xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 1f1f037ed3101d3074f65faceca81218c88a505c)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/DebugCounter.h"
30 #include "llvm/Transforms/Scalar.h"
31 
32 #include <string>
33 
34 using namespace llvm;
35 using namespace PatternMatch;
36 
37 #define DEBUG_TYPE "constraint-elimination"
38 
39 STATISTIC(NumCondsRemoved, "Number of instructions removed");
40 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
41               "Controls which conditions are eliminated");
42 
43 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
44 
45 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
46 // sum of the pairs equals \p V.  The first pair is the constant-factor and X
47 // must be nullptr. If the expression cannot be decomposed, returns an empty
48 // vector.
49 static SmallVector<std::pair<int64_t, Value *>, 4> decompose(Value *V) {
50   if (auto *CI = dyn_cast<ConstantInt>(V)) {
51     if (CI->isNegative() || CI->uge(MaxConstraintValue))
52       return {};
53     return {{CI->getSExtValue(), nullptr}};
54   }
55   auto *GEP = dyn_cast<GetElementPtrInst>(V);
56   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
57     if (isa<ConstantInt>(GEP->getOperand(GEP->getNumOperands() - 1))) {
58       return {{cast<ConstantInt>(GEP->getOperand(GEP->getNumOperands() - 1))
59                    ->getSExtValue(),
60                nullptr},
61               {1, GEP->getPointerOperand()}};
62     }
63     Value *Op0;
64     ConstantInt *CI;
65     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
66               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))))
67       return {{0, nullptr},
68               {1, GEP->getPointerOperand()},
69               {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
70     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
71               m_ZExt(m_NUWShl(m_Value(Op0), m_ConstantInt(CI)))))
72       return {{0, nullptr},
73               {1, GEP->getPointerOperand()},
74               {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
75 
76     return {{0, nullptr},
77             {1, GEP->getPointerOperand()},
78             {1, GEP->getOperand(GEP->getNumOperands() - 1)}};
79   }
80 
81   Value *Op0;
82   if (match(V, m_ZExt(m_Value(Op0))))
83     V = Op0;
84 
85   Value *Op1;
86   ConstantInt *CI;
87   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))))
88     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
89   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
90     return {{0, nullptr}, {1, Op0}, {1, Op1}};
91 
92   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))))
93     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
94   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
95     return {{0, nullptr}, {1, Op0}, {1, Op1}};
96 
97   return {{0, nullptr}, {1, V}};
98 }
99 
100 struct ConstraintTy {
101   SmallVector<int64_t, 8> Coefficients;
102 
103   ConstraintTy(SmallVector<int64_t, 8> Coefficients)
104       : Coefficients(Coefficients) {}
105 
106   unsigned size() const { return Coefficients.size(); }
107 };
108 
109 /// Turn a condition \p CmpI into a vector of constraints, using indices from \p
110 /// Value2Index. Additional indices for newly discovered values are added to \p
111 /// NewIndices.
112 static SmallVector<ConstraintTy, 4>
113 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
114               const DenseMap<Value *, unsigned> &Value2Index,
115               DenseMap<Value *, unsigned> &NewIndices) {
116   int64_t Offset1 = 0;
117   int64_t Offset2 = 0;
118 
119   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
120   // new entry to NewIndices.
121   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
122     auto V2I = Value2Index.find(V);
123     if (V2I != Value2Index.end())
124       return V2I->second;
125     auto NewI = NewIndices.find(V);
126     if (NewI != NewIndices.end())
127       return NewI->second;
128     auto Insert =
129         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
130     return Insert.first->second;
131   };
132 
133   if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE)
134     return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0,
135                          Value2Index, NewIndices);
136 
137   if (Pred == CmpInst::ICMP_EQ) {
138     auto A =
139         getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, NewIndices);
140     auto B =
141         getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices);
142     append_range(A, B);
143     return A;
144   }
145 
146   // Only ULE and ULT predicates are supported at the moment.
147   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT)
148     return {};
149 
150   auto ADec = decompose(Op0->stripPointerCasts());
151   auto BDec = decompose(Op1->stripPointerCasts());
152   // Skip if decomposing either of the values failed.
153   if (ADec.empty() || BDec.empty())
154     return {};
155 
156   // Skip trivial constraints without any variables.
157   if (ADec.size() == 1 && BDec.size() == 1)
158     return {};
159 
160   Offset1 = ADec[0].first;
161   Offset2 = BDec[0].first;
162   Offset1 *= -1;
163 
164   // Create iterator ranges that skip the constant-factor.
165   auto VariablesA = make_range(std::next(ADec.begin()), ADec.end());
166   auto VariablesB = make_range(std::next(BDec.begin()), BDec.end());
167 
168   // Make sure all variables have entries in Value2Index or NewIndices.
169   for (const auto &KV :
170        concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
171     GetOrAddIndex(KV.second);
172 
173   // Build result constraint, by first adding all coefficients from A and then
174   // subtracting all coefficients from B.
175   SmallVector<int64_t, 8> R(Value2Index.size() + NewIndices.size() + 1, 0);
176   for (const auto &KV : VariablesA)
177     R[GetOrAddIndex(KV.second)] += KV.first;
178 
179   for (const auto &KV : VariablesB)
180     R[GetOrAddIndex(KV.second)] -= KV.first;
181 
182   R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0);
183   return {R};
184 }
185 
186 static SmallVector<ConstraintTy, 4>
187 getConstraint(CmpInst *Cmp, const DenseMap<Value *, unsigned> &Value2Index,
188               DenseMap<Value *, unsigned> &NewIndices) {
189   return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
190                        Cmp->getOperand(1), Value2Index, NewIndices);
191 }
192 
193 namespace {
194 /// Represents either a condition that holds on entry to a block or a basic
195 /// block, with their respective Dominator DFS in and out numbers.
196 struct ConstraintOrBlock {
197   unsigned NumIn;
198   unsigned NumOut;
199   bool IsBlock;
200   bool Not;
201   union {
202     BasicBlock *BB;
203     CmpInst *Condition;
204   };
205 
206   ConstraintOrBlock(DomTreeNode *DTN)
207       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
208         BB(DTN->getBlock()) {}
209   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
210       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
211         Not(Not), Condition(Condition) {}
212 };
213 
214 struct StackEntry {
215   unsigned NumIn;
216   unsigned NumOut;
217   CmpInst *Condition;
218   bool IsNot;
219 
220   StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot)
221       : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {}
222 };
223 } // namespace
224 
225 #ifndef NDEBUG
226 static void dumpWithNames(ConstraintTy &C,
227                           DenseMap<Value *, unsigned> &Value2Index) {
228   SmallVector<std::string> Names(Value2Index.size(), "");
229   for (auto &KV : Value2Index) {
230     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
231   }
232   ConstraintSystem CS;
233   CS.addVariableRowFill(C.Coefficients);
234   CS.dump(Names);
235 }
236 #endif
237 
238 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
239   bool Changed = false;
240   DT.updateDFSNumbers();
241   ConstraintSystem CS;
242 
243   SmallVector<ConstraintOrBlock, 64> WorkList;
244 
245   // First, collect conditions implied by branches and blocks with their
246   // Dominator DFS in and out numbers.
247   for (BasicBlock &BB : F) {
248     if (!DT.getNode(&BB))
249       continue;
250     WorkList.emplace_back(DT.getNode(&BB));
251 
252     auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
253     if (!Br || !Br->isConditional())
254       continue;
255 
256     // Returns true if we can add a known condition from BB to its successor
257     // block Succ. Each predecessor of Succ can either be BB or be dominated by
258     // Succ (e.g. the case when adding a condition from a pre-header to a loop
259     // header).
260     auto CanAdd = [&BB, &DT](BasicBlock *Succ) {
261       return all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) {
262         return Pred == &BB || DT.dominates(Succ, Pred);
263       });
264     };
265     // If the condition is an OR of 2 compares and the false successor only has
266     // the current block as predecessor, queue both negated conditions for the
267     // false successor.
268     Value *Op0, *Op1;
269     if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
270         match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
271       BasicBlock *FalseSuccessor = Br->getSuccessor(1);
272       if (CanAdd(FalseSuccessor)) {
273         WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0),
274                               true);
275         WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1),
276                               true);
277       }
278       continue;
279     }
280 
281     // If the condition is an AND of 2 compares and the true successor only has
282     // the current block as predecessor, queue both conditions for the true
283     // successor.
284     if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
285         match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
286       BasicBlock *TrueSuccessor = Br->getSuccessor(0);
287       if (CanAdd(TrueSuccessor)) {
288         WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0),
289                               false);
290         WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1),
291                               false);
292       }
293       continue;
294     }
295 
296     auto *CmpI = dyn_cast<CmpInst>(Br->getCondition());
297     if (!CmpI)
298       continue;
299     if (CanAdd(Br->getSuccessor(0)))
300       WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
301     if (CanAdd(Br->getSuccessor(1)))
302       WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
303   }
304 
305   // Next, sort worklist by dominance, so that dominating blocks and conditions
306   // come before blocks and conditions dominated by them. If a block and a
307   // condition have the same numbers, the condition comes before the block, as
308   // it holds on entry to the block.
309   sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
310     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
311   });
312 
313   // Finally, process ordered worklist and eliminate implied conditions.
314   SmallVector<StackEntry, 16> DFSInStack;
315   DenseMap<Value *, unsigned> Value2Index;
316   for (ConstraintOrBlock &CB : WorkList) {
317     // First, pop entries from the stack that are out-of-scope for CB. Remove
318     // the corresponding entry from the constraint system.
319     while (!DFSInStack.empty()) {
320       auto &E = DFSInStack.back();
321       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
322                         << "\n");
323       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
324       assert(E.NumIn <= CB.NumIn);
325       if (CB.NumOut <= E.NumOut)
326         break;
327       LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
328                         << "\n");
329       DFSInStack.pop_back();
330       CS.popLastConstraint();
331     }
332 
333     LLVM_DEBUG({
334       dbgs() << "Processing ";
335       if (CB.IsBlock)
336         dbgs() << *CB.BB;
337       else
338         dbgs() << *CB.Condition;
339       dbgs() << "\n";
340     });
341 
342     // For a block, check if any CmpInsts become known based on the current set
343     // of constraints.
344     if (CB.IsBlock) {
345       for (Instruction &I : *CB.BB) {
346         auto *Cmp = dyn_cast<CmpInst>(&I);
347         if (!Cmp)
348           continue;
349 
350         DenseMap<Value *, unsigned> NewIndices;
351         auto R = getConstraint(Cmp, Value2Index, NewIndices);
352         if (R.size() != 1)
353           continue;
354 
355         // Check if all coefficients of new indices are 0 after building the
356         // constraint. Skip if any of the new indices has a non-null
357         // coefficient.
358         bool HasNewIndex = false;
359         for (unsigned I = 0; I < NewIndices.size(); ++I) {
360           int64_t Last = R[0].Coefficients.pop_back_val();
361           if (Last != 0) {
362             HasNewIndex = true;
363             break;
364           }
365         }
366         if (HasNewIndex || R[0].size() == 1)
367           continue;
368 
369         if (CS.isConditionImplied(R[0].Coefficients)) {
370           if (!DebugCounter::shouldExecute(EliminatedCounter))
371             continue;
372 
373           LLVM_DEBUG(dbgs() << "Condition " << *Cmp
374                             << " implied by dominating constraints\n");
375           LLVM_DEBUG({
376             for (auto &E : reverse(DFSInStack))
377               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
378           });
379           Cmp->replaceAllUsesWith(
380               ConstantInt::getTrue(F.getParent()->getContext()));
381           NumCondsRemoved++;
382           Changed = true;
383         }
384         if (CS.isConditionImplied(
385                 ConstraintSystem::negate(R[0].Coefficients))) {
386           if (!DebugCounter::shouldExecute(EliminatedCounter))
387             continue;
388 
389           LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
390                             << " implied by dominating constraints\n");
391           LLVM_DEBUG({
392             for (auto &E : reverse(DFSInStack))
393               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
394           });
395           Cmp->replaceAllUsesWith(
396               ConstantInt::getFalse(F.getParent()->getContext()));
397           NumCondsRemoved++;
398           Changed = true;
399         }
400       }
401       continue;
402     }
403 
404     // Set up a function to restore the predicate at the end of the scope if it
405     // has been negated. Negate the predicate in-place, if required.
406     auto *CI = dyn_cast<CmpInst>(CB.Condition);
407     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
408       if (CB.Not && CI)
409         CI->setPredicate(CI->getInversePredicate());
410     });
411     if (CB.Not) {
412       if (CI) {
413         CI->setPredicate(CI->getInversePredicate());
414       } else {
415         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
416         continue;
417       }
418     }
419 
420     // Otherwise, add the condition to the system and stack, if we can transform
421     // it into a constraint.
422     DenseMap<Value *, unsigned> NewIndices;
423     auto R = getConstraint(CB.Condition, Value2Index, NewIndices);
424     if (R.empty())
425       continue;
426 
427     for (auto &KV : NewIndices)
428       Value2Index.insert(KV);
429 
430     LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n");
431     bool Added = false;
432     for (auto &C : R) {
433       auto Coeffs = C.Coefficients;
434       LLVM_DEBUG({
435         dbgs() << "  constraint: ";
436         dumpWithNames(C, Value2Index);
437       });
438       Added |= CS.addVariableRowFill(Coeffs);
439       // If R has been added to the system, queue it for removal once it goes
440       // out-of-scope.
441       if (Added)
442         DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not);
443     }
444   }
445 
446   assert(CS.size() == DFSInStack.size() &&
447          "updates to CS and DFSInStack are out of sync");
448   return Changed;
449 }
450 
451 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
452                                                  FunctionAnalysisManager &AM) {
453   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
454   if (!eliminateConstraints(F, DT))
455     return PreservedAnalyses::all();
456 
457   PreservedAnalyses PA;
458   PA.preserve<DominatorTreeAnalysis>();
459   PA.preserve<GlobalsAA>();
460   PA.preserveSet<CFGAnalyses>();
461   return PA;
462 }
463 
464 namespace {
465 
466 class ConstraintElimination : public FunctionPass {
467 public:
468   static char ID;
469 
470   ConstraintElimination() : FunctionPass(ID) {
471     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
472   }
473 
474   bool runOnFunction(Function &F) override {
475     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
476     return eliminateConstraints(F, DT);
477   }
478 
479   void getAnalysisUsage(AnalysisUsage &AU) const override {
480     AU.setPreservesCFG();
481     AU.addRequired<DominatorTreeWrapperPass>();
482     AU.addPreserved<GlobalsAAWrapperPass>();
483     AU.addPreserved<DominatorTreeWrapperPass>();
484   }
485 };
486 
487 } // end anonymous namespace
488 
489 char ConstraintElimination::ID = 0;
490 
491 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
492                       "Constraint Elimination", false, false)
493 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
494 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
495 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
496                     "Constraint Elimination", false, false)
497 
498 FunctionPass *llvm::createConstraintEliminationPass() {
499   return new ConstraintElimination();
500 }
501