 353 Decomposition(int64_t Offset) : Offset(Offset) {} 354 Decomposition(Value *V, bool IsKnownNonNegative = false) { 355 Vars.emplace_back(1, V, IsKnownNonNegative); 356 } 357 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 358 : Offset(Offset), Vars(Vars) {} 359 360 void add(int64_t OtherOffset) { 361 Offset = addWithOverflow(Offset, OtherOffset); 362 } 363 364 void add(const Decomposition &Other) { 365 add(Other.Offset); 366 append_range(Vars, Other.Vars); 367 } 368 369 void sub(const Decomposition &Other) { 370 Decomposition Tmp = Other; 371 Tmp.mul(-1); 372 add(Tmp.Offset); 373 append_range(Vars, Tmp.Vars); 374 } 375 376 void mul(int64_t Factor) { 377 Offset = multiplyWithOverflow(Offset, Factor); 378 for (auto &Var : Vars) 379 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 380 } 381 }; 382 383 // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr. 384 struct OffsetResult { 385 Value *BasePtr; 386 APInt ConstantOffset; 387 SmallMapVector<Value *, APInt, 4> VariableOffsets; 388 GEPNoWrapFlags NW; 389 390 OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {} 391 392 OffsetResult(GEPOperator &GEP, const DataLayout &DL) 393 : BasePtr(GEP.getPointerOperand()), NW(GEP.getNoWrapFlags()) { 394 ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0); 395 } 396 }; 397 } // namespace 398 399 // Try to collect variable and constant offsets for \p GEP, partly traversing 400 // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting 401 // the offset fails. 402 static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) { 403 OffsetResult Result(GEP, DL); 404 unsigned BitWidth = Result.ConstantOffset.getBitWidth(); 405 if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets, 406 Result.ConstantOffset)) 407 return {}; 408 409 // If we have a nested GEP, check if we can combine the constant offset of the 410 // inner GEP with the outer GEP. 411 if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) { 412 SmallMapVector<Value *, APInt, 4> VariableOffsets2; 413 APInt ConstantOffset2(BitWidth, 0); 414 bool CanCollectInner = InnerGEP->collectOffset( 415 DL, BitWidth, VariableOffsets2, ConstantOffset2); 416 // TODO: Support cases with more than 1 variable offset. 417 if (!CanCollectInner || Result.VariableOffsets.size() > 1 || 418 VariableOffsets2.size() > 1 || 419 (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) { 420 // More than 1 variable index, use outer result. 421 return Result; 422 } 423 Result.BasePtr = InnerGEP->getPointerOperand(); 424 Result.ConstantOffset += ConstantOffset2; 425 if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1) 426 Result.VariableOffsets = VariableOffsets2; 427 Result.NW &= InnerGEP->getNoWrapFlags(); 428 } 429 return Result; 430 } 431 432 static Decomposition decompose(Value *V, 433 SmallVectorImpl<ConditionTy> &Preconditions, 434 bool IsSigned, const DataLayout &DL); 435 436 static bool canUseSExt(ConstantInt *CI) { 437 const APInt &Val = CI->getValue(); 438 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 439 } 440 441 static Decomposition decomposeGEP(GEPOperator &GEP, 442 SmallVectorImpl<ConditionTy> &Preconditions, 443 bool IsSigned, const DataLayout &DL) { 444 // Do not reason about pointers where the index size is larger than 64 bits, 445 // as the coefficients used to encode constraints are 64 bit integers. 446 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 447 return &GEP; 448 449 assert(!IsSigned && "The logic below only supports decomposition for " 450 "unsigned predicates at the moment."); 451 const auto &[BasePtr, ConstantOffset, VariableOffsets, NW] = 452 collectOffsets(GEP, DL); 453 // We support either plain gep nuw, or gep nusw with non-negative offset, 454 // which implies gep nuw. 455 if (!BasePtr || NW == GEPNoWrapFlags::none()) 456 return &GEP; 457 458 Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr)); 459 for (auto [Index, Scale] : VariableOffsets) { 460 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 461 IdxResult.mul(Scale.getSExtValue()); 462 Result.add(IdxResult); 463 464 if (!NW.hasNoUnsignedWrap()) { 465 // Try to prove nuw from nusw and nneg. 466 assert(NW.hasNoUnsignedSignedWrap() && "Must have nusw flag"); 467 if (!isKnownNonNegative(Index, DL)) 468 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 469 ConstantInt::get(Index->getType(), 0)); 470 } 471 } 472 return Result; 473 } 474 475 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 476 // Variable } where Coefficient * Variable. The sum of the constant offset and 477 // pairs equals \p V. 478 static Decomposition decompose(Value *V, 479 SmallVectorImpl<ConditionTy> &Preconditions, 480 bool IsSigned, const DataLayout &DL) { 481 482 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 483 bool IsSignedB) { 484 auto ResA = decompose(A, Preconditions, IsSigned, DL); 485 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 486 ResA.add(ResB); 487 return ResA; 488 }; 489 490 Type *Ty = V->getType()->getScalarType(); 491 if (Ty->isPointerTy() && !IsSigned) { 492 if (auto *GEP = dyn_cast<GEPOperator>(V)) 493 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 494 if (isa<ConstantPointerNull>(V)) 495 return int64_t(0); 496 497 return V; 498 } 499 500 // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so 501 // coefficient add/mul may wrap, while the operation in the full bit width 502 // would not. 503 if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64) 504 return V; 505 506 bool IsKnownNonNegative = false; 507 508 // Decompose \p V used with a signed predicate. 509 if (IsSigned) { 510 if (auto *CI = dyn_cast<ConstantInt>(V)) { 511 if (canUseSExt(CI)) 512 return CI->getSExtValue(); 513 } 514 Value *Op0; 515 Value *Op1; 516 517 if (match(V, m_SExt(m_Value(Op0)))) 518 V = Op0; 519 else if (match(V, m_NNegZExt(m_Value(Op0)))) { 520 V = Op0; 521 IsKnownNonNegative = true; 522 } else if (match(V, m_NSWTrunc(m_Value(Op0)))) { 523 if (Op0->getType()->getScalarSizeInBits() <= 64) 524 V = Op0; 525 } 526 527 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 528 return MergeResults(Op0, Op1, IsSigned); 529 530 if (match(V, m_NSWSub(m_Value(Op0), m_Value(Op1)))) { 531 auto ResA = decompose(Op0, Preconditions, IsSigned, DL); 532 auto ResB = decompose(Op1, Preconditions, IsSigned, DL); 533 ResA.sub(ResB); 534 return ResA; 535 } 536 537 ConstantInt *CI; 538 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 539 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 540 Result.mul(CI->getSExtValue()); 541 return Result; 542 } 543 544 // (shl nsw x, shift) is (mul nsw x, (1<<shift)), with the exception of 545 // shift == bw-1. 546 if (match(V, m_NSWShl(m_Value(Op0), m_ConstantInt(CI)))) { 547 uint64_t Shift = CI->getValue().getLimitedValue(); 548 if (Shift < Ty->getIntegerBitWidth() - 1) { 549 assert(Shift < 64 && "Would overflow"); 550 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 551 Result.mul(int64_t(1) << Shift); 552 return Result; 553 } 554 } 555 556 return {V, IsKnownNonNegative}; 557 } 558 559 if (auto *CI = dyn_cast<ConstantInt>(V)) { 560 if (CI->uge(MaxConstraintValue)) 561 return V; 562 return int64_t(CI->getZExtValue()); 563 } 564 565 Value *Op0; 566 if (match(V, m_ZExt(m_Value(Op0)))) { 567 IsKnownNonNegative = true; 568 V = Op0; 569 } else if (match(V, m_SExt(m_Value(Op0)))) { 570 V = Op0; 571 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 572 ConstantInt::get(Op0->getType(), 0)); 573 } else if (auto *Trunc = dyn_cast<TruncInst>(V)) { 574 if (Trunc->getSrcTy()->getScalarSizeInBits() <= 64) { 575 if (Trunc->hasNoUnsignedWrap() || Trunc->hasNoSignedWrap()) { 576 V = Trunc->getOperand(0); 577 if (!Trunc->hasNoUnsignedWrap()) 578 Preconditions.emplace_back(CmpInst::ICMP_SGE, V, 579 ConstantInt::get(V->getType(), 0)); 580 } 581 } 582 } 583 584 Value *Op1; 585 ConstantInt *CI; 586 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 587 return MergeResults(Op0, Op1, IsSigned); 588 } 589 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 590 if (!isKnownNonNegative(Op0, DL)) 591 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 592 ConstantInt::get(Op0->getType(), 0)); 593 if (!isKnownNonNegative(Op1, DL)) 594 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 595 ConstantInt::get(Op1->getType(), 0)); 596 597 return MergeResults(Op0, Op1, IsSigned); 598 } 599 600 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 601 canUseSExt(CI)) { 602 Preconditions.emplace_back( 603 CmpInst::ICMP_UGE, Op0, 604 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 605 return MergeResults(Op0, CI, true); 606 } 607 608 // Decompose or as an add if there are no common bits between the operands. 609 if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI)))) 610 return MergeResults(Op0, CI, IsSigned); 611 612 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 613 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 614 return {V, IsKnownNonNegative}; 615 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 616 Result.mul(int64_t{1} << CI->getSExtValue()); 617 return Result; 618 } 619 620 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 621 (!CI->isNegative())) { 622 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 623 Result.mul(CI->getSExtValue()); 624 return Result; 625 } 626 627 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) { 628 auto ResA = decompose(Op0, Preconditions, IsSigned, DL); 629 auto ResB = decompose(Op1, Preconditions, IsSigned, DL); 630 ResA.sub(ResB); 631 return ResA; 632 } 633 634 return {V, IsKnownNonNegative}; 635 } 636 637 ConstraintTy 638 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 639 SmallVectorImpl<Value *> &NewVariables) const { 640 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 641 bool IsEq = false; 642 bool IsNe = false; 643 644 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 645 switch (Pred) { 646 case CmpInst::ICMP_UGT: 647 case CmpInst::ICMP_UGE: 648 case CmpInst::ICMP_SGT: 649 case CmpInst::ICMP_SGE: { 650 Pred = CmpInst::getSwappedPredicate(Pred); 651 std::swap(Op0, Op1); 652 break; 653 } 654 case CmpInst::ICMP_EQ: 655 if (match(Op1, m_Zero())) { 656 Pred = CmpInst::ICMP_ULE; 657 } else { 658 IsEq = true; 659 Pred = CmpInst::ICMP_ULE; 660 } 661 break; 662 case CmpInst::ICMP_NE: 663 if (match(Op1, m_Zero())) { 664 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 665 std::swap(Op0, Op1); 666 } else { 667 IsNe = true; 668 Pred = CmpInst::ICMP_ULE; 669 } 670 break; 671 default: 672 break; 673 } 674 675 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 676 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 677 return {}; 678 679 SmallVector<ConditionTy, 4> Preconditions; 680 bool IsSigned = CmpInst::isSigned(Pred); 681 auto &Value2Index = getValue2Index(IsSigned); 682 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 683 Preconditions, IsSigned, DL); 684 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 685 Preconditions, IsSigned, DL); 686 int64_t Offset1 = ADec.Offset; 687 int64_t Offset2 = BDec.Offset; 688 Offset1 *= -1; 689 690 auto &VariablesA = ADec.Vars; 691 auto &VariablesB = BDec.Vars; 692 693 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 694 // new entry to NewVariables. 695 SmallDenseMap<Value *, unsigned> NewIndexMap; 696 auto GetOrAddIndex = [&Value2Index, &NewVariables, 697 &NewIndexMap](Value *V) -> unsigned { 698 auto V2I = Value2Index.find(V); 699 if (V2I != Value2Index.end()) 700 return V2I->second; 701 auto Insert = 702 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 703 if (Insert.second) 704 NewVariables.push_back(V); 705 return Insert.first->second; 706 }; 707 708 // Make sure all variables have entries in Value2Index or NewVariables. 709 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 710 GetOrAddIndex(KV.Variable); 711 712 // Build result constraint, by first adding all coefficients from A and then 713 // subtracting all coefficients from B. 714 ConstraintTy Res( 715 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 716 IsSigned, IsEq, IsNe); 717 // Collect variables that are known to be positive in all uses in the 718 // constraint. 719 SmallDenseMap<Value *, bool> KnownNonNegativeVariables; 720 auto &R = Res.Coefficients; 721 for (const auto &KV : VariablesA) { 722 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 723 auto I = 724 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 725 I.first->second &= KV.IsKnownNonNegative; 726 } 727 728 for (const auto &KV : VariablesB) { 729 auto &Coeff = R[GetOrAddIndex(KV.Variable)]; 730 if (SubOverflow(Coeff, KV.Coefficient, Coeff)) 731 return {}; 732 auto I = 733 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 734 I.first->second &= KV.IsKnownNonNegative; 735 } 736 737 int64_t OffsetSum; 738 if (AddOverflow(Offset1, Offset2, OffsetSum)) 739 return {}; 740 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 741 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 742 return {}; 743 R[0] = OffsetSum; 744 Res.Preconditions = std::move(Preconditions); 745 746 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 747 // variables. 748 while (!NewVariables.empty()) { 749 int64_t Last = R.back(); 750 if (Last != 0) 751 break; 752 R.pop_back(); 753 Value *RemovedV = NewVariables.pop_back_val(); 754 NewIndexMap.erase(RemovedV); 755 } 756 757 // Add extra constraints for variables that are known positive. 758 for (auto &KV : KnownNonNegativeVariables) { 759 if (!KV.second || 760 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 761 continue; 762 auto &C = Res.ExtraInfo.emplace_back( 763 Value2Index.size() + NewVariables.size() + 1, 0); 764 C[GetOrAddIndex(KV.first)] = -1; 765 } 766 return Res; 767 } 768 769 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 770 Value *Op0, 771 Value *Op1) const { 772 Constant *NullC = Constant::getNullValue(Op0->getType()); 773 // Handle trivially true compares directly to avoid adding V UGE 0 constraints 774 // for all variables in the unsigned system. 775 if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) || 776 (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) { 777 auto &Value2Index = getValue2Index(false); 778 // Return constraint that's trivially true. 779 return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false, 780 false, false); 781 } 782 783 // If both operands are known to be non-negative, change signed predicates to 784 // unsigned ones. This increases the reasoning effectiveness in combination 785 // with the signed <-> unsigned transfer logic. 786 if (CmpInst::isSigned(Pred) && 787 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 788 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 789 Pred = ICmpInst::getUnsignedPredicate(Pred); 790 791 SmallVector<Value *> NewVariables; 792 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 793 if (!NewVariables.empty()) 794 return {}; 795 return R; 796 } 797 798 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 799 return Coefficients.size() > 0 && 800 all_of(Preconditions, [&Info](const ConditionTy &C) { 801 return Info.doesHold(C.Pred, C.Op0, C.Op1); 802 }); 803 } 804 805 std::optional<bool> 806 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 807 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 808 809 if (IsEq || IsNe) { 810 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 811 bool IsNegatedOrEqualImplied = 812 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 813 814 // In order to check that `%a == %b` is true (equality), both conditions `%a 815 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 816 // is true), we return true if they both hold, false in the other cases. 817 if (IsConditionImplied && IsNegatedOrEqualImplied) 818 return IsEq; 819 820 auto Negated = ConstraintSystem::negate(Coefficients); 821 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 822 823 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 824 bool IsStrictLessThanImplied = 825 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 826 827 // In order to check that `%a != %b` is true (non-equality), either 828 // condition `%a > %b` or `%a < %b` must hold true. When checking for 829 // non-equality (`IsNe` is true), we return true if one of the two holds, 830 // false in the other cases. 831 if (IsNegatedImplied || IsStrictLessThanImplied) 832 return IsNe; 833 834 return std::nullopt; 835 } 836 837 if (IsConditionImplied) 838 return true; 839 840 auto Negated = ConstraintSystem::negate(Coefficients); 841 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 842 if (IsNegatedImplied) 843 return false; 844 845 // Neither the condition nor its negated holds, did not prove anything. 846 return std::nullopt; 847 } 848 849 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 850 Value *B) const { 851 auto R = getConstraintForSolving(Pred, A, B); 852 return R.isValid(*this) && 853 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 854 } 855 856 void ConstraintInfo::transferToOtherSystem( 857 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 858 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 859 auto IsKnownNonNegative = [this](Value *V) { 860 return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) || 861 isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1); 862 }; 863 // Check if we can combine facts from the signed and unsigned systems to 864 // derive additional facts. 865 if (!A->getType()->isIntegerTy()) 866 return; 867 // FIXME: This currently depends on the order we add facts. Ideally we 868 // would first add all known facts and only then try to add additional 869 // facts. 870 switch (Pred) { 871 default: 872 break; 873 case CmpInst::ICMP_ULT: 874 case CmpInst::ICMP_ULE: 875 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B. 876 if (IsKnownNonNegative(B)) { 877 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 878 NumOut, DFSInStack); 879 addFact(ICmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 880 DFSInStack); 881 } 882 break; 883 case CmpInst::ICMP_UGE: 884 case CmpInst::ICMP_UGT: 885 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B. 886 if (IsKnownNonNegative(A)) { 887 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn, 888 NumOut, DFSInStack); 889 addFact(ICmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 890 DFSInStack); 891 } 892 break; 893 case CmpInst::ICMP_SLT: 894 if (IsKnownNonNegative(A)) 895 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 896 break; 897 case CmpInst::ICMP_SGT: { 898 if (doesHold(CmpInst::ICMP_SGE, B, Constant::getAllOnesValue(B->getType()))) 899 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 900 NumOut, DFSInStack); 901 if (IsKnownNonNegative(B)) 902 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 903 904 break; 905 } 906 case CmpInst::ICMP_SGE: 907 if (IsKnownNonNegative(B)) 908 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 909 break; 910 } 911 } 912 913 #ifndef NDEBUG 914 915 static void dumpConstraint(ArrayRef<int64_t> C, 916 const DenseMap<Value *, unsigned> &Value2Index) { 917 ConstraintSystem CS(Value2Index); 918 CS.addVariableRowFill(C); 919 CS.dump(); 920 } 921 #endif 922 923 void State::addInfoForInductions(BasicBlock &BB) { 924 auto *L = LI.getLoopFor(&BB); 925 if (!L || L->getHeader() != &BB) 926 return; 927 928 Value *A; 929 Value *B; 930 CmpPredicate Pred; 931 932 if (!match(BB.getTerminator(), 933 m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value()))) 934 return; 935 PHINode *PN = dyn_cast<PHINode>(A); 936 if (!PN) { 937 Pred = CmpInst::getSwappedPredicate(Pred); 938 std::swap(A, B); 939 PN = dyn_cast<PHINode>(A); 940 } 941 942 if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 || 943 !SE.isSCEVable(PN->getType())) 944 return; 945 946 BasicBlock *InLoopSucc = nullptr; 947 if (Pred == CmpInst::ICMP_NE) 948 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0); 949 else if (Pred == CmpInst::ICMP_EQ) 950 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1); 951 else 952 return; 953 954 if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB) 955 return; 956 957 auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN)); 958 BasicBlock *LoopPred = L->getLoopPredecessor(); 959 if (!AR || AR->getLoop() != L || !LoopPred) 960 return; 961 962 const SCEV *StartSCEV = AR->getStart(); 963 Value *StartValue = nullptr; 964 if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) { 965 StartValue = C->getValue(); 966 } else { 967 StartValue = PN->getIncomingValueForBlock(LoopPred); 968 assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value"); 969 } 970 971 DomTreeNode *DTN = DT.getNode(InLoopSucc); 972 auto IncUnsigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT); 973 auto IncSigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_SGT); 974 bool MonotonicallyIncreasingUnsigned = 975 IncUnsigned && *IncUnsigned == ScalarEvolution::MonotonicallyIncreasing; 976 bool MonotonicallyIncreasingSigned = 977 IncSigned && *IncSigned == ScalarEvolution::MonotonicallyIncreasing; 978 // If SCEV guarantees that AR does not wrap, PN >= StartValue can be added 979 // unconditionally. 980 if (MonotonicallyIncreasingUnsigned) 981 WorkList.push_back( 982 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue)); 983 if (MonotonicallyIncreasingSigned) 984 WorkList.push_back( 985 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_SGE, PN, StartValue)); 986 987 APInt StepOffset; 988 if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 989 StepOffset = C->getAPInt(); 990 else 991 return; 992 993 // Make sure the bound B is loop-invariant. 994 if (!L->isLoopInvariant(B)) 995 return; 996 997 // Handle negative steps. 998 if (StepOffset.isNegative()) { 999 // TODO: Extend to allow steps > -1. 1000 if (!(-StepOffset).isOne()) 1001 return; 1002 1003 // AR may wrap. 1004 // Add StartValue >= PN conditional on B <= StartValue which guarantees that 1005 // the loop exits before wrapping with a step of -1. 1006 WorkList.push_back(FactOrCheck::getConditionFact( 1007 DTN, CmpInst::ICMP_UGE, StartValue, PN, 1008 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 1009 WorkList.push_back(FactOrCheck::getConditionFact( 1010 DTN, CmpInst::ICMP_SGE, StartValue, PN, 1011 ConditionTy(CmpInst::ICMP_SLE, B, StartValue))); 1012 // Add PN > B conditional on B <= StartValue which guarantees that the loop 1013 // exits when reaching B with a step of -1. 1014 WorkList.push_back(FactOrCheck::getConditionFact( 1015 DTN, CmpInst::ICMP_UGT, PN, B, 1016 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 1017 WorkList.push_back(FactOrCheck::getConditionFact( 1018 DTN, CmpInst::ICMP_SGT, PN, B, 1019 ConditionTy(CmpInst::ICMP_SLE, B, StartValue))); 1020 return; 1021 } 1022 1023 // Make sure AR either steps by 1 or that the value we compare against is a 1024 // GEP based on the same start value and all offsets are a multiple of the 1025 // step size, to guarantee that the induction will reach the value. 1026 if (StepOffset.isZero() || StepOffset.isNegative()) 1027 return; 1028 1029 if (!StepOffset.isOne()) { 1030 // Check whether B-Start is known to be a multiple of StepOffset. 1031 const SCEV *BMinusStart = SE.getMinusSCEV(SE.getSCEV(B), StartSCEV); 1032 if (isa<SCEVCouldNotCompute>(BMinusStart) || 1033 !SE.getConstantMultiple(BMinusStart).urem(StepOffset).isZero()) 1034 return; 1035 } 1036 1037 // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which 1038 // guarantees that the loop exits before wrapping in combination with the 1039 // restrictions on B and the step above. 1040 if (!MonotonicallyIncreasingUnsigned) 1041 WorkList.push_back(FactOrCheck::getConditionFact( 1042 DTN, CmpInst::ICMP_UGE, PN, StartValue, 1043 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 1044 if (!MonotonicallyIncreasingSigned) 1045 WorkList.push_back(FactOrCheck::getConditionFact( 1046 DTN, CmpInst::ICMP_SGE, PN, StartValue, 1047 ConditionTy(CmpInst::ICMP_SLE, StartValue, B))); 1048 1049 WorkList.push_back(FactOrCheck::getConditionFact( 1050 DTN, CmpInst::ICMP_ULT, PN, B, 1051 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 1052 WorkList.push_back(FactOrCheck::getConditionFact( 1053 DTN, CmpInst::ICMP_SLT, PN, B, 1054 ConditionTy(CmpInst::ICMP_SLE, StartValue, B))); 1055 1056 // Try to add condition from header to the dedicated exit blocks. When exiting 1057 // either with EQ or NE in the header, we know that the induction value must 1058 // be u<= B, as other exits may only exit earlier. 1059 assert(!StepOffset.isNegative() && "induction must be increasing"); 1060 assert((Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) && 1061 "unsupported predicate"); 1062 ConditionTy Precond = {CmpInst::ICMP_ULE, StartValue, B}; 1063 SmallVector<BasicBlock *> ExitBBs; 1064 L->getExitBlocks(ExitBBs); 1065 for (BasicBlock *EB : ExitBBs) { 1066 // Bail out on non-dedicated exits. 1067 if (DT.dominates(&BB, EB)) { 1068 WorkList.emplace_back(FactOrCheck::getConditionFact( 1069 DT.getNode(EB), CmpInst::ICMP_ULE, A, B, Precond)); 1070 } 1071 } 1072 } 1073 1074 void State::addInfoFor(BasicBlock &BB) { 1075 addInfoForInductions(BB); 1076 1077 // True as long as long as the current instruction is guaranteed to execute. 1078 bool GuaranteedToExecute = true; 1079 // Queue conditions and assumes. 1080 for (Instruction &I : BB) { 1081 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 1082 for (Use &U : Cmp->uses()) { 1083 auto *UserI = getContextInstForUse(U); 1084 auto *DTN = DT.getNode(UserI->getParent()); 1085 if (!DTN) 1086 continue; 1087 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 1088 } 1089 continue; 1090 } 1091 1092 auto *II = dyn_cast<IntrinsicInst>(&I); 1093 Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic; 1094 switch (ID) { 1095 case Intrinsic::assume: { 1096 Value *A, *B; 1097 CmpPredicate Pred; 1098 if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1099 break; 1100 if (GuaranteedToExecute) { 1101 // The assume is guaranteed to execute when BB is entered, hence Cond 1102 // holds on entry to BB. 1103 WorkList.emplace_back(FactOrCheck::getConditionFact( 1104 DT.getNode(I.getParent()), Pred, A, B)); 1105 } else { 1106 WorkList.emplace_back( 1107 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 1108 } 1109 break; 1110 } 1111 // Enqueue ssub_with_overflow for simplification. 1112 case Intrinsic::ssub_with_overflow: 1113 case Intrinsic::ucmp: 1114 case Intrinsic::scmp: 1115 WorkList.push_back( 1116 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 1117 break; 1118 // Enqueue the intrinsics to add extra info. 1119 case Intrinsic::umin: 1120 case Intrinsic::umax: 1121 case Intrinsic::smin: 1122 case Intrinsic::smax: 1123 // TODO: handle llvm.abs as well 1124 WorkList.push_back( 1125 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 1126 // TODO: Check if it is possible to instead only added the min/max facts 1127 // when simplifying uses of the min/max intrinsics. 1128 if (!isGuaranteedNotToBePoison(&I)) 1129 break; 1130 [[fallthrough]]; 1131 case Intrinsic::abs: 1132 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 1133 break; 1134 } 1135 1136 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 1137 } 1138 1139 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 1140 for (auto &Case : Switch->cases()) { 1141 BasicBlock *Succ = Case.getCaseSuccessor(); 1142 Value *V = Case.getCaseValue(); 1143 if (!canAddSuccessor(BB, Succ)) 1144 continue; 1145 WorkList.emplace_back(FactOrCheck::getConditionFact( 1146 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 1147 } 1148 return; 1149 } 1150 1151 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 1152 if (!Br || !Br->isConditional()) 1153 return; 1154 1155 Value *Cond = Br->getCondition(); 1156 1157 // If the condition is a chain of ORs/AND and the successor only has the 1158 // current block as predecessor, queue conditions for the successor. 1159 Value *Op0, *Op1; 1160 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 1161 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1162 bool IsOr = match(Cond, m_LogicalOr()); 1163 bool IsAnd = match(Cond, m_LogicalAnd()); 1164 // If there's a select that matches both AND and OR, we need to commit to 1165 // one of the options. Arbitrarily pick OR. 1166 if (IsOr && IsAnd) 1167 IsAnd = false; 1168 1169 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 1170 if (canAddSuccessor(BB, Successor)) { 1171 SmallVector<Value *> CondWorkList; 1172 SmallPtrSet<Value *, 8> SeenCond; 1173 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 1174 if (SeenCond.insert(V).second) 1175 CondWorkList.push_back(V); 1176 }; 1177 QueueValue(Op1); 1178 QueueValue(Op0); 1179 while (!CondWorkList.empty()) { 1180 Value *Cur = CondWorkList.pop_back_val(); 1181 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 1182 WorkList.emplace_back(FactOrCheck::getConditionFact( 1183 DT.getNode(Successor), 1184 IsOr ? Cmp->getInverseCmpPredicate() : Cmp->getCmpPredicate(), 1185 Cmp->getOperand(0), Cmp->getOperand(1))); 1186 continue; 1187 } 1188 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 1189 QueueValue(Op1); 1190 QueueValue(Op0); 1191 continue; 1192 } 1193 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1194 QueueValue(Op1); 1195 QueueValue(Op0); 1196 continue; 1197 } 1198 } 1199 } 1200 return; 1201 } 1202 1203 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 1204 if (!CmpI) 1205 return; 1206 if (canAddSuccessor(BB, Br->getSuccessor(0))) 1207 WorkList.emplace_back(FactOrCheck::getConditionFact( 1208 DT.getNode(Br->getSuccessor(0)), CmpI->getCmpPredicate(), 1209 CmpI->getOperand(0), CmpI->getOperand(1))); 1210 if (canAddSuccessor(BB, Br->getSuccessor(1))) 1211 WorkList.emplace_back(FactOrCheck::getConditionFact( 1212 DT.getNode(Br->getSuccessor(1)), CmpI->getInverseCmpPredicate(), 1213 CmpI->getOperand(0), CmpI->getOperand(1))); 1214 } 1215 1216 #ifndef NDEBUG 1217 static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred, 1218 Value *LHS, Value *RHS) { 1219 OS << "icmp " << Pred << ' '; 1220 LHS->printAsOperand(OS, /*PrintType=*/true); 1221 OS << ", "; 1222 RHS->printAsOperand(OS, /*PrintType=*/false); 1223 } 1224 #endif 1225 1226 namespace { 1227 /// Helper to keep track of a condition and if it should be treated as negated 1228 /// for reproducer construction. 1229 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 1230 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 1231 struct ReproducerEntry { 1232 ICmpInst::Predicate Pred; 1233 Value *LHS; 1234 Value *RHS; 1235 1236 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 1237 : Pred(Pred), LHS(LHS), RHS(RHS) {} 1238 }; 1239 } // namespace 1240 1241 /// Helper function to generate a reproducer function for simplifying \p Cond. 1242 /// The reproducer function contains a series of @llvm.assume calls, one for 1243 /// each condition in \p Stack. For each condition, the operand instruction are 1244 /// cloned until we reach operands that have an entry in \p Value2Index. Those 1245 /// will then be added as function arguments. \p DT is used to order cloned 1246 /// instructions. The reproducer function will get added to \p M, if it is 1247 /// non-null. Otherwise no reproducer function is generated. 1248 static void generateReproducer(CmpInst *Cond, Module *M, 1249 ArrayRef<ReproducerEntry> Stack, 1250 ConstraintInfo &Info, DominatorTree &DT) { 1251 if (!M) 1252 return; 1253 1254 LLVMContext &Ctx = Cond->getContext(); 1255 1256 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 1257 1258 ValueToValueMapTy Old2New; 1259 SmallVector<Value *> Args; 1260 SmallPtrSet<Value *, 8> Seen; 1261 // Traverse Cond and its operands recursively until we reach a value that's in 1262 // Value2Index or not an instruction, or not a operation that 1263 // ConstraintElimination can decompose. Such values will be considered as 1264 // external inputs to the reproducer, they are collected and added as function 1265 // arguments later. 1266 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1267 auto &Value2Index = Info.getValue2Index(IsSigned); 1268 SmallVector<Value *, 4> WorkList(Ops); 1269 while (!WorkList.empty()) { 1270 Value *V = WorkList.pop_back_val(); 1271 if (!Seen.insert(V).second) 1272 continue; 1273 if (Old2New.find(V) != Old2New.end()) 1274 continue; 1275 if (isa<Constant>(V)) 1276 continue; 1277 1278 auto *I = dyn_cast<Instruction>(V); 1279 if (Value2Index.contains(V) || !I || 1280 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 1281 Old2New[V] = V; 1282 Args.push_back(V); 1283 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 1284 } else { 1285 append_range(WorkList, I->operands()); 1286 } 1287 } 1288 }; 1289 1290 for (auto &Entry : Stack) 1291 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 1292 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 1293 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 1294 1295 SmallVector<Type *> ParamTys; 1296 for (auto *P : Args) 1297 ParamTys.push_back(P->getType()); 1298 1299 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 1300 /*isVarArg=*/false); 1301 Function *F = Function::Create(FTy, Function::ExternalLinkage, 1302 Cond->getModule()->getName() + 1303 Cond->getFunction()->getName() + "repro", 1304 M); 1305 // Add arguments to the reproducer function for each external value collected. 1306 for (unsigned I = 0; I < Args.size(); ++I) { 1307 F->getArg(I)->setName(Args[I]->getName()); 1308 Old2New[Args[I]] = F->getArg(I); 1309 } 1310 1311 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 1312 IRBuilder<> Builder(Entry); 1313 Builder.CreateRet(Builder.getTrue()); 1314 Builder.SetInsertPoint(Entry->getTerminator()); 1315 1316 // Clone instructions in \p Ops and their operands recursively until reaching 1317 // an value in Value2Index (external input to the reproducer). Update Old2New 1318 // mapping for the original and cloned instructions. Sort instructions to 1319 // clone by dominance, then insert the cloned instructions in the function. 1320 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1321 SmallVector<Value *, 4> WorkList(Ops); 1322 SmallVector<Instruction *> ToClone; 1323 auto &Value2Index = Info.getValue2Index(IsSigned); 1324 while (!WorkList.empty()) { 1325 Value *V = WorkList.pop_back_val(); 1326 if (Old2New.find(V) != Old2New.end()) 1327 continue; 1328 1329 auto *I = dyn_cast<Instruction>(V); 1330 if (!Value2Index.contains(V) && I) { 1331 Old2New[V] = nullptr; 1332 ToClone.push_back(I); 1333 append_range(WorkList, I->operands()); 1334 } 1335 } 1336 1337 sort(ToClone, 1338 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 1339 for (Instruction *I : ToClone) { 1340 Instruction *Cloned = I->clone(); 1341 Old2New[I] = Cloned; 1342 Old2New[I]->setName(I->getName()); 1343 Cloned->insertBefore(&*Builder.GetInsertPoint()); 1344 Cloned->dropUnknownNonDebugMetadata(); 1345 Cloned->setDebugLoc({}); 1346 } 1347 }; 1348 1349 // Materialize the assumptions for the reproducer using the entries in Stack. 1350 // That is, first clone the operands of the condition recursively until we 1351 // reach an external input to the reproducer and add them to the reproducer 1352 // function. Then add an ICmp for the condition (with the inverse predicate if 1353 // the entry is negated) and an assert using the ICmp. 1354 for (auto &Entry : Stack) { 1355 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1356 continue; 1357 1358 LLVM_DEBUG(dbgs() << " Materializing assumption "; 1359 dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS); 1360 dbgs() << "\n"); 1361 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1362 1363 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1364 Builder.CreateAssumption(Cmp); 1365 } 1366 1367 // Finally, clone the condition to reproduce and remap instruction operands in 1368 // the reproducer using Old2New. 1369 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1370 Entry->getTerminator()->setOperand(0, Cond); 1371 remapInstructionsInBlocks({Entry}, Old2New); 1372 1373 assert(!verifyFunction(*F, &dbgs())); 1374 } 1375 1376 static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A, 1377 Value *B, Instruction *CheckInst, 1378 ConstraintInfo &Info) { 1379 LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n"); 1380 1381 auto R = Info.getConstraintForSolving(Pred, A, B); 1382 if (R.empty() || !R.isValid(Info)){ 1383 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1384 return std::nullopt; 1385 } 1386 1387 auto &CSToUse = Info.getCS(R.IsSigned); 1388 1389 // If there was extra information collected during decomposition, apply 1390 // it now and remove it immediately once we are done with reasoning 1391 // about the constraint. 1392 for (auto &Row : R.ExtraInfo) 1393 CSToUse.addVariableRow(Row); 1394 auto InfoRestorer = make_scope_exit([&]() { 1395 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1396 CSToUse.popLastConstraint(); 1397 }); 1398 1399 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1400 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1401 return std::nullopt; 1402 1403 LLVM_DEBUG({ 1404 dbgs() << "Condition "; 1405 dumpUnpackedICmp( 1406 dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred), 1407 A, B); 1408 dbgs() << " implied by dominating constraints\n"; 1409 CSToUse.dump(); 1410 }); 1411 return ImpliedCondition; 1412 } 1413 1414 return std::nullopt; 1415 } 1416 1417 static bool checkAndReplaceCondition( 1418 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1419 Instruction *ContextInst, Module *ReproducerModule, 1420 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1421 SmallVectorImpl<Instruction *> &ToRemove) { 1422 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1423 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1424 Constant *ConstantC = ConstantInt::getBool( 1425 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1426 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1427 ContextInst](Use &U) { 1428 auto *UserI = getContextInstForUse(U); 1429 auto *DTN = DT.getNode(UserI->getParent()); 1430 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1431 return false; 1432 if (UserI->getParent() == ContextInst->getParent() && 1433 UserI->comesBefore(ContextInst)) 1434 return false; 1435 1436 // Conditions in an assume trivially simplify to true. Skip uses 1437 // in assume calls to not destroy the available information. 1438 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1439 return !II || II->getIntrinsicID() != Intrinsic::assume; 1440 }); 1441 NumCondsRemoved++; 1442 if (Cmp->use_empty()) 1443 ToRemove.push_back(Cmp); 1444 return true; 1445 }; 1446 1447 if (auto ImpliedCondition = 1448 checkCondition(Cmp->getPredicate(), Cmp->getOperand(0), 1449 Cmp->getOperand(1), Cmp, Info)) 1450 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1451 return false; 1452 } 1453 1454 static bool checkAndReplaceMinMax(MinMaxIntrinsic *MinMax, ConstraintInfo &Info, 1455 SmallVectorImpl<Instruction *> &ToRemove) { 1456 auto ReplaceMinMaxWithOperand = [&](MinMaxIntrinsic *MinMax, bool UseLHS) { 1457 // TODO: generate reproducer for min/max. 1458 MinMax->replaceAllUsesWith(MinMax->getOperand(UseLHS ? 0 : 1)); 1459 ToRemove.push_back(MinMax); 1460 return true; 1461 }; 1462 1463 ICmpInst::Predicate Pred = 1464 ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1465 if (auto ImpliedCondition = checkCondition( 1466 Pred, MinMax->getOperand(0), MinMax->getOperand(1), MinMax, Info)) 1467 return ReplaceMinMaxWithOperand(MinMax, *ImpliedCondition); 1468 if (auto ImpliedCondition = checkCondition( 1469 Pred, MinMax->getOperand(1), MinMax->getOperand(0), MinMax, Info)) 1470 return ReplaceMinMaxWithOperand(MinMax, !*ImpliedCondition); 1471 return false; 1472 } 1473 1474 static bool checkAndReplaceCmp(CmpIntrinsic *I, ConstraintInfo &Info, 1475 SmallVectorImpl<Instruction *> &ToRemove) { 1476 Value *LHS = I->getOperand(0); 1477 Value *RHS = I->getOperand(1); 1478 if (checkCondition(I->getGTPredicate(), LHS, RHS, I, Info).value_or(false)) { 1479 I->replaceAllUsesWith(ConstantInt::get(I->getType(), 1)); 1480 ToRemove.push_back(I); 1481 return true; 1482 } 1483 if (checkCondition(I->getLTPredicate(), LHS, RHS, I, Info).value_or(false)) { 1484 I->replaceAllUsesWith(ConstantInt::getSigned(I->getType(), -1)); 1485 ToRemove.push_back(I); 1486 return true; 1487 } 1488 if (checkCondition(ICmpInst::ICMP_EQ, LHS, RHS, I, Info).value_or(false)) { 1489 I->replaceAllUsesWith(ConstantInt::get(I->getType(), 0)); 1490 ToRemove.push_back(I); 1491 return true; 1492 } 1493 return false; 1494 } 1495 1496 static void 1497 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1498 Module *ReproducerModule, 1499 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1500 SmallVectorImpl<StackEntry> &DFSInStack) { 1501 Info.popLastConstraint(E.IsSigned); 1502 // Remove variables in the system that went out of scope. 1503 auto &Mapping = Info.getValue2Index(E.IsSigned); 1504 for (Value *V : E.ValuesToRelease) 1505 Mapping.erase(V); 1506 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1507 DFSInStack.pop_back(); 1508 if (ReproducerModule) 1509 ReproducerCondStack.pop_back(); 1510 } 1511 1512 /// Check if either the first condition of an AND or OR is implied by the 1513 /// (negated in case of OR) second condition or vice versa. 1514 static bool checkOrAndOpImpliedByOther( 1515 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1516 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1517 SmallVectorImpl<StackEntry> &DFSInStack) { 1518 Instruction *JoinOp = CB.getContextInst(); 1519 CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify()); 1520 unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0; 1521 1522 // Don't try to simplify the first condition of a select by the second, as 1523 // this may make the select more poisonous than the original one. 1524 // TODO: check if the first operand may be poison. 1525 if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp)) 1526 return false; 1527 1528 unsigned OldSize = DFSInStack.size(); 1529 auto InfoRestorer = make_scope_exit([&]() { 1530 // Remove entries again. 1531 while (OldSize < DFSInStack.size()) { 1532 StackEntry E = DFSInStack.back(); 1533 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1534 DFSInStack); 1535 } 1536 }); 1537 bool IsOr = match(JoinOp, m_LogicalOr()); 1538 SmallVector<Value *, 4> Worklist({JoinOp->getOperand(OtherOpIdx)}); 1539 // Do a traversal of the AND/OR tree to add facts from leaf compares. 1540 while (!Worklist.empty()) { 1541 Value *Val = Worklist.pop_back_val(); 1542 Value *LHS, *RHS; 1543 CmpPredicate Pred; 1544 if (match(Val, m_ICmp(Pred, m_Value(LHS), m_Value(RHS)))) { 1545 // For OR, check if the negated condition implies CmpToCheck. 1546 if (IsOr) 1547 Pred = CmpInst::getInversePredicate(Pred); 1548 // Optimistically add fact from the other compares in the AND/OR. 1549 Info.addFact(Pred, LHS, RHS, CB.NumIn, CB.NumOut, DFSInStack); 1550 continue; 1551 } 1552 if (IsOr ? match(Val, m_LogicalOr(m_Value(LHS), m_Value(RHS))) 1553 : match(Val, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) { 1554 Worklist.push_back(LHS); 1555 Worklist.push_back(RHS); 1556 } 1557 } 1558 if (OldSize == DFSInStack.size()) 1559 return false; 1560 1561 // Check if the second condition can be simplified now. 1562 if (auto ImpliedCondition = 1563 checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0), 1564 CmpToCheck->getOperand(1), CmpToCheck, Info)) { 1565 if (IsOr && isa<SelectInst>(JoinOp)) { 1566 JoinOp->setOperand( 1567 OtherOpIdx == 0 ? 2 : 0, 1568 ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition)); 1569 } else 1570 JoinOp->setOperand( 1571 1 - OtherOpIdx, 1572 ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition)); 1573 1574 return true; 1575 } 1576 1577 return false; 1578 } 1579 1580 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1581 unsigned NumIn, unsigned NumOut, 1582 SmallVectorImpl<StackEntry> &DFSInStack) { 1583 // If the constraint has a pre-condition, skip the constraint if it does not 1584 // hold. 1585 SmallVector<Value *> NewVariables; 1586 auto R = getConstraint(Pred, A, B, NewVariables); 1587 1588 // TODO: Support non-equality for facts as well. 1589 if (!R.isValid(*this) || R.isNe()) 1590 return; 1591 1592 LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B); 1593 dbgs() << "'\n"); 1594 auto &CSToUse = getCS(R.IsSigned); 1595 if (R.Coefficients.empty()) 1596 return; 1597 1598 bool Added = CSToUse.addVariableRowFill(R.Coefficients); 1599 if (!Added) 1600 return; 1601 1602 // If R has been added to the system, add the new variables and queue it for 1603 // removal once it goes out-of-scope. 1604 SmallVector<Value *, 2> ValuesToRelease; 1605 auto &Value2Index = getValue2Index(R.IsSigned); 1606 for (Value *V : NewVariables) { 1607 Value2Index.insert({V, Value2Index.size() + 1}); 1608 ValuesToRelease.push_back(V); 1609 } 1610 1611 LLVM_DEBUG({ 1612 dbgs() << " constraint: "; 1613 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1614 dbgs() << "\n"; 1615 }); 1616 1617 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1618 std::move(ValuesToRelease)); 1619 1620 if (!R.IsSigned) { 1621 for (Value *V : NewVariables) { 1622 ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0), 1623 false, false, false); 1624 VarPos.Coefficients[Value2Index[V]] = -1; 1625 CSToUse.addVariableRow(VarPos.Coefficients); 1626 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1627 SmallVector<Value *, 2>()); 1628 } 1629 } 1630 1631 if (R.isEq()) { 1632 // Also add the inverted constraint for equality constraints. 1633 for (auto &Coeff : R.Coefficients) 1634 Coeff *= -1; 1635 CSToUse.addVariableRowFill(R.Coefficients); 1636 1637 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1638 SmallVector<Value *, 2>()); 1639 } 1640 } 1641 1642 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1643 SmallVectorImpl<Instruction *> &ToRemove) { 1644 bool Changed = false; 1645 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1646 Value *Sub = nullptr; 1647 for (User *U : make_early_inc_range(II->users())) { 1648 if (match(U, m_ExtractValue<0>(m_Value()))) { 1649 if (!Sub) 1650 Sub = Builder.CreateSub(A, B); 1651 U->replaceAllUsesWith(Sub); 1652 Changed = true; 1653 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1654 U->replaceAllUsesWith(Builder.getFalse()); 1655 Changed = true; 1656 } else 1657 continue; 1658 1659 if (U->use_empty()) { 1660 auto *I = cast<Instruction>(U); 1661 ToRemove.push_back(I); 1662 I->setOperand(0, PoisonValue::get(II->getType())); 1663 Changed = true; 1664 } 1665 } 1666 1667 if (II->use_empty()) { 1668 II->eraseFromParent(); 1669 Changed = true; 1670 } 1671 return Changed; 1672 } 1673 1674 static bool 1675 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1676 SmallVectorImpl<Instruction *> &ToRemove) { 1677 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1678 ConstraintInfo &Info) { 1679 auto R = Info.getConstraintForSolving(Pred, A, B); 1680 if (R.size() < 2 || !R.isValid(Info)) 1681 return false; 1682 1683 auto &CSToUse = Info.getCS(R.IsSigned); 1684 return CSToUse.isConditionImplied(R.Coefficients); 1685 }; 1686 1687 bool Changed = false; 1688 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1689 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1690 // can be simplified to a regular sub. 1691 Value *A = II->getArgOperand(0); 1692 Value *B = II->getArgOperand(1); 1693 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1694 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1695 ConstantInt::get(A->getType(), 0), Info)) 1696 return false; 1697 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1698 } 1699 return Changed; 1700 } 1701 1702 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI, 1703 ScalarEvolution &SE, 1704 OptimizationRemarkEmitter &ORE) { 1705 bool Changed = false; 1706 DT.updateDFSNumbers(); 1707 SmallVector<Value *> FunctionArgs; 1708 for (Value &Arg : F.args()) 1709 FunctionArgs.push_back(&Arg); 1710 ConstraintInfo Info(F.getDataLayout(), FunctionArgs); 1711 State S(DT, LI, SE); 1712 std::unique_ptr<Module> ReproducerModule( 1713 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1714 1715 // First, collect conditions implied by branches and blocks with their 1716 // Dominator DFS in and out numbers. 1717 for (BasicBlock &BB : F) { 1718 if (!DT.getNode(&BB)) 1719 continue; 1720 S.addInfoFor(BB); 1721 } 1722 1723 // Next, sort worklist by dominance, so that dominating conditions to check 1724 // and facts come before conditions and facts dominated by them. If a 1725 // condition to check and a fact have the same numbers, conditional facts come 1726 // first. Assume facts and checks are ordered according to their relative 1727 // order in the containing basic block. Also make sure conditions with 1728 // constant operands come before conditions without constant operands. This 1729 // increases the effectiveness of the current signed <-> unsigned fact 1730 // transfer logic. 1731 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1732 auto HasNoConstOp = [](const FactOrCheck &B) { 1733 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 1734 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 1735 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1736 }; 1737 // If both entries have the same In numbers, conditional facts come first. 1738 // Otherwise use the relative order in the basic block. 1739 if (A.NumIn == B.NumIn) { 1740 if (A.isConditionFact() && B.isConditionFact()) { 1741 bool NoConstOpA = HasNoConstOp(A); 1742 bool NoConstOpB = HasNoConstOp(B); 1743 return NoConstOpA < NoConstOpB; 1744 } 1745 if (A.isConditionFact()) 1746 return true; 1747 if (B.isConditionFact()) 1748 return false; 1749 auto *InstA = A.getContextInst(); 1750 auto *InstB = B.getContextInst(); 1751 return InstA->comesBefore(InstB); 1752 } 1753 return A.NumIn < B.NumIn; 1754 }); 1755 1756 SmallVector<Instruction *> ToRemove; 1757 1758 // Finally, process ordered worklist and eliminate implied conditions. 1759 SmallVector<StackEntry, 16> DFSInStack; 1760 SmallVector<ReproducerEntry> ReproducerCondStack; 1761 for (FactOrCheck &CB : S.WorkList) { 1762 // First, pop entries from the stack that are out-of-scope for CB. Remove 1763 // the corresponding entry from the constraint system. 1764 while (!DFSInStack.empty()) { 1765 auto &E = DFSInStack.back(); 1766 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1767 << "\n"); 1768 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1769 assert(E.NumIn <= CB.NumIn); 1770 if (CB.NumOut <= E.NumOut) 1771 break; 1772 LLVM_DEBUG({ 1773 dbgs() << "Removing "; 1774 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1775 Info.getValue2Index(E.IsSigned)); 1776 dbgs() << "\n"; 1777 }); 1778 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1779 DFSInStack); 1780 } 1781 1782 // For a block, check if any CmpInsts become known based on the current set 1783 // of constraints. 1784 if (CB.isCheck()) { 1785 Instruction *Inst = CB.getInstructionToSimplify(); 1786 if (!Inst) 1787 continue; 1788 LLVM_DEBUG(dbgs() << "Processing condition to simplify: " << *Inst 1789 << "\n"); 1790 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1791 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1792 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1793 bool Simplified = checkAndReplaceCondition( 1794 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1795 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1796 if (!Simplified && 1797 match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) { 1798 Simplified = 1799 checkOrAndOpImpliedByOther(CB, Info, ReproducerModule.get(), 1800 ReproducerCondStack, DFSInStack); 1801 } 1802 Changed |= Simplified; 1803 } else if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Inst)) { 1804 Changed |= checkAndReplaceMinMax(MinMax, Info, ToRemove); 1805 } else if (auto *CmpIntr = dyn_cast<CmpIntrinsic>(Inst)) { 1806 Changed |= checkAndReplaceCmp(CmpIntr, Info, ToRemove); 1807 } 1808 continue; 1809 } 1810 1811 auto AddFact = [&](CmpPredicate Pred, Value *A, Value *B) { 1812 LLVM_DEBUG(dbgs() << "Processing fact to add to the system: "; 1813 dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n"); 1814 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1815 LLVM_DEBUG( 1816 dbgs() 1817 << "Skip adding constraint because system has too many rows.\n"); 1818 return; 1819 } 1820 1821 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1822 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1823 ReproducerCondStack.emplace_back(Pred, A, B); 1824 1825 if (ICmpInst::isRelational(Pred)) { 1826 // If samesign is present on the ICmp, simply flip the sign of the 1827 // predicate, transferring the information from the signed system to the 1828 // unsigned system, and viceversa. 1829 if (Pred.hasSameSign()) 1830 Info.addFact(ICmpInst::getFlippedSignednessPredicate(Pred), A, B, 1831 CB.NumIn, CB.NumOut, DFSInStack); 1832 else 1833 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, 1834 DFSInStack); 1835 } 1836 1837 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1838 // Add dummy entries to ReproducerCondStack to keep it in sync with 1839 // DFSInStack. 1840 for (unsigned I = 0, 1841 E = (DFSInStack.size() - ReproducerCondStack.size()); 1842 I < E; ++I) { 1843 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1844 nullptr, nullptr); 1845 } 1846 } 1847 }; 1848 1849 CmpPredicate Pred; 1850 if (!CB.isConditionFact()) { 1851 Value *X; 1852 if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) { 1853 // If is_int_min_poison is true then we may assume llvm.abs >= 0. 1854 if (cast<ConstantInt>(CB.Inst->getOperand(1))->isOne()) 1855 AddFact(CmpInst::ICMP_SGE, CB.Inst, 1856 ConstantInt::get(CB.Inst->getType(), 0)); 1857 AddFact(CmpInst::ICMP_SGE, CB.Inst, X); 1858 continue; 1859 } 1860 1861 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1862 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1863 AddFact(Pred, MinMax, MinMax->getLHS()); 1864 AddFact(Pred, MinMax, MinMax->getRHS()); 1865 continue; 1866 } 1867 } 1868 1869 Value *A = nullptr, *B = nullptr; 1870 if (CB.isConditionFact()) { 1871 Pred = CB.Cond.Pred; 1872 A = CB.Cond.Op0; 1873 B = CB.Cond.Op1; 1874 if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE && 1875 !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) { 1876 LLVM_DEBUG({ 1877 dbgs() << "Not adding fact "; 1878 dumpUnpackedICmp(dbgs(), Pred, A, B); 1879 dbgs() << " because precondition "; 1880 dumpUnpackedICmp(dbgs(), CB.DoesHold.Pred, CB.DoesHold.Op0, 1881 CB.DoesHold.Op1); 1882 dbgs() << " does not hold.\n"; 1883 }); 1884 continue; 1885 } 1886 } else { 1887 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 1888 m_ICmp(Pred, m_Value(A), m_Value(B)))); 1889 (void)Matched; 1890 assert(Matched && "Must have an assume intrinsic with a icmp operand"); 1891 } 1892 AddFact(Pred, A, B); 1893 } 1894 1895 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1896 std::string S; 1897 raw_string_ostream StringS(S); 1898 ReproducerModule->print(StringS, nullptr); 1899 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1900 Rem << ore::NV("module") << S; 1901 ORE.emit(Rem); 1902 } 1903 1904 #ifndef NDEBUG 1905 unsigned SignedEntries = 1906 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1907 assert(Info.getCS(false).size() - FunctionArgs.size() == 1908 DFSInStack.size() - SignedEntries && 1909 "updates to CS and DFSInStack are out of sync"); 1910 assert(Info.getCS(true).size() == SignedEntries && 1911 "updates to CS and DFSInStack are out of sync"); 1912 #endif 1913 1914 for (Instruction *I : ToRemove) 1915 I->eraseFromParent(); 1916 return Changed; 1917 } 1918 1919 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1920 FunctionAnalysisManager &AM) { 1921 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1922 auto &LI = AM.getResult<LoopAnalysis>(F); 1923 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1924 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1925 if (!eliminateConstraints(F, DT, LI, SE, ORE)) 1926 return PreservedAnalyses::all(); 1927 1928 PreservedAnalyses PA; 1929 PA.preserve<DominatorTreeAnalysis>(); 1930 PA.preserve<LoopAnalysis>(); 1931 PA.preserve<ScalarEvolutionAnalysis>(); 1932 PA.preserveSet<CFGAnalyses>(); 1933 return PA; 1934 } 1935