1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/IR/Verifier.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/DebugCounter.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/ValueMapper.h" 40 41 #include <cmath> 42 #include <optional> 43 #include <string> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "constraint-elimination" 49 50 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 51 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 52 "Controls which conditions are eliminated"); 53 54 static cl::opt<unsigned> 55 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 56 cl::desc("Maximum number of rows to keep in constraint system")); 57 58 static cl::opt<bool> DumpReproducers( 59 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 60 cl::desc("Dump IR to reproduce successful transformations.")); 61 62 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 63 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 64 65 // A helper to multiply 2 signed integers where overflowing is allowed. 66 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 67 int64_t Result; 68 MulOverflow(A, B, Result); 69 return Result; 70 } 71 72 // A helper to add 2 signed integers where overflowing is allowed. 73 static int64_t addWithOverflow(int64_t A, int64_t B) { 74 int64_t Result; 75 AddOverflow(A, B, Result); 76 return Result; 77 } 78 79 static Instruction *getContextInstForUse(Use &U) { 80 Instruction *UserI = cast<Instruction>(U.getUser()); 81 if (auto *Phi = dyn_cast<PHINode>(UserI)) 82 UserI = Phi->getIncomingBlock(U)->getTerminator(); 83 return UserI; 84 } 85 86 namespace { 87 /// Struct to express a condition of the form %Op0 Pred %Op1. 88 struct ConditionTy { 89 CmpInst::Predicate Pred; 90 Value *Op0; 91 Value *Op1; 92 93 ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 94 : Pred(Pred), Op0(Op0), Op1(Op1) {} 95 }; 96 97 /// Represents either 98 /// * a condition that holds on entry to a block (=condition fact) 99 /// * an assume (=assume fact) 100 /// * a use of a compare instruction to simplify. 101 /// It also tracks the Dominator DFS in and out numbers for each entry. 102 struct FactOrCheck { 103 enum class EntryTy { 104 ConditionFact, /// A condition that holds on entry to a block. 105 InstFact, /// A fact that holds after Inst executed (e.g. an assume or 106 /// min/mix intrinsic. 107 InstCheck, /// An instruction to simplify (e.g. an overflow math 108 /// intrinsics). 109 UseCheck /// An use of a compare instruction to simplify. 110 }; 111 112 union { 113 Instruction *Inst; 114 Use *U; 115 ConditionTy Cond; 116 }; 117 118 unsigned NumIn; 119 unsigned NumOut; 120 EntryTy Ty; 121 122 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 123 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 124 Ty(Ty) {} 125 126 FactOrCheck(DomTreeNode *DTN, Use *U) 127 : U(U), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 128 Ty(EntryTy::UseCheck) {} 129 130 FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1) 131 : Cond(Pred, Op0, Op1), NumIn(DTN->getDFSNumIn()), 132 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 133 134 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 135 Value *Op0, Value *Op1) { 136 return FactOrCheck(DTN, Pred, Op0, Op1); 137 } 138 139 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 140 return FactOrCheck(EntryTy::InstFact, DTN, Inst); 141 } 142 143 static FactOrCheck getFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 144 Value *Op0, Value *Op1) { 145 return FactOrCheck(DTN, Pred, Op0, Op1); 146 } 147 148 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 149 return FactOrCheck(DTN, U); 150 } 151 152 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 153 return FactOrCheck(EntryTy::InstCheck, DTN, CI); 154 } 155 156 bool isCheck() const { 157 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 158 } 159 160 Instruction *getContextInst() const { 161 if (Ty == EntryTy::UseCheck) 162 return getContextInstForUse(*U); 163 return Inst; 164 } 165 166 Instruction *getInstructionToSimplify() const { 167 assert(isCheck()); 168 if (Ty == EntryTy::InstCheck) 169 return Inst; 170 // The use may have been simplified to a constant already. 171 return dyn_cast<Instruction>(*U); 172 } 173 174 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 175 }; 176 177 /// Keep state required to build worklist. 178 struct State { 179 DominatorTree &DT; 180 SmallVector<FactOrCheck, 64> WorkList; 181 182 State(DominatorTree &DT) : DT(DT) {} 183 184 /// Process block \p BB and add known facts to work-list. 185 void addInfoFor(BasicBlock &BB); 186 187 /// Returns true if we can add a known condition from BB to its successor 188 /// block Succ. 189 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 190 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 191 } 192 }; 193 194 class ConstraintInfo; 195 196 struct StackEntry { 197 unsigned NumIn; 198 unsigned NumOut; 199 bool IsSigned = false; 200 /// Variables that can be removed from the system once the stack entry gets 201 /// removed. 202 SmallVector<Value *, 2> ValuesToRelease; 203 204 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 205 SmallVector<Value *, 2> ValuesToRelease) 206 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 207 ValuesToRelease(ValuesToRelease) {} 208 }; 209 210 struct ConstraintTy { 211 SmallVector<int64_t, 8> Coefficients; 212 SmallVector<ConditionTy, 2> Preconditions; 213 214 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 215 216 bool IsSigned = false; 217 218 ConstraintTy() = default; 219 220 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 221 bool IsNe) 222 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 223 } 224 225 unsigned size() const { return Coefficients.size(); } 226 227 unsigned empty() const { return Coefficients.empty(); } 228 229 /// Returns true if all preconditions for this list of constraints are 230 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 231 bool isValid(const ConstraintInfo &Info) const; 232 233 bool isEq() const { return IsEq; } 234 235 bool isNe() const { return IsNe; } 236 237 /// Check if the current constraint is implied by the given ConstraintSystem. 238 /// 239 /// \return true or false if the constraint is proven to be respectively true, 240 /// or false. When the constraint cannot be proven to be either true or false, 241 /// std::nullopt is returned. 242 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 243 244 private: 245 bool IsEq = false; 246 bool IsNe = false; 247 }; 248 249 /// Wrapper encapsulating separate constraint systems and corresponding value 250 /// mappings for both unsigned and signed information. Facts are added to and 251 /// conditions are checked against the corresponding system depending on the 252 /// signed-ness of their predicates. While the information is kept separate 253 /// based on signed-ness, certain conditions can be transferred between the two 254 /// systems. 255 class ConstraintInfo { 256 257 ConstraintSystem UnsignedCS; 258 ConstraintSystem SignedCS; 259 260 const DataLayout &DL; 261 262 public: 263 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 264 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 265 266 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 267 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 268 } 269 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 270 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 271 } 272 273 ConstraintSystem &getCS(bool Signed) { 274 return Signed ? SignedCS : UnsignedCS; 275 } 276 const ConstraintSystem &getCS(bool Signed) const { 277 return Signed ? SignedCS : UnsignedCS; 278 } 279 280 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 281 void popLastNVariables(bool Signed, unsigned N) { 282 getCS(Signed).popLastNVariables(N); 283 } 284 285 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 286 287 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 288 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 289 290 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 291 /// constraints, using indices from the corresponding constraint system. 292 /// New variables that need to be added to the system are collected in 293 /// \p NewVariables. 294 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 295 SmallVectorImpl<Value *> &NewVariables) const; 296 297 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 298 /// constraints using getConstraint. Returns an empty constraint if the result 299 /// cannot be used to query the existing constraint system, e.g. because it 300 /// would require adding new variables. Also tries to convert signed 301 /// predicates to unsigned ones if possible to allow using the unsigned system 302 /// which increases the effectiveness of the signed <-> unsigned transfer 303 /// logic. 304 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 305 Value *Op1) const; 306 307 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 308 /// system if \p Pred is signed/unsigned. 309 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 310 unsigned NumIn, unsigned NumOut, 311 SmallVectorImpl<StackEntry> &DFSInStack); 312 }; 313 314 /// Represents a (Coefficient * Variable) entry after IR decomposition. 315 struct DecompEntry { 316 int64_t Coefficient; 317 Value *Variable; 318 /// True if the variable is known positive in the current constraint. 319 bool IsKnownNonNegative; 320 321 DecompEntry(int64_t Coefficient, Value *Variable, 322 bool IsKnownNonNegative = false) 323 : Coefficient(Coefficient), Variable(Variable), 324 IsKnownNonNegative(IsKnownNonNegative) {} 325 }; 326 327 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 328 struct Decomposition { 329 int64_t Offset = 0; 330 SmallVector<DecompEntry, 3> Vars; 331 332 Decomposition(int64_t Offset) : Offset(Offset) {} 333 Decomposition(Value *V, bool IsKnownNonNegative = false) { 334 Vars.emplace_back(1, V, IsKnownNonNegative); 335 } 336 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 337 : Offset(Offset), Vars(Vars) {} 338 339 void add(int64_t OtherOffset) { 340 Offset = addWithOverflow(Offset, OtherOffset); 341 } 342 343 void add(const Decomposition &Other) { 344 add(Other.Offset); 345 append_range(Vars, Other.Vars); 346 } 347 348 void mul(int64_t Factor) { 349 Offset = multiplyWithOverflow(Offset, Factor); 350 for (auto &Var : Vars) 351 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 352 } 353 }; 354 355 } // namespace 356 357 static Decomposition decompose(Value *V, 358 SmallVectorImpl<ConditionTy> &Preconditions, 359 bool IsSigned, const DataLayout &DL); 360 361 static bool canUseSExt(ConstantInt *CI) { 362 const APInt &Val = CI->getValue(); 363 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 364 } 365 366 static Decomposition decomposeGEP(GEPOperator &GEP, 367 SmallVectorImpl<ConditionTy> &Preconditions, 368 bool IsSigned, const DataLayout &DL) { 369 // Do not reason about pointers where the index size is larger than 64 bits, 370 // as the coefficients used to encode constraints are 64 bit integers. 371 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 372 return &GEP; 373 374 if (!GEP.isInBounds()) 375 return &GEP; 376 377 assert(!IsSigned && "The logic below only supports decomposition for " 378 "unsinged predicates at the moment."); 379 Type *PtrTy = GEP.getType()->getScalarType(); 380 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 381 MapVector<Value *, APInt> VariableOffsets; 382 APInt ConstantOffset(BitWidth, 0); 383 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 384 return &GEP; 385 386 // Handle the (gep (gep ....), C) case by incrementing the constant 387 // coefficient of the inner GEP, if C is a constant. 388 auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand()); 389 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 390 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 391 Result.add(ConstantOffset.getSExtValue()); 392 393 if (ConstantOffset.isNegative()) { 394 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 395 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 396 if (ConstantOffsetI % Scale != 0) 397 return &GEP; 398 // Add pre-condition ensuring the GEP is increasing monotonically and 399 // can be de-composed. 400 // Both sides are normalized by being divided by Scale. 401 Preconditions.emplace_back( 402 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 403 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 404 -1 * (ConstantOffsetI / Scale))); 405 } 406 return Result; 407 } 408 409 Decomposition Result(ConstantOffset.getSExtValue(), 410 DecompEntry(1, GEP.getPointerOperand())); 411 for (auto [Index, Scale] : VariableOffsets) { 412 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 413 IdxResult.mul(Scale.getSExtValue()); 414 Result.add(IdxResult); 415 416 // If Op0 is signed non-negative, the GEP is increasing monotonically and 417 // can be de-composed. 418 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 419 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 420 ConstantInt::get(Index->getType(), 0)); 421 } 422 return Result; 423 } 424 425 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 426 // Variable } where Coefficient * Variable. The sum of the constant offset and 427 // pairs equals \p V. 428 static Decomposition decompose(Value *V, 429 SmallVectorImpl<ConditionTy> &Preconditions, 430 bool IsSigned, const DataLayout &DL) { 431 432 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 433 bool IsSignedB) { 434 auto ResA = decompose(A, Preconditions, IsSigned, DL); 435 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 436 ResA.add(ResB); 437 return ResA; 438 }; 439 440 // Decompose \p V used with a signed predicate. 441 if (IsSigned) { 442 if (auto *CI = dyn_cast<ConstantInt>(V)) { 443 if (canUseSExt(CI)) 444 return CI->getSExtValue(); 445 } 446 Value *Op0; 447 Value *Op1; 448 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 449 return MergeResults(Op0, Op1, IsSigned); 450 451 ConstantInt *CI; 452 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 453 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 454 Result.mul(CI->getSExtValue()); 455 return Result; 456 } 457 458 return V; 459 } 460 461 if (auto *CI = dyn_cast<ConstantInt>(V)) { 462 if (CI->uge(MaxConstraintValue)) 463 return V; 464 return int64_t(CI->getZExtValue()); 465 } 466 467 if (auto *GEP = dyn_cast<GEPOperator>(V)) 468 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 469 470 Value *Op0; 471 bool IsKnownNonNegative = false; 472 if (match(V, m_ZExt(m_Value(Op0)))) { 473 IsKnownNonNegative = true; 474 V = Op0; 475 } 476 477 Value *Op1; 478 ConstantInt *CI; 479 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 480 return MergeResults(Op0, Op1, IsSigned); 481 } 482 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 483 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 484 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 485 ConstantInt::get(Op0->getType(), 0)); 486 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 487 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 488 ConstantInt::get(Op1->getType(), 0)); 489 490 return MergeResults(Op0, Op1, IsSigned); 491 } 492 493 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 494 canUseSExt(CI)) { 495 Preconditions.emplace_back( 496 CmpInst::ICMP_UGE, Op0, 497 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 498 return MergeResults(Op0, CI, true); 499 } 500 501 // Decompose or as an add if there are no common bits between the operands. 502 if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && 503 haveNoCommonBitsSet(Op0, CI, DL)) { 504 return MergeResults(Op0, CI, IsSigned); 505 } 506 507 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 508 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 509 return {V, IsKnownNonNegative}; 510 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 511 Result.mul(int64_t{1} << CI->getSExtValue()); 512 return Result; 513 } 514 515 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 516 (!CI->isNegative())) { 517 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 518 Result.mul(CI->getSExtValue()); 519 return Result; 520 } 521 522 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 523 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 524 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 525 return {0, {{1, Op0}, {-1, Op1}}}; 526 527 return {V, IsKnownNonNegative}; 528 } 529 530 ConstraintTy 531 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 532 SmallVectorImpl<Value *> &NewVariables) const { 533 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 534 bool IsEq = false; 535 bool IsNe = false; 536 537 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 538 switch (Pred) { 539 case CmpInst::ICMP_UGT: 540 case CmpInst::ICMP_UGE: 541 case CmpInst::ICMP_SGT: 542 case CmpInst::ICMP_SGE: { 543 Pred = CmpInst::getSwappedPredicate(Pred); 544 std::swap(Op0, Op1); 545 break; 546 } 547 case CmpInst::ICMP_EQ: 548 if (match(Op1, m_Zero())) { 549 Pred = CmpInst::ICMP_ULE; 550 } else { 551 IsEq = true; 552 Pred = CmpInst::ICMP_ULE; 553 } 554 break; 555 case CmpInst::ICMP_NE: 556 if (match(Op1, m_Zero())) { 557 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 558 std::swap(Op0, Op1); 559 } else { 560 IsNe = true; 561 Pred = CmpInst::ICMP_ULE; 562 } 563 break; 564 default: 565 break; 566 } 567 568 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 569 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 570 return {}; 571 572 SmallVector<ConditionTy, 4> Preconditions; 573 bool IsSigned = CmpInst::isSigned(Pred); 574 auto &Value2Index = getValue2Index(IsSigned); 575 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 576 Preconditions, IsSigned, DL); 577 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 578 Preconditions, IsSigned, DL); 579 int64_t Offset1 = ADec.Offset; 580 int64_t Offset2 = BDec.Offset; 581 Offset1 *= -1; 582 583 auto &VariablesA = ADec.Vars; 584 auto &VariablesB = BDec.Vars; 585 586 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 587 // new entry to NewVariables. 588 DenseMap<Value *, unsigned> NewIndexMap; 589 auto GetOrAddIndex = [&Value2Index, &NewVariables, 590 &NewIndexMap](Value *V) -> unsigned { 591 auto V2I = Value2Index.find(V); 592 if (V2I != Value2Index.end()) 593 return V2I->second; 594 auto Insert = 595 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 596 if (Insert.second) 597 NewVariables.push_back(V); 598 return Insert.first->second; 599 }; 600 601 // Make sure all variables have entries in Value2Index or NewVariables. 602 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 603 GetOrAddIndex(KV.Variable); 604 605 // Build result constraint, by first adding all coefficients from A and then 606 // subtracting all coefficients from B. 607 ConstraintTy Res( 608 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 609 IsSigned, IsEq, IsNe); 610 // Collect variables that are known to be positive in all uses in the 611 // constraint. 612 DenseMap<Value *, bool> KnownNonNegativeVariables; 613 auto &R = Res.Coefficients; 614 for (const auto &KV : VariablesA) { 615 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 616 auto I = 617 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 618 I.first->second &= KV.IsKnownNonNegative; 619 } 620 621 for (const auto &KV : VariablesB) { 622 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 623 R[GetOrAddIndex(KV.Variable)])) 624 return {}; 625 auto I = 626 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 627 I.first->second &= KV.IsKnownNonNegative; 628 } 629 630 int64_t OffsetSum; 631 if (AddOverflow(Offset1, Offset2, OffsetSum)) 632 return {}; 633 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 634 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 635 return {}; 636 R[0] = OffsetSum; 637 Res.Preconditions = std::move(Preconditions); 638 639 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 640 // variables. 641 while (!NewVariables.empty()) { 642 int64_t Last = R.back(); 643 if (Last != 0) 644 break; 645 R.pop_back(); 646 Value *RemovedV = NewVariables.pop_back_val(); 647 NewIndexMap.erase(RemovedV); 648 } 649 650 // Add extra constraints for variables that are known positive. 651 for (auto &KV : KnownNonNegativeVariables) { 652 if (!KV.second || 653 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 654 continue; 655 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 656 C[GetOrAddIndex(KV.first)] = -1; 657 Res.ExtraInfo.push_back(C); 658 } 659 return Res; 660 } 661 662 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 663 Value *Op0, 664 Value *Op1) const { 665 // If both operands are known to be non-negative, change signed predicates to 666 // unsigned ones. This increases the reasoning effectiveness in combination 667 // with the signed <-> unsigned transfer logic. 668 if (CmpInst::isSigned(Pred) && 669 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 670 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 671 Pred = CmpInst::getUnsignedPredicate(Pred); 672 673 SmallVector<Value *> NewVariables; 674 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 675 if (!NewVariables.empty()) 676 return {}; 677 return R; 678 } 679 680 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 681 return Coefficients.size() > 0 && 682 all_of(Preconditions, [&Info](const ConditionTy &C) { 683 return Info.doesHold(C.Pred, C.Op0, C.Op1); 684 }); 685 } 686 687 std::optional<bool> 688 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 689 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 690 691 if (IsEq || IsNe) { 692 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 693 bool IsNegatedOrEqualImplied = 694 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 695 696 // In order to check that `%a == %b` is true (equality), both conditions `%a 697 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 698 // is true), we return true if they both hold, false in the other cases. 699 if (IsConditionImplied && IsNegatedOrEqualImplied) 700 return IsEq; 701 702 auto Negated = ConstraintSystem::negate(Coefficients); 703 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 704 705 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 706 bool IsStrictLessThanImplied = 707 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 708 709 // In order to check that `%a != %b` is true (non-equality), either 710 // condition `%a > %b` or `%a < %b` must hold true. When checking for 711 // non-equality (`IsNe` is true), we return true if one of the two holds, 712 // false in the other cases. 713 if (IsNegatedImplied || IsStrictLessThanImplied) 714 return IsNe; 715 716 return std::nullopt; 717 } 718 719 if (IsConditionImplied) 720 return true; 721 722 auto Negated = ConstraintSystem::negate(Coefficients); 723 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 724 if (IsNegatedImplied) 725 return false; 726 727 // Neither the condition nor its negated holds, did not prove anything. 728 return std::nullopt; 729 } 730 731 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 732 Value *B) const { 733 auto R = getConstraintForSolving(Pred, A, B); 734 return R.isValid(*this) && 735 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 736 } 737 738 void ConstraintInfo::transferToOtherSystem( 739 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 740 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 741 // Check if we can combine facts from the signed and unsigned systems to 742 // derive additional facts. 743 if (!A->getType()->isIntegerTy()) 744 return; 745 // FIXME: This currently depends on the order we add facts. Ideally we 746 // would first add all known facts and only then try to add additional 747 // facts. 748 switch (Pred) { 749 default: 750 break; 751 case CmpInst::ICMP_ULT: 752 case CmpInst::ICMP_ULE: 753 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B. 754 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 755 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 756 NumOut, DFSInStack); 757 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 758 DFSInStack); 759 } 760 break; 761 case CmpInst::ICMP_UGE: 762 case CmpInst::ICMP_UGT: 763 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B. 764 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) { 765 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn, 766 NumOut, DFSInStack); 767 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 768 DFSInStack); 769 } 770 break; 771 case CmpInst::ICMP_SLT: 772 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 773 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 774 break; 775 case CmpInst::ICMP_SGT: { 776 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 777 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 778 NumOut, DFSInStack); 779 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) 780 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 781 782 break; 783 } 784 case CmpInst::ICMP_SGE: 785 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 786 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 787 } 788 break; 789 } 790 } 791 792 #ifndef NDEBUG 793 794 static void dumpConstraint(ArrayRef<int64_t> C, 795 const DenseMap<Value *, unsigned> &Value2Index) { 796 ConstraintSystem CS(Value2Index); 797 CS.addVariableRowFill(C); 798 CS.dump(); 799 } 800 #endif 801 802 void State::addInfoFor(BasicBlock &BB) { 803 // True as long as long as the current instruction is guaranteed to execute. 804 bool GuaranteedToExecute = true; 805 // Queue conditions and assumes. 806 for (Instruction &I : BB) { 807 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 808 for (Use &U : Cmp->uses()) { 809 auto *UserI = getContextInstForUse(U); 810 auto *DTN = DT.getNode(UserI->getParent()); 811 if (!DTN) 812 continue; 813 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 814 } 815 continue; 816 } 817 818 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 819 WorkList.push_back( 820 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 821 continue; 822 } 823 824 if (isa<MinMaxIntrinsic>(&I)) { 825 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 826 continue; 827 } 828 829 Value *A, *B; 830 CmpInst::Predicate Pred; 831 // For now, just handle assumes with a single compare as condition. 832 if (match(&I, m_Intrinsic<Intrinsic::assume>( 833 m_ICmp(Pred, m_Value(A), m_Value(B))))) { 834 if (GuaranteedToExecute) { 835 // The assume is guaranteed to execute when BB is entered, hence Cond 836 // holds on entry to BB. 837 WorkList.emplace_back(FactOrCheck::getConditionFact( 838 DT.getNode(I.getParent()), Pred, A, B)); 839 } else { 840 WorkList.emplace_back( 841 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 842 } 843 } 844 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 845 } 846 847 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 848 for (auto &Case : Switch->cases()) { 849 BasicBlock *Succ = Case.getCaseSuccessor(); 850 Value *V = Case.getCaseValue(); 851 if (!canAddSuccessor(BB, Succ)) 852 continue; 853 WorkList.emplace_back(FactOrCheck::getConditionFact( 854 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 855 } 856 return; 857 } 858 859 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 860 if (!Br || !Br->isConditional()) 861 return; 862 863 Value *Cond = Br->getCondition(); 864 865 // If the condition is a chain of ORs/AND and the successor only has the 866 // current block as predecessor, queue conditions for the successor. 867 Value *Op0, *Op1; 868 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 869 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 870 bool IsOr = match(Cond, m_LogicalOr()); 871 bool IsAnd = match(Cond, m_LogicalAnd()); 872 // If there's a select that matches both AND and OR, we need to commit to 873 // one of the options. Arbitrarily pick OR. 874 if (IsOr && IsAnd) 875 IsAnd = false; 876 877 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 878 if (canAddSuccessor(BB, Successor)) { 879 SmallVector<Value *> CondWorkList; 880 SmallPtrSet<Value *, 8> SeenCond; 881 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 882 if (SeenCond.insert(V).second) 883 CondWorkList.push_back(V); 884 }; 885 QueueValue(Op1); 886 QueueValue(Op0); 887 while (!CondWorkList.empty()) { 888 Value *Cur = CondWorkList.pop_back_val(); 889 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 890 WorkList.emplace_back(FactOrCheck::getConditionFact( 891 DT.getNode(Successor), 892 IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate()) 893 : Cmp->getPredicate(), 894 Cmp->getOperand(0), Cmp->getOperand(1))); 895 continue; 896 } 897 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 898 QueueValue(Op1); 899 QueueValue(Op0); 900 continue; 901 } 902 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 903 QueueValue(Op1); 904 QueueValue(Op0); 905 continue; 906 } 907 } 908 } 909 return; 910 } 911 912 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 913 if (!CmpI) 914 return; 915 if (canAddSuccessor(BB, Br->getSuccessor(0))) 916 WorkList.emplace_back(FactOrCheck::getConditionFact( 917 DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(), 918 CmpI->getOperand(0), CmpI->getOperand(1))); 919 if (canAddSuccessor(BB, Br->getSuccessor(1))) 920 WorkList.emplace_back(FactOrCheck::getConditionFact( 921 DT.getNode(Br->getSuccessor(1)), 922 CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0), 923 CmpI->getOperand(1))); 924 } 925 926 namespace { 927 /// Helper to keep track of a condition and if it should be treated as negated 928 /// for reproducer construction. 929 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 930 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 931 struct ReproducerEntry { 932 ICmpInst::Predicate Pred; 933 Value *LHS; 934 Value *RHS; 935 936 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 937 : Pred(Pred), LHS(LHS), RHS(RHS) {} 938 }; 939 } // namespace 940 941 /// Helper function to generate a reproducer function for simplifying \p Cond. 942 /// The reproducer function contains a series of @llvm.assume calls, one for 943 /// each condition in \p Stack. For each condition, the operand instruction are 944 /// cloned until we reach operands that have an entry in \p Value2Index. Those 945 /// will then be added as function arguments. \p DT is used to order cloned 946 /// instructions. The reproducer function will get added to \p M, if it is 947 /// non-null. Otherwise no reproducer function is generated. 948 static void generateReproducer(CmpInst *Cond, Module *M, 949 ArrayRef<ReproducerEntry> Stack, 950 ConstraintInfo &Info, DominatorTree &DT) { 951 if (!M) 952 return; 953 954 LLVMContext &Ctx = Cond->getContext(); 955 956 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 957 958 ValueToValueMapTy Old2New; 959 SmallVector<Value *> Args; 960 SmallPtrSet<Value *, 8> Seen; 961 // Traverse Cond and its operands recursively until we reach a value that's in 962 // Value2Index or not an instruction, or not a operation that 963 // ConstraintElimination can decompose. Such values will be considered as 964 // external inputs to the reproducer, they are collected and added as function 965 // arguments later. 966 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 967 auto &Value2Index = Info.getValue2Index(IsSigned); 968 SmallVector<Value *, 4> WorkList(Ops); 969 while (!WorkList.empty()) { 970 Value *V = WorkList.pop_back_val(); 971 if (!Seen.insert(V).second) 972 continue; 973 if (Old2New.find(V) != Old2New.end()) 974 continue; 975 if (isa<Constant>(V)) 976 continue; 977 978 auto *I = dyn_cast<Instruction>(V); 979 if (Value2Index.contains(V) || !I || 980 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 981 Old2New[V] = V; 982 Args.push_back(V); 983 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 984 } else { 985 append_range(WorkList, I->operands()); 986 } 987 } 988 }; 989 990 for (auto &Entry : Stack) 991 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 992 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 993 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 994 995 SmallVector<Type *> ParamTys; 996 for (auto *P : Args) 997 ParamTys.push_back(P->getType()); 998 999 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 1000 /*isVarArg=*/false); 1001 Function *F = Function::Create(FTy, Function::ExternalLinkage, 1002 Cond->getModule()->getName() + 1003 Cond->getFunction()->getName() + "repro", 1004 M); 1005 // Add arguments to the reproducer function for each external value collected. 1006 for (unsigned I = 0; I < Args.size(); ++I) { 1007 F->getArg(I)->setName(Args[I]->getName()); 1008 Old2New[Args[I]] = F->getArg(I); 1009 } 1010 1011 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 1012 IRBuilder<> Builder(Entry); 1013 Builder.CreateRet(Builder.getTrue()); 1014 Builder.SetInsertPoint(Entry->getTerminator()); 1015 1016 // Clone instructions in \p Ops and their operands recursively until reaching 1017 // an value in Value2Index (external input to the reproducer). Update Old2New 1018 // mapping for the original and cloned instructions. Sort instructions to 1019 // clone by dominance, then insert the cloned instructions in the function. 1020 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1021 SmallVector<Value *, 4> WorkList(Ops); 1022 SmallVector<Instruction *> ToClone; 1023 auto &Value2Index = Info.getValue2Index(IsSigned); 1024 while (!WorkList.empty()) { 1025 Value *V = WorkList.pop_back_val(); 1026 if (Old2New.find(V) != Old2New.end()) 1027 continue; 1028 1029 auto *I = dyn_cast<Instruction>(V); 1030 if (!Value2Index.contains(V) && I) { 1031 Old2New[V] = nullptr; 1032 ToClone.push_back(I); 1033 append_range(WorkList, I->operands()); 1034 } 1035 } 1036 1037 sort(ToClone, 1038 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 1039 for (Instruction *I : ToClone) { 1040 Instruction *Cloned = I->clone(); 1041 Old2New[I] = Cloned; 1042 Old2New[I]->setName(I->getName()); 1043 Cloned->insertBefore(&*Builder.GetInsertPoint()); 1044 Cloned->dropUnknownNonDebugMetadata(); 1045 Cloned->setDebugLoc({}); 1046 } 1047 }; 1048 1049 // Materialize the assumptions for the reproducer using the entries in Stack. 1050 // That is, first clone the operands of the condition recursively until we 1051 // reach an external input to the reproducer and add them to the reproducer 1052 // function. Then add an ICmp for the condition (with the inverse predicate if 1053 // the entry is negated) and an assert using the ICmp. 1054 for (auto &Entry : Stack) { 1055 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1056 continue; 1057 1058 LLVM_DEBUG( 1059 dbgs() << " Materializing assumption icmp " << Entry.Pred << ' '; 1060 Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", "; 1061 Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n"); 1062 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1063 1064 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1065 Builder.CreateAssumption(Cmp); 1066 } 1067 1068 // Finally, clone the condition to reproduce and remap instruction operands in 1069 // the reproducer using Old2New. 1070 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1071 Entry->getTerminator()->setOperand(0, Cond); 1072 remapInstructionsInBlocks({Entry}, Old2New); 1073 1074 assert(!verifyFunction(*F, &dbgs())); 1075 } 1076 1077 static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info, 1078 unsigned NumIn, unsigned NumOut, 1079 Instruction *ContextInst) { 1080 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 1081 1082 CmpInst::Predicate Pred = Cmp->getPredicate(); 1083 Value *A = Cmp->getOperand(0); 1084 Value *B = Cmp->getOperand(1); 1085 1086 auto R = Info.getConstraintForSolving(Pred, A, B); 1087 if (R.empty() || !R.isValid(Info)){ 1088 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1089 return std::nullopt; 1090 } 1091 1092 auto &CSToUse = Info.getCS(R.IsSigned); 1093 1094 // If there was extra information collected during decomposition, apply 1095 // it now and remove it immediately once we are done with reasoning 1096 // about the constraint. 1097 for (auto &Row : R.ExtraInfo) 1098 CSToUse.addVariableRow(Row); 1099 auto InfoRestorer = make_scope_exit([&]() { 1100 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1101 CSToUse.popLastConstraint(); 1102 }); 1103 1104 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1105 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1106 return std::nullopt; 1107 1108 LLVM_DEBUG({ 1109 if (*ImpliedCondition) { 1110 dbgs() << "Condition " << *Cmp; 1111 } else { 1112 auto InversePred = Cmp->getInversePredicate(); 1113 dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " " 1114 << *A << ", " << *B; 1115 } 1116 dbgs() << " implied by dominating constraints\n"; 1117 CSToUse.dump(); 1118 }); 1119 return ImpliedCondition; 1120 } 1121 1122 return std::nullopt; 1123 } 1124 1125 static bool checkAndReplaceCondition( 1126 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1127 Instruction *ContextInst, Module *ReproducerModule, 1128 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1129 SmallVectorImpl<Instruction *> &ToRemove) { 1130 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1131 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1132 Constant *ConstantC = ConstantInt::getBool( 1133 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1134 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1135 ContextInst](Use &U) { 1136 auto *UserI = getContextInstForUse(U); 1137 auto *DTN = DT.getNode(UserI->getParent()); 1138 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1139 return false; 1140 if (UserI->getParent() == ContextInst->getParent() && 1141 UserI->comesBefore(ContextInst)) 1142 return false; 1143 1144 // Conditions in an assume trivially simplify to true. Skip uses 1145 // in assume calls to not destroy the available information. 1146 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1147 return !II || II->getIntrinsicID() != Intrinsic::assume; 1148 }); 1149 NumCondsRemoved++; 1150 if (Cmp->use_empty()) 1151 ToRemove.push_back(Cmp); 1152 return true; 1153 }; 1154 1155 if (auto ImpliedCondition = 1156 checkCondition(Cmp, Info, NumIn, NumOut, ContextInst)) 1157 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1158 return false; 1159 } 1160 1161 static void 1162 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1163 Module *ReproducerModule, 1164 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1165 SmallVectorImpl<StackEntry> &DFSInStack) { 1166 Info.popLastConstraint(E.IsSigned); 1167 // Remove variables in the system that went out of scope. 1168 auto &Mapping = Info.getValue2Index(E.IsSigned); 1169 for (Value *V : E.ValuesToRelease) 1170 Mapping.erase(V); 1171 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1172 DFSInStack.pop_back(); 1173 if (ReproducerModule) 1174 ReproducerCondStack.pop_back(); 1175 } 1176 1177 /// Check if the first condition for an AND implies the second. 1178 static bool checkAndSecondOpImpliedByFirst( 1179 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1180 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1181 SmallVectorImpl<StackEntry> &DFSInStack) { 1182 CmpInst::Predicate Pred; 1183 Value *A, *B; 1184 Instruction *And = CB.getContextInst(); 1185 if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1186 return false; 1187 1188 // Optimistically add fact from first condition. 1189 unsigned OldSize = DFSInStack.size(); 1190 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1191 if (OldSize == DFSInStack.size()) 1192 return false; 1193 1194 bool Changed = false; 1195 // Check if the second condition can be simplified now. 1196 if (auto ImpliedCondition = 1197 checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn, 1198 CB.NumOut, CB.getContextInst())) { 1199 And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition)); 1200 Changed = true; 1201 } 1202 1203 // Remove entries again. 1204 while (OldSize < DFSInStack.size()) { 1205 StackEntry E = DFSInStack.back(); 1206 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1207 DFSInStack); 1208 } 1209 return Changed; 1210 } 1211 1212 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1213 unsigned NumIn, unsigned NumOut, 1214 SmallVectorImpl<StackEntry> &DFSInStack) { 1215 // If the constraint has a pre-condition, skip the constraint if it does not 1216 // hold. 1217 SmallVector<Value *> NewVariables; 1218 auto R = getConstraint(Pred, A, B, NewVariables); 1219 1220 // TODO: Support non-equality for facts as well. 1221 if (!R.isValid(*this) || R.isNe()) 1222 return; 1223 1224 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; 1225 A->printAsOperand(dbgs(), false); dbgs() << ", "; 1226 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 1227 bool Added = false; 1228 auto &CSToUse = getCS(R.IsSigned); 1229 if (R.Coefficients.empty()) 1230 return; 1231 1232 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1233 1234 // If R has been added to the system, add the new variables and queue it for 1235 // removal once it goes out-of-scope. 1236 if (Added) { 1237 SmallVector<Value *, 2> ValuesToRelease; 1238 auto &Value2Index = getValue2Index(R.IsSigned); 1239 for (Value *V : NewVariables) { 1240 Value2Index.insert({V, Value2Index.size() + 1}); 1241 ValuesToRelease.push_back(V); 1242 } 1243 1244 LLVM_DEBUG({ 1245 dbgs() << " constraint: "; 1246 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1247 dbgs() << "\n"; 1248 }); 1249 1250 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1251 std::move(ValuesToRelease)); 1252 1253 if (R.isEq()) { 1254 // Also add the inverted constraint for equality constraints. 1255 for (auto &Coeff : R.Coefficients) 1256 Coeff *= -1; 1257 CSToUse.addVariableRowFill(R.Coefficients); 1258 1259 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1260 SmallVector<Value *, 2>()); 1261 } 1262 } 1263 } 1264 1265 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1266 SmallVectorImpl<Instruction *> &ToRemove) { 1267 bool Changed = false; 1268 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1269 Value *Sub = nullptr; 1270 for (User *U : make_early_inc_range(II->users())) { 1271 if (match(U, m_ExtractValue<0>(m_Value()))) { 1272 if (!Sub) 1273 Sub = Builder.CreateSub(A, B); 1274 U->replaceAllUsesWith(Sub); 1275 Changed = true; 1276 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1277 U->replaceAllUsesWith(Builder.getFalse()); 1278 Changed = true; 1279 } else 1280 continue; 1281 1282 if (U->use_empty()) { 1283 auto *I = cast<Instruction>(U); 1284 ToRemove.push_back(I); 1285 I->setOperand(0, PoisonValue::get(II->getType())); 1286 Changed = true; 1287 } 1288 } 1289 1290 if (II->use_empty()) { 1291 II->eraseFromParent(); 1292 Changed = true; 1293 } 1294 return Changed; 1295 } 1296 1297 static bool 1298 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1299 SmallVectorImpl<Instruction *> &ToRemove) { 1300 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1301 ConstraintInfo &Info) { 1302 auto R = Info.getConstraintForSolving(Pred, A, B); 1303 if (R.size() < 2 || !R.isValid(Info)) 1304 return false; 1305 1306 auto &CSToUse = Info.getCS(R.IsSigned); 1307 return CSToUse.isConditionImplied(R.Coefficients); 1308 }; 1309 1310 bool Changed = false; 1311 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1312 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1313 // can be simplified to a regular sub. 1314 Value *A = II->getArgOperand(0); 1315 Value *B = II->getArgOperand(1); 1316 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1317 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1318 ConstantInt::get(A->getType(), 0), Info)) 1319 return false; 1320 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1321 } 1322 return Changed; 1323 } 1324 1325 static bool eliminateConstraints(Function &F, DominatorTree &DT, 1326 OptimizationRemarkEmitter &ORE) { 1327 bool Changed = false; 1328 DT.updateDFSNumbers(); 1329 SmallVector<Value *> FunctionArgs; 1330 for (Value &Arg : F.args()) 1331 FunctionArgs.push_back(&Arg); 1332 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1333 State S(DT); 1334 std::unique_ptr<Module> ReproducerModule( 1335 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1336 1337 // First, collect conditions implied by branches and blocks with their 1338 // Dominator DFS in and out numbers. 1339 for (BasicBlock &BB : F) { 1340 if (!DT.getNode(&BB)) 1341 continue; 1342 S.addInfoFor(BB); 1343 } 1344 1345 // Next, sort worklist by dominance, so that dominating conditions to check 1346 // and facts come before conditions and facts dominated by them. If a 1347 // condition to check and a fact have the same numbers, conditional facts come 1348 // first. Assume facts and checks are ordered according to their relative 1349 // order in the containing basic block. Also make sure conditions with 1350 // constant operands come before conditions without constant operands. This 1351 // increases the effectiveness of the current signed <-> unsigned fact 1352 // transfer logic. 1353 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1354 auto HasNoConstOp = [](const FactOrCheck &B) { 1355 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 1356 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 1357 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1358 }; 1359 // If both entries have the same In numbers, conditional facts come first. 1360 // Otherwise use the relative order in the basic block. 1361 if (A.NumIn == B.NumIn) { 1362 if (A.isConditionFact() && B.isConditionFact()) { 1363 bool NoConstOpA = HasNoConstOp(A); 1364 bool NoConstOpB = HasNoConstOp(B); 1365 return NoConstOpA < NoConstOpB; 1366 } 1367 if (A.isConditionFact()) 1368 return true; 1369 if (B.isConditionFact()) 1370 return false; 1371 auto *InstA = A.getContextInst(); 1372 auto *InstB = B.getContextInst(); 1373 return InstA->comesBefore(InstB); 1374 } 1375 return A.NumIn < B.NumIn; 1376 }); 1377 1378 SmallVector<Instruction *> ToRemove; 1379 1380 // Finally, process ordered worklist and eliminate implied conditions. 1381 SmallVector<StackEntry, 16> DFSInStack; 1382 SmallVector<ReproducerEntry> ReproducerCondStack; 1383 for (FactOrCheck &CB : S.WorkList) { 1384 // First, pop entries from the stack that are out-of-scope for CB. Remove 1385 // the corresponding entry from the constraint system. 1386 while (!DFSInStack.empty()) { 1387 auto &E = DFSInStack.back(); 1388 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1389 << "\n"); 1390 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1391 assert(E.NumIn <= CB.NumIn); 1392 if (CB.NumOut <= E.NumOut) 1393 break; 1394 LLVM_DEBUG({ 1395 dbgs() << "Removing "; 1396 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1397 Info.getValue2Index(E.IsSigned)); 1398 dbgs() << "\n"; 1399 }); 1400 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1401 DFSInStack); 1402 } 1403 1404 LLVM_DEBUG(dbgs() << "Processing "); 1405 1406 // For a block, check if any CmpInsts become known based on the current set 1407 // of constraints. 1408 if (CB.isCheck()) { 1409 Instruction *Inst = CB.getInstructionToSimplify(); 1410 if (!Inst) 1411 continue; 1412 LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 1413 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1414 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1415 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1416 bool Simplified = checkAndReplaceCondition( 1417 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1418 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1419 if (!Simplified && match(CB.getContextInst(), 1420 m_LogicalAnd(m_Value(), m_Specific(Inst)))) { 1421 Simplified = 1422 checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(), 1423 ReproducerCondStack, DFSInStack); 1424 } 1425 Changed |= Simplified; 1426 } 1427 continue; 1428 } 1429 1430 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1431 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1432 LLVM_DEBUG( 1433 dbgs() 1434 << "Skip adding constraint because system has too many rows.\n"); 1435 return; 1436 } 1437 1438 LLVM_DEBUG({ 1439 dbgs() << "Processing fact to add to the system: " << Pred << " "; 1440 A->printAsOperand(dbgs()); 1441 dbgs() << ", "; 1442 B->printAsOperand(dbgs(), false); 1443 dbgs() << "\n"; 1444 }); 1445 1446 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1447 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1448 ReproducerCondStack.emplace_back(Pred, A, B); 1449 1450 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1451 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1452 // Add dummy entries to ReproducerCondStack to keep it in sync with 1453 // DFSInStack. 1454 for (unsigned I = 0, 1455 E = (DFSInStack.size() - ReproducerCondStack.size()); 1456 I < E; ++I) { 1457 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1458 nullptr, nullptr); 1459 } 1460 } 1461 }; 1462 1463 ICmpInst::Predicate Pred; 1464 if (!CB.isConditionFact()) { 1465 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1466 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1467 AddFact(Pred, MinMax, MinMax->getLHS()); 1468 AddFact(Pred, MinMax, MinMax->getRHS()); 1469 continue; 1470 } 1471 } 1472 1473 Value *A = nullptr, *B = nullptr; 1474 if (CB.isConditionFact()) { 1475 Pred = CB.Cond.Pred; 1476 A = CB.Cond.Op0; 1477 B = CB.Cond.Op1; 1478 } else { 1479 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 1480 m_ICmp(Pred, m_Value(A), m_Value(B)))); 1481 (void)Matched; 1482 assert(Matched && "Must have an assume intrinsic with a icmp operand"); 1483 } 1484 AddFact(Pred, A, B); 1485 } 1486 1487 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1488 std::string S; 1489 raw_string_ostream StringS(S); 1490 ReproducerModule->print(StringS, nullptr); 1491 StringS.flush(); 1492 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1493 Rem << ore::NV("module") << S; 1494 ORE.emit(Rem); 1495 } 1496 1497 #ifndef NDEBUG 1498 unsigned SignedEntries = 1499 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1500 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1501 "updates to CS and DFSInStack are out of sync"); 1502 assert(Info.getCS(true).size() == SignedEntries && 1503 "updates to CS and DFSInStack are out of sync"); 1504 #endif 1505 1506 for (Instruction *I : ToRemove) 1507 I->eraseFromParent(); 1508 return Changed; 1509 } 1510 1511 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1512 FunctionAnalysisManager &AM) { 1513 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1514 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1515 if (!eliminateConstraints(F, DT, ORE)) 1516 return PreservedAnalyses::all(); 1517 1518 PreservedAnalyses PA; 1519 PA.preserve<DominatorTreeAnalysis>(); 1520 PA.preserveSet<CFGAnalyses>(); 1521 return PA; 1522 } 1523