1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/DebugCounter.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 44 #include <cmath> 45 #include <optional> 46 #include <string> 47 48 using namespace llvm; 49 using namespace PatternMatch; 50 51 #define DEBUG_TYPE "constraint-elimination" 52 53 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 54 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 55 "Controls which conditions are eliminated"); 56 57 static cl::opt<unsigned> 58 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 59 cl::desc("Maximum number of rows to keep in constraint system")); 60 61 static cl::opt<bool> DumpReproducers( 62 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 63 cl::desc("Dump IR to reproduce successful transformations.")); 64 65 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 66 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 67 68 // A helper to multiply 2 signed integers where overflowing is allowed. 69 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 70 int64_t Result; 71 MulOverflow(A, B, Result); 72 return Result; 73 } 74 75 // A helper to add 2 signed integers where overflowing is allowed. 76 static int64_t addWithOverflow(int64_t A, int64_t B) { 77 int64_t Result; 78 AddOverflow(A, B, Result); 79 return Result; 80 } 81 82 static Instruction *getContextInstForUse(Use &U) { 83 Instruction *UserI = cast<Instruction>(U.getUser()); 84 if (auto *Phi = dyn_cast<PHINode>(UserI)) 85 UserI = Phi->getIncomingBlock(U)->getTerminator(); 86 return UserI; 87 } 88 89 namespace { 90 /// Struct to express a condition of the form %Op0 Pred %Op1. 91 struct ConditionTy { 92 CmpInst::Predicate Pred; 93 Value *Op0; 94 Value *Op1; 95 96 ConditionTy() 97 : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {} 98 ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 99 : Pred(Pred), Op0(Op0), Op1(Op1) {} 100 }; 101 102 /// Represents either 103 /// * a condition that holds on entry to a block (=condition fact) 104 /// * an assume (=assume fact) 105 /// * a use of a compare instruction to simplify. 106 /// It also tracks the Dominator DFS in and out numbers for each entry. 107 struct FactOrCheck { 108 enum class EntryTy { 109 ConditionFact, /// A condition that holds on entry to a block. 110 InstFact, /// A fact that holds after Inst executed (e.g. an assume or 111 /// min/mix intrinsic. 112 InstCheck, /// An instruction to simplify (e.g. an overflow math 113 /// intrinsics). 114 UseCheck /// An use of a compare instruction to simplify. 115 }; 116 117 union { 118 Instruction *Inst; 119 Use *U; 120 ConditionTy Cond; 121 }; 122 123 /// A pre-condition that must hold for the current fact to be added to the 124 /// system. 125 ConditionTy DoesHold; 126 127 unsigned NumIn; 128 unsigned NumOut; 129 EntryTy Ty; 130 131 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 132 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 133 Ty(Ty) {} 134 135 FactOrCheck(DomTreeNode *DTN, Use *U) 136 : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr), 137 NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 138 Ty(EntryTy::UseCheck) {} 139 140 FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1, 141 ConditionTy Precond = ConditionTy()) 142 : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()), 143 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 144 145 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 146 Value *Op0, Value *Op1, 147 ConditionTy Precond = ConditionTy()) { 148 return FactOrCheck(DTN, Pred, Op0, Op1, Precond); 149 } 150 151 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 152 return FactOrCheck(EntryTy::InstFact, DTN, Inst); 153 } 154 155 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 156 return FactOrCheck(DTN, U); 157 } 158 159 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 160 return FactOrCheck(EntryTy::InstCheck, DTN, CI); 161 } 162 163 bool isCheck() const { 164 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 165 } 166 167 Instruction *getContextInst() const { 168 if (Ty == EntryTy::UseCheck) 169 return getContextInstForUse(*U); 170 return Inst; 171 } 172 173 Instruction *getInstructionToSimplify() const { 174 assert(isCheck()); 175 if (Ty == EntryTy::InstCheck) 176 return Inst; 177 // The use may have been simplified to a constant already. 178 return dyn_cast<Instruction>(*U); 179 } 180 181 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 182 }; 183 184 /// Keep state required to build worklist. 185 struct State { 186 DominatorTree &DT; 187 LoopInfo &LI; 188 ScalarEvolution &SE; 189 SmallVector<FactOrCheck, 64> WorkList; 190 191 State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE) 192 : DT(DT), LI(LI), SE(SE) {} 193 194 /// Process block \p BB and add known facts to work-list. 195 void addInfoFor(BasicBlock &BB); 196 197 /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares 198 /// controlling the loop header. 199 void addInfoForInductions(BasicBlock &BB); 200 201 /// Returns true if we can add a known condition from BB to its successor 202 /// block Succ. 203 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 204 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 205 } 206 }; 207 208 class ConstraintInfo; 209 210 struct StackEntry { 211 unsigned NumIn; 212 unsigned NumOut; 213 bool IsSigned = false; 214 /// Variables that can be removed from the system once the stack entry gets 215 /// removed. 216 SmallVector<Value *, 2> ValuesToRelease; 217 218 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 219 SmallVector<Value *, 2> ValuesToRelease) 220 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 221 ValuesToRelease(ValuesToRelease) {} 222 }; 223 224 struct ConstraintTy { 225 SmallVector<int64_t, 8> Coefficients; 226 SmallVector<ConditionTy, 2> Preconditions; 227 228 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 229 230 bool IsSigned = false; 231 232 ConstraintTy() = default; 233 234 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 235 bool IsNe) 236 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 237 } 238 239 unsigned size() const { return Coefficients.size(); } 240 241 unsigned empty() const { return Coefficients.empty(); } 242 243 /// Returns true if all preconditions for this list of constraints are 244 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 245 bool isValid(const ConstraintInfo &Info) const; 246 247 bool isEq() const { return IsEq; } 248 249 bool isNe() const { return IsNe; } 250 251 /// Check if the current constraint is implied by the given ConstraintSystem. 252 /// 253 /// \return true or false if the constraint is proven to be respectively true, 254 /// or false. When the constraint cannot be proven to be either true or false, 255 /// std::nullopt is returned. 256 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 257 258 private: 259 bool IsEq = false; 260 bool IsNe = false; 261 }; 262 263 /// Wrapper encapsulating separate constraint systems and corresponding value 264 /// mappings for both unsigned and signed information. Facts are added to and 265 /// conditions are checked against the corresponding system depending on the 266 /// signed-ness of their predicates. While the information is kept separate 267 /// based on signed-ness, certain conditions can be transferred between the two 268 /// systems. 269 class ConstraintInfo { 270 271 ConstraintSystem UnsignedCS; 272 ConstraintSystem SignedCS; 273 274 const DataLayout &DL; 275 276 public: 277 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 278 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 279 280 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 281 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 282 } 283 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 284 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 285 } 286 287 ConstraintSystem &getCS(bool Signed) { 288 return Signed ? SignedCS : UnsignedCS; 289 } 290 const ConstraintSystem &getCS(bool Signed) const { 291 return Signed ? SignedCS : UnsignedCS; 292 } 293 294 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 295 void popLastNVariables(bool Signed, unsigned N) { 296 getCS(Signed).popLastNVariables(N); 297 } 298 299 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 300 301 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 302 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 303 304 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 305 /// constraints, using indices from the corresponding constraint system. 306 /// New variables that need to be added to the system are collected in 307 /// \p NewVariables. 308 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 309 SmallVectorImpl<Value *> &NewVariables) const; 310 311 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 312 /// constraints using getConstraint. Returns an empty constraint if the result 313 /// cannot be used to query the existing constraint system, e.g. because it 314 /// would require adding new variables. Also tries to convert signed 315 /// predicates to unsigned ones if possible to allow using the unsigned system 316 /// which increases the effectiveness of the signed <-> unsigned transfer 317 /// logic. 318 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 319 Value *Op1) const; 320 321 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 322 /// system if \p Pred is signed/unsigned. 323 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 324 unsigned NumIn, unsigned NumOut, 325 SmallVectorImpl<StackEntry> &DFSInStack); 326 }; 327 328 /// Represents a (Coefficient * Variable) entry after IR decomposition. 329 struct DecompEntry { 330 int64_t Coefficient; 331 Value *Variable; 332 /// True if the variable is known positive in the current constraint. 333 bool IsKnownNonNegative; 334 335 DecompEntry(int64_t Coefficient, Value *Variable, 336 bool IsKnownNonNegative = false) 337 : Coefficient(Coefficient), Variable(Variable), 338 IsKnownNonNegative(IsKnownNonNegative) {} 339 }; 340 341 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 342 struct Decomposition { 343 int64_t Offset = 0; 344 SmallVector<DecompEntry, 3> Vars; 345 346 Decomposition(int64_t Offset) : Offset(Offset) {} 347 Decomposition(Value *V, bool IsKnownNonNegative = false) { 348 Vars.emplace_back(1, V, IsKnownNonNegative); 349 } 350 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 351 : Offset(Offset), Vars(Vars) {} 352 353 void add(int64_t OtherOffset) { 354 Offset = addWithOverflow(Offset, OtherOffset); 355 } 356 357 void add(const Decomposition &Other) { 358 add(Other.Offset); 359 append_range(Vars, Other.Vars); 360 } 361 362 void mul(int64_t Factor) { 363 Offset = multiplyWithOverflow(Offset, Factor); 364 for (auto &Var : Vars) 365 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 366 } 367 }; 368 369 } // namespace 370 371 static Decomposition decompose(Value *V, 372 SmallVectorImpl<ConditionTy> &Preconditions, 373 bool IsSigned, const DataLayout &DL); 374 375 static bool canUseSExt(ConstantInt *CI) { 376 const APInt &Val = CI->getValue(); 377 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 378 } 379 380 static Decomposition decomposeGEP(GEPOperator &GEP, 381 SmallVectorImpl<ConditionTy> &Preconditions, 382 bool IsSigned, const DataLayout &DL) { 383 // Do not reason about pointers where the index size is larger than 64 bits, 384 // as the coefficients used to encode constraints are 64 bit integers. 385 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 386 return &GEP; 387 388 if (!GEP.isInBounds()) 389 return &GEP; 390 391 assert(!IsSigned && "The logic below only supports decomposition for " 392 "unsinged predicates at the moment."); 393 Type *PtrTy = GEP.getType()->getScalarType(); 394 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 395 MapVector<Value *, APInt> VariableOffsets; 396 APInt ConstantOffset(BitWidth, 0); 397 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 398 return &GEP; 399 400 // Handle the (gep (gep ....), C) case by incrementing the constant 401 // coefficient of the inner GEP, if C is a constant. 402 auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand()); 403 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 404 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 405 Result.add(ConstantOffset.getSExtValue()); 406 407 if (ConstantOffset.isNegative()) { 408 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 409 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 410 if (ConstantOffsetI % Scale != 0) 411 return &GEP; 412 // Add pre-condition ensuring the GEP is increasing monotonically and 413 // can be de-composed. 414 // Both sides are normalized by being divided by Scale. 415 Preconditions.emplace_back( 416 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 417 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 418 -1 * (ConstantOffsetI / Scale))); 419 } 420 return Result; 421 } 422 423 Decomposition Result(ConstantOffset.getSExtValue(), 424 DecompEntry(1, GEP.getPointerOperand())); 425 for (auto [Index, Scale] : VariableOffsets) { 426 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 427 IdxResult.mul(Scale.getSExtValue()); 428 Result.add(IdxResult); 429 430 // If Op0 is signed non-negative, the GEP is increasing monotonically and 431 // can be de-composed. 432 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 433 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 434 ConstantInt::get(Index->getType(), 0)); 435 } 436 return Result; 437 } 438 439 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 440 // Variable } where Coefficient * Variable. The sum of the constant offset and 441 // pairs equals \p V. 442 static Decomposition decompose(Value *V, 443 SmallVectorImpl<ConditionTy> &Preconditions, 444 bool IsSigned, const DataLayout &DL) { 445 446 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 447 bool IsSignedB) { 448 auto ResA = decompose(A, Preconditions, IsSigned, DL); 449 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 450 ResA.add(ResB); 451 return ResA; 452 }; 453 454 Type *Ty = V->getType()->getScalarType(); 455 if (Ty->isPointerTy() && !IsSigned) { 456 if (auto *GEP = dyn_cast<GEPOperator>(V)) 457 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 458 return V; 459 } 460 461 // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so 462 // coefficient add/mul may wrap, while the operation in the full bit width 463 // would not. 464 if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64) 465 return V; 466 467 // Decompose \p V used with a signed predicate. 468 if (IsSigned) { 469 if (auto *CI = dyn_cast<ConstantInt>(V)) { 470 if (canUseSExt(CI)) 471 return CI->getSExtValue(); 472 } 473 Value *Op0; 474 Value *Op1; 475 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 476 return MergeResults(Op0, Op1, IsSigned); 477 478 ConstantInt *CI; 479 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 480 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 481 Result.mul(CI->getSExtValue()); 482 return Result; 483 } 484 485 return V; 486 } 487 488 if (auto *CI = dyn_cast<ConstantInt>(V)) { 489 if (CI->uge(MaxConstraintValue)) 490 return V; 491 return int64_t(CI->getZExtValue()); 492 } 493 494 Value *Op0; 495 bool IsKnownNonNegative = false; 496 if (match(V, m_ZExt(m_Value(Op0)))) { 497 IsKnownNonNegative = true; 498 V = Op0; 499 } 500 501 Value *Op1; 502 ConstantInt *CI; 503 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 504 return MergeResults(Op0, Op1, IsSigned); 505 } 506 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 507 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 508 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 509 ConstantInt::get(Op0->getType(), 0)); 510 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 511 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 512 ConstantInt::get(Op1->getType(), 0)); 513 514 return MergeResults(Op0, Op1, IsSigned); 515 } 516 517 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 518 canUseSExt(CI)) { 519 Preconditions.emplace_back( 520 CmpInst::ICMP_UGE, Op0, 521 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 522 return MergeResults(Op0, CI, true); 523 } 524 525 // Decompose or as an add if there are no common bits between the operands. 526 if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && 527 haveNoCommonBitsSet(Op0, CI, DL)) { 528 return MergeResults(Op0, CI, IsSigned); 529 } 530 531 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 532 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 533 return {V, IsKnownNonNegative}; 534 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 535 Result.mul(int64_t{1} << CI->getSExtValue()); 536 return Result; 537 } 538 539 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 540 (!CI->isNegative())) { 541 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 542 Result.mul(CI->getSExtValue()); 543 return Result; 544 } 545 546 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 547 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 548 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 549 return {0, {{1, Op0}, {-1, Op1}}}; 550 551 return {V, IsKnownNonNegative}; 552 } 553 554 ConstraintTy 555 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 556 SmallVectorImpl<Value *> &NewVariables) const { 557 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 558 bool IsEq = false; 559 bool IsNe = false; 560 561 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 562 switch (Pred) { 563 case CmpInst::ICMP_UGT: 564 case CmpInst::ICMP_UGE: 565 case CmpInst::ICMP_SGT: 566 case CmpInst::ICMP_SGE: { 567 Pred = CmpInst::getSwappedPredicate(Pred); 568 std::swap(Op0, Op1); 569 break; 570 } 571 case CmpInst::ICMP_EQ: 572 if (match(Op1, m_Zero())) { 573 Pred = CmpInst::ICMP_ULE; 574 } else { 575 IsEq = true; 576 Pred = CmpInst::ICMP_ULE; 577 } 578 break; 579 case CmpInst::ICMP_NE: 580 if (match(Op1, m_Zero())) { 581 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 582 std::swap(Op0, Op1); 583 } else { 584 IsNe = true; 585 Pred = CmpInst::ICMP_ULE; 586 } 587 break; 588 default: 589 break; 590 } 591 592 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 593 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 594 return {}; 595 596 SmallVector<ConditionTy, 4> Preconditions; 597 bool IsSigned = CmpInst::isSigned(Pred); 598 auto &Value2Index = getValue2Index(IsSigned); 599 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 600 Preconditions, IsSigned, DL); 601 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 602 Preconditions, IsSigned, DL); 603 int64_t Offset1 = ADec.Offset; 604 int64_t Offset2 = BDec.Offset; 605 Offset1 *= -1; 606 607 auto &VariablesA = ADec.Vars; 608 auto &VariablesB = BDec.Vars; 609 610 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 611 // new entry to NewVariables. 612 DenseMap<Value *, unsigned> NewIndexMap; 613 auto GetOrAddIndex = [&Value2Index, &NewVariables, 614 &NewIndexMap](Value *V) -> unsigned { 615 auto V2I = Value2Index.find(V); 616 if (V2I != Value2Index.end()) 617 return V2I->second; 618 auto Insert = 619 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 620 if (Insert.second) 621 NewVariables.push_back(V); 622 return Insert.first->second; 623 }; 624 625 // Make sure all variables have entries in Value2Index or NewVariables. 626 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 627 GetOrAddIndex(KV.Variable); 628 629 // Build result constraint, by first adding all coefficients from A and then 630 // subtracting all coefficients from B. 631 ConstraintTy Res( 632 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 633 IsSigned, IsEq, IsNe); 634 // Collect variables that are known to be positive in all uses in the 635 // constraint. 636 DenseMap<Value *, bool> KnownNonNegativeVariables; 637 auto &R = Res.Coefficients; 638 for (const auto &KV : VariablesA) { 639 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 640 auto I = 641 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 642 I.first->second &= KV.IsKnownNonNegative; 643 } 644 645 for (const auto &KV : VariablesB) { 646 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 647 R[GetOrAddIndex(KV.Variable)])) 648 return {}; 649 auto I = 650 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 651 I.first->second &= KV.IsKnownNonNegative; 652 } 653 654 int64_t OffsetSum; 655 if (AddOverflow(Offset1, Offset2, OffsetSum)) 656 return {}; 657 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 658 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 659 return {}; 660 R[0] = OffsetSum; 661 Res.Preconditions = std::move(Preconditions); 662 663 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 664 // variables. 665 while (!NewVariables.empty()) { 666 int64_t Last = R.back(); 667 if (Last != 0) 668 break; 669 R.pop_back(); 670 Value *RemovedV = NewVariables.pop_back_val(); 671 NewIndexMap.erase(RemovedV); 672 } 673 674 // Add extra constraints for variables that are known positive. 675 for (auto &KV : KnownNonNegativeVariables) { 676 if (!KV.second || 677 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 678 continue; 679 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 680 C[GetOrAddIndex(KV.first)] = -1; 681 Res.ExtraInfo.push_back(C); 682 } 683 return Res; 684 } 685 686 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 687 Value *Op0, 688 Value *Op1) const { 689 Constant *NullC = Constant::getNullValue(Op0->getType()); 690 // Handle trivially true compares directly to avoid adding V UGE 0 constraints 691 // for all variables in the unsigned system. 692 if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) || 693 (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) { 694 auto &Value2Index = getValue2Index(false); 695 // Return constraint that's trivially true. 696 return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false, 697 false, false); 698 } 699 700 // If both operands are known to be non-negative, change signed predicates to 701 // unsigned ones. This increases the reasoning effectiveness in combination 702 // with the signed <-> unsigned transfer logic. 703 if (CmpInst::isSigned(Pred) && 704 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 705 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 706 Pred = CmpInst::getUnsignedPredicate(Pred); 707 708 SmallVector<Value *> NewVariables; 709 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 710 if (!NewVariables.empty()) 711 return {}; 712 return R; 713 } 714 715 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 716 return Coefficients.size() > 0 && 717 all_of(Preconditions, [&Info](const ConditionTy &C) { 718 return Info.doesHold(C.Pred, C.Op0, C.Op1); 719 }); 720 } 721 722 std::optional<bool> 723 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 724 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 725 726 if (IsEq || IsNe) { 727 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 728 bool IsNegatedOrEqualImplied = 729 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 730 731 // In order to check that `%a == %b` is true (equality), both conditions `%a 732 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 733 // is true), we return true if they both hold, false in the other cases. 734 if (IsConditionImplied && IsNegatedOrEqualImplied) 735 return IsEq; 736 737 auto Negated = ConstraintSystem::negate(Coefficients); 738 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 739 740 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 741 bool IsStrictLessThanImplied = 742 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 743 744 // In order to check that `%a != %b` is true (non-equality), either 745 // condition `%a > %b` or `%a < %b` must hold true. When checking for 746 // non-equality (`IsNe` is true), we return true if one of the two holds, 747 // false in the other cases. 748 if (IsNegatedImplied || IsStrictLessThanImplied) 749 return IsNe; 750 751 return std::nullopt; 752 } 753 754 if (IsConditionImplied) 755 return true; 756 757 auto Negated = ConstraintSystem::negate(Coefficients); 758 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 759 if (IsNegatedImplied) 760 return false; 761 762 // Neither the condition nor its negated holds, did not prove anything. 763 return std::nullopt; 764 } 765 766 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 767 Value *B) const { 768 auto R = getConstraintForSolving(Pred, A, B); 769 return R.isValid(*this) && 770 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 771 } 772 773 void ConstraintInfo::transferToOtherSystem( 774 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 775 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 776 // Check if we can combine facts from the signed and unsigned systems to 777 // derive additional facts. 778 if (!A->getType()->isIntegerTy()) 779 return; 780 // FIXME: This currently depends on the order we add facts. Ideally we 781 // would first add all known facts and only then try to add additional 782 // facts. 783 switch (Pred) { 784 default: 785 break; 786 case CmpInst::ICMP_ULT: 787 case CmpInst::ICMP_ULE: 788 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B. 789 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 790 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 791 NumOut, DFSInStack); 792 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 793 DFSInStack); 794 } 795 break; 796 case CmpInst::ICMP_UGE: 797 case CmpInst::ICMP_UGT: 798 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B. 799 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) { 800 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn, 801 NumOut, DFSInStack); 802 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 803 DFSInStack); 804 } 805 break; 806 case CmpInst::ICMP_SLT: 807 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 808 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 809 break; 810 case CmpInst::ICMP_SGT: { 811 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 812 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 813 NumOut, DFSInStack); 814 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) 815 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 816 817 break; 818 } 819 case CmpInst::ICMP_SGE: 820 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 821 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 822 } 823 break; 824 } 825 } 826 827 #ifndef NDEBUG 828 829 static void dumpConstraint(ArrayRef<int64_t> C, 830 const DenseMap<Value *, unsigned> &Value2Index) { 831 ConstraintSystem CS(Value2Index); 832 CS.addVariableRowFill(C); 833 CS.dump(); 834 } 835 #endif 836 837 void State::addInfoForInductions(BasicBlock &BB) { 838 auto *L = LI.getLoopFor(&BB); 839 if (!L || L->getHeader() != &BB) 840 return; 841 842 Value *A; 843 Value *B; 844 CmpInst::Predicate Pred; 845 846 if (!match(BB.getTerminator(), 847 m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value()))) 848 return; 849 PHINode *PN = dyn_cast<PHINode>(A); 850 if (!PN) { 851 Pred = CmpInst::getSwappedPredicate(Pred); 852 std::swap(A, B); 853 PN = dyn_cast<PHINode>(A); 854 } 855 856 if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 || 857 !SE.isSCEVable(PN->getType())) 858 return; 859 860 BasicBlock *InLoopSucc = nullptr; 861 if (Pred == CmpInst::ICMP_NE) 862 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0); 863 else if (Pred == CmpInst::ICMP_EQ) 864 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1); 865 else 866 return; 867 868 if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB) 869 return; 870 871 auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN)); 872 BasicBlock *LoopPred = L->getLoopPredecessor(); 873 if (!AR || !LoopPred) 874 return; 875 876 const SCEV *StartSCEV = AR->getStart(); 877 Value *StartValue = nullptr; 878 if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) { 879 StartValue = C->getValue(); 880 } else { 881 StartValue = PN->getIncomingValueForBlock(LoopPred); 882 assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value"); 883 } 884 885 DomTreeNode *DTN = DT.getNode(InLoopSucc); 886 auto Inc = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT); 887 bool MonotonicallyIncreasing = 888 Inc && *Inc == ScalarEvolution::MonotonicallyIncreasing; 889 if (MonotonicallyIncreasing) { 890 // SCEV guarantees that AR does not wrap, so PN >= StartValue can be added 891 // unconditionally. 892 WorkList.push_back( 893 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue)); 894 } 895 896 APInt StepOffset; 897 if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 898 StepOffset = C->getAPInt(); 899 else 900 return; 901 902 // Handle negative steps. 903 if (StepOffset.isNegative()) { 904 // TODO: Extend to allow steps > -1. 905 if (!(-StepOffset).isOne()) 906 return; 907 908 // AR may wrap. 909 // Add StartValue >= PN conditional on B <= StartValue which guarantees that 910 // the loop exits before wrapping with a step of -1. 911 WorkList.push_back(FactOrCheck::getConditionFact( 912 DTN, CmpInst::ICMP_UGE, StartValue, PN, 913 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 914 // Add PN > B conditional on B <= StartValue which guarantees that the loop 915 // exits when reaching B with a step of -1. 916 WorkList.push_back(FactOrCheck::getConditionFact( 917 DTN, CmpInst::ICMP_UGT, PN, B, 918 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 919 return; 920 } 921 922 // Make sure AR either steps by 1 or that the value we compare against is a 923 // GEP based on the same start value and all offsets are a multiple of the 924 // step size, to guarantee that the induction will reach the value. 925 if (StepOffset.isZero() || StepOffset.isNegative()) 926 return; 927 928 if (!StepOffset.isOne()) { 929 auto *UpperGEP = dyn_cast<GetElementPtrInst>(B); 930 if (!UpperGEP || UpperGEP->getPointerOperand() != StartValue || 931 !UpperGEP->isInBounds()) 932 return; 933 934 MapVector<Value *, APInt> UpperVariableOffsets; 935 APInt UpperConstantOffset(StepOffset.getBitWidth(), 0); 936 const DataLayout &DL = BB.getModule()->getDataLayout(); 937 if (!UpperGEP->collectOffset(DL, StepOffset.getBitWidth(), 938 UpperVariableOffsets, UpperConstantOffset)) 939 return; 940 // All variable offsets and the constant offset have to be a multiple of the 941 // step. 942 if (!UpperConstantOffset.urem(StepOffset).isZero() || 943 any_of(UpperVariableOffsets, [&StepOffset](const auto &P) { 944 return !P.second.urem(StepOffset).isZero(); 945 })) 946 return; 947 } 948 949 // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which 950 // guarantees that the loop exits before wrapping in combination with the 951 // restrictions on B and the step above. 952 if (!MonotonicallyIncreasing) { 953 WorkList.push_back(FactOrCheck::getConditionFact( 954 DTN, CmpInst::ICMP_UGE, PN, StartValue, 955 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 956 } 957 WorkList.push_back(FactOrCheck::getConditionFact( 958 DTN, CmpInst::ICMP_ULT, PN, B, 959 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 960 } 961 962 void State::addInfoFor(BasicBlock &BB) { 963 addInfoForInductions(BB); 964 965 // True as long as long as the current instruction is guaranteed to execute. 966 bool GuaranteedToExecute = true; 967 // Queue conditions and assumes. 968 for (Instruction &I : BB) { 969 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 970 for (Use &U : Cmp->uses()) { 971 auto *UserI = getContextInstForUse(U); 972 auto *DTN = DT.getNode(UserI->getParent()); 973 if (!DTN) 974 continue; 975 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 976 } 977 continue; 978 } 979 980 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 981 WorkList.push_back( 982 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 983 continue; 984 } 985 986 if (isa<MinMaxIntrinsic>(&I)) { 987 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 988 continue; 989 } 990 991 Value *A, *B; 992 CmpInst::Predicate Pred; 993 // For now, just handle assumes with a single compare as condition. 994 if (match(&I, m_Intrinsic<Intrinsic::assume>( 995 m_ICmp(Pred, m_Value(A), m_Value(B))))) { 996 if (GuaranteedToExecute) { 997 // The assume is guaranteed to execute when BB is entered, hence Cond 998 // holds on entry to BB. 999 WorkList.emplace_back(FactOrCheck::getConditionFact( 1000 DT.getNode(I.getParent()), Pred, A, B)); 1001 } else { 1002 WorkList.emplace_back( 1003 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 1004 } 1005 } 1006 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 1007 } 1008 1009 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 1010 for (auto &Case : Switch->cases()) { 1011 BasicBlock *Succ = Case.getCaseSuccessor(); 1012 Value *V = Case.getCaseValue(); 1013 if (!canAddSuccessor(BB, Succ)) 1014 continue; 1015 WorkList.emplace_back(FactOrCheck::getConditionFact( 1016 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 1017 } 1018 return; 1019 } 1020 1021 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 1022 if (!Br || !Br->isConditional()) 1023 return; 1024 1025 Value *Cond = Br->getCondition(); 1026 1027 // If the condition is a chain of ORs/AND and the successor only has the 1028 // current block as predecessor, queue conditions for the successor. 1029 Value *Op0, *Op1; 1030 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 1031 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1032 bool IsOr = match(Cond, m_LogicalOr()); 1033 bool IsAnd = match(Cond, m_LogicalAnd()); 1034 // If there's a select that matches both AND and OR, we need to commit to 1035 // one of the options. Arbitrarily pick OR. 1036 if (IsOr && IsAnd) 1037 IsAnd = false; 1038 1039 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 1040 if (canAddSuccessor(BB, Successor)) { 1041 SmallVector<Value *> CondWorkList; 1042 SmallPtrSet<Value *, 8> SeenCond; 1043 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 1044 if (SeenCond.insert(V).second) 1045 CondWorkList.push_back(V); 1046 }; 1047 QueueValue(Op1); 1048 QueueValue(Op0); 1049 while (!CondWorkList.empty()) { 1050 Value *Cur = CondWorkList.pop_back_val(); 1051 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 1052 WorkList.emplace_back(FactOrCheck::getConditionFact( 1053 DT.getNode(Successor), 1054 IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate()) 1055 : Cmp->getPredicate(), 1056 Cmp->getOperand(0), Cmp->getOperand(1))); 1057 continue; 1058 } 1059 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 1060 QueueValue(Op1); 1061 QueueValue(Op0); 1062 continue; 1063 } 1064 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1065 QueueValue(Op1); 1066 QueueValue(Op0); 1067 continue; 1068 } 1069 } 1070 } 1071 return; 1072 } 1073 1074 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 1075 if (!CmpI) 1076 return; 1077 if (canAddSuccessor(BB, Br->getSuccessor(0))) 1078 WorkList.emplace_back(FactOrCheck::getConditionFact( 1079 DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(), 1080 CmpI->getOperand(0), CmpI->getOperand(1))); 1081 if (canAddSuccessor(BB, Br->getSuccessor(1))) 1082 WorkList.emplace_back(FactOrCheck::getConditionFact( 1083 DT.getNode(Br->getSuccessor(1)), 1084 CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0), 1085 CmpI->getOperand(1))); 1086 } 1087 1088 namespace { 1089 /// Helper to keep track of a condition and if it should be treated as negated 1090 /// for reproducer construction. 1091 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 1092 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 1093 struct ReproducerEntry { 1094 ICmpInst::Predicate Pred; 1095 Value *LHS; 1096 Value *RHS; 1097 1098 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 1099 : Pred(Pred), LHS(LHS), RHS(RHS) {} 1100 }; 1101 } // namespace 1102 1103 /// Helper function to generate a reproducer function for simplifying \p Cond. 1104 /// The reproducer function contains a series of @llvm.assume calls, one for 1105 /// each condition in \p Stack. For each condition, the operand instruction are 1106 /// cloned until we reach operands that have an entry in \p Value2Index. Those 1107 /// will then be added as function arguments. \p DT is used to order cloned 1108 /// instructions. The reproducer function will get added to \p M, if it is 1109 /// non-null. Otherwise no reproducer function is generated. 1110 static void generateReproducer(CmpInst *Cond, Module *M, 1111 ArrayRef<ReproducerEntry> Stack, 1112 ConstraintInfo &Info, DominatorTree &DT) { 1113 if (!M) 1114 return; 1115 1116 LLVMContext &Ctx = Cond->getContext(); 1117 1118 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 1119 1120 ValueToValueMapTy Old2New; 1121 SmallVector<Value *> Args; 1122 SmallPtrSet<Value *, 8> Seen; 1123 // Traverse Cond and its operands recursively until we reach a value that's in 1124 // Value2Index or not an instruction, or not a operation that 1125 // ConstraintElimination can decompose. Such values will be considered as 1126 // external inputs to the reproducer, they are collected and added as function 1127 // arguments later. 1128 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1129 auto &Value2Index = Info.getValue2Index(IsSigned); 1130 SmallVector<Value *, 4> WorkList(Ops); 1131 while (!WorkList.empty()) { 1132 Value *V = WorkList.pop_back_val(); 1133 if (!Seen.insert(V).second) 1134 continue; 1135 if (Old2New.find(V) != Old2New.end()) 1136 continue; 1137 if (isa<Constant>(V)) 1138 continue; 1139 1140 auto *I = dyn_cast<Instruction>(V); 1141 if (Value2Index.contains(V) || !I || 1142 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 1143 Old2New[V] = V; 1144 Args.push_back(V); 1145 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 1146 } else { 1147 append_range(WorkList, I->operands()); 1148 } 1149 } 1150 }; 1151 1152 for (auto &Entry : Stack) 1153 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 1154 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 1155 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 1156 1157 SmallVector<Type *> ParamTys; 1158 for (auto *P : Args) 1159 ParamTys.push_back(P->getType()); 1160 1161 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 1162 /*isVarArg=*/false); 1163 Function *F = Function::Create(FTy, Function::ExternalLinkage, 1164 Cond->getModule()->getName() + 1165 Cond->getFunction()->getName() + "repro", 1166 M); 1167 // Add arguments to the reproducer function for each external value collected. 1168 for (unsigned I = 0; I < Args.size(); ++I) { 1169 F->getArg(I)->setName(Args[I]->getName()); 1170 Old2New[Args[I]] = F->getArg(I); 1171 } 1172 1173 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 1174 IRBuilder<> Builder(Entry); 1175 Builder.CreateRet(Builder.getTrue()); 1176 Builder.SetInsertPoint(Entry->getTerminator()); 1177 1178 // Clone instructions in \p Ops and their operands recursively until reaching 1179 // an value in Value2Index (external input to the reproducer). Update Old2New 1180 // mapping for the original and cloned instructions. Sort instructions to 1181 // clone by dominance, then insert the cloned instructions in the function. 1182 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1183 SmallVector<Value *, 4> WorkList(Ops); 1184 SmallVector<Instruction *> ToClone; 1185 auto &Value2Index = Info.getValue2Index(IsSigned); 1186 while (!WorkList.empty()) { 1187 Value *V = WorkList.pop_back_val(); 1188 if (Old2New.find(V) != Old2New.end()) 1189 continue; 1190 1191 auto *I = dyn_cast<Instruction>(V); 1192 if (!Value2Index.contains(V) && I) { 1193 Old2New[V] = nullptr; 1194 ToClone.push_back(I); 1195 append_range(WorkList, I->operands()); 1196 } 1197 } 1198 1199 sort(ToClone, 1200 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 1201 for (Instruction *I : ToClone) { 1202 Instruction *Cloned = I->clone(); 1203 Old2New[I] = Cloned; 1204 Old2New[I]->setName(I->getName()); 1205 Cloned->insertBefore(&*Builder.GetInsertPoint()); 1206 Cloned->dropUnknownNonDebugMetadata(); 1207 Cloned->setDebugLoc({}); 1208 } 1209 }; 1210 1211 // Materialize the assumptions for the reproducer using the entries in Stack. 1212 // That is, first clone the operands of the condition recursively until we 1213 // reach an external input to the reproducer and add them to the reproducer 1214 // function. Then add an ICmp for the condition (with the inverse predicate if 1215 // the entry is negated) and an assert using the ICmp. 1216 for (auto &Entry : Stack) { 1217 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1218 continue; 1219 1220 LLVM_DEBUG( 1221 dbgs() << " Materializing assumption icmp " << Entry.Pred << ' '; 1222 Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", "; 1223 Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n"); 1224 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1225 1226 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1227 Builder.CreateAssumption(Cmp); 1228 } 1229 1230 // Finally, clone the condition to reproduce and remap instruction operands in 1231 // the reproducer using Old2New. 1232 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1233 Entry->getTerminator()->setOperand(0, Cond); 1234 remapInstructionsInBlocks({Entry}, Old2New); 1235 1236 assert(!verifyFunction(*F, &dbgs())); 1237 } 1238 1239 static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info, 1240 unsigned NumIn, unsigned NumOut, 1241 Instruction *ContextInst) { 1242 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 1243 1244 CmpInst::Predicate Pred = Cmp->getPredicate(); 1245 Value *A = Cmp->getOperand(0); 1246 Value *B = Cmp->getOperand(1); 1247 1248 auto R = Info.getConstraintForSolving(Pred, A, B); 1249 if (R.empty() || !R.isValid(Info)){ 1250 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1251 return std::nullopt; 1252 } 1253 1254 auto &CSToUse = Info.getCS(R.IsSigned); 1255 1256 // If there was extra information collected during decomposition, apply 1257 // it now and remove it immediately once we are done with reasoning 1258 // about the constraint. 1259 for (auto &Row : R.ExtraInfo) 1260 CSToUse.addVariableRow(Row); 1261 auto InfoRestorer = make_scope_exit([&]() { 1262 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1263 CSToUse.popLastConstraint(); 1264 }); 1265 1266 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1267 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1268 return std::nullopt; 1269 1270 LLVM_DEBUG({ 1271 if (*ImpliedCondition) { 1272 dbgs() << "Condition " << *Cmp; 1273 } else { 1274 auto InversePred = Cmp->getInversePredicate(); 1275 dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " " 1276 << *A << ", " << *B; 1277 } 1278 dbgs() << " implied by dominating constraints\n"; 1279 CSToUse.dump(); 1280 }); 1281 return ImpliedCondition; 1282 } 1283 1284 return std::nullopt; 1285 } 1286 1287 static bool checkAndReplaceCondition( 1288 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1289 Instruction *ContextInst, Module *ReproducerModule, 1290 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1291 SmallVectorImpl<Instruction *> &ToRemove) { 1292 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1293 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1294 Constant *ConstantC = ConstantInt::getBool( 1295 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1296 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1297 ContextInst](Use &U) { 1298 auto *UserI = getContextInstForUse(U); 1299 auto *DTN = DT.getNode(UserI->getParent()); 1300 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1301 return false; 1302 if (UserI->getParent() == ContextInst->getParent() && 1303 UserI->comesBefore(ContextInst)) 1304 return false; 1305 1306 // Conditions in an assume trivially simplify to true. Skip uses 1307 // in assume calls to not destroy the available information. 1308 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1309 return !II || II->getIntrinsicID() != Intrinsic::assume; 1310 }); 1311 NumCondsRemoved++; 1312 if (Cmp->use_empty()) 1313 ToRemove.push_back(Cmp); 1314 return true; 1315 }; 1316 1317 if (auto ImpliedCondition = 1318 checkCondition(Cmp, Info, NumIn, NumOut, ContextInst)) 1319 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1320 return false; 1321 } 1322 1323 static void 1324 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1325 Module *ReproducerModule, 1326 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1327 SmallVectorImpl<StackEntry> &DFSInStack) { 1328 Info.popLastConstraint(E.IsSigned); 1329 // Remove variables in the system that went out of scope. 1330 auto &Mapping = Info.getValue2Index(E.IsSigned); 1331 for (Value *V : E.ValuesToRelease) 1332 Mapping.erase(V); 1333 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1334 DFSInStack.pop_back(); 1335 if (ReproducerModule) 1336 ReproducerCondStack.pop_back(); 1337 } 1338 1339 /// Check if the first condition for an AND implies the second. 1340 static bool checkAndSecondOpImpliedByFirst( 1341 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1342 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1343 SmallVectorImpl<StackEntry> &DFSInStack) { 1344 1345 CmpInst::Predicate Pred; 1346 Value *A, *B; 1347 Instruction *And = CB.getContextInst(); 1348 if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1349 return false; 1350 1351 // Optimistically add fact from first condition. 1352 unsigned OldSize = DFSInStack.size(); 1353 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1354 if (OldSize == DFSInStack.size()) 1355 return false; 1356 1357 bool Changed = false; 1358 // Check if the second condition can be simplified now. 1359 if (auto ImpliedCondition = 1360 checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn, 1361 CB.NumOut, CB.getContextInst())) { 1362 And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition)); 1363 Changed = true; 1364 } 1365 1366 // Remove entries again. 1367 while (OldSize < DFSInStack.size()) { 1368 StackEntry E = DFSInStack.back(); 1369 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1370 DFSInStack); 1371 } 1372 return Changed; 1373 } 1374 1375 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1376 unsigned NumIn, unsigned NumOut, 1377 SmallVectorImpl<StackEntry> &DFSInStack) { 1378 // If the constraint has a pre-condition, skip the constraint if it does not 1379 // hold. 1380 SmallVector<Value *> NewVariables; 1381 auto R = getConstraint(Pred, A, B, NewVariables); 1382 1383 // TODO: Support non-equality for facts as well. 1384 if (!R.isValid(*this) || R.isNe()) 1385 return; 1386 1387 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; 1388 A->printAsOperand(dbgs(), false); dbgs() << ", "; 1389 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 1390 bool Added = false; 1391 auto &CSToUse = getCS(R.IsSigned); 1392 if (R.Coefficients.empty()) 1393 return; 1394 1395 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1396 1397 // If R has been added to the system, add the new variables and queue it for 1398 // removal once it goes out-of-scope. 1399 if (Added) { 1400 SmallVector<Value *, 2> ValuesToRelease; 1401 auto &Value2Index = getValue2Index(R.IsSigned); 1402 for (Value *V : NewVariables) { 1403 Value2Index.insert({V, Value2Index.size() + 1}); 1404 ValuesToRelease.push_back(V); 1405 } 1406 1407 LLVM_DEBUG({ 1408 dbgs() << " constraint: "; 1409 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1410 dbgs() << "\n"; 1411 }); 1412 1413 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1414 std::move(ValuesToRelease)); 1415 1416 if (R.isEq()) { 1417 // Also add the inverted constraint for equality constraints. 1418 for (auto &Coeff : R.Coefficients) 1419 Coeff *= -1; 1420 CSToUse.addVariableRowFill(R.Coefficients); 1421 1422 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1423 SmallVector<Value *, 2>()); 1424 } 1425 } 1426 } 1427 1428 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1429 SmallVectorImpl<Instruction *> &ToRemove) { 1430 bool Changed = false; 1431 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1432 Value *Sub = nullptr; 1433 for (User *U : make_early_inc_range(II->users())) { 1434 if (match(U, m_ExtractValue<0>(m_Value()))) { 1435 if (!Sub) 1436 Sub = Builder.CreateSub(A, B); 1437 U->replaceAllUsesWith(Sub); 1438 Changed = true; 1439 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1440 U->replaceAllUsesWith(Builder.getFalse()); 1441 Changed = true; 1442 } else 1443 continue; 1444 1445 if (U->use_empty()) { 1446 auto *I = cast<Instruction>(U); 1447 ToRemove.push_back(I); 1448 I->setOperand(0, PoisonValue::get(II->getType())); 1449 Changed = true; 1450 } 1451 } 1452 1453 if (II->use_empty()) { 1454 II->eraseFromParent(); 1455 Changed = true; 1456 } 1457 return Changed; 1458 } 1459 1460 static bool 1461 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1462 SmallVectorImpl<Instruction *> &ToRemove) { 1463 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1464 ConstraintInfo &Info) { 1465 auto R = Info.getConstraintForSolving(Pred, A, B); 1466 if (R.size() < 2 || !R.isValid(Info)) 1467 return false; 1468 1469 auto &CSToUse = Info.getCS(R.IsSigned); 1470 return CSToUse.isConditionImplied(R.Coefficients); 1471 }; 1472 1473 bool Changed = false; 1474 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1475 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1476 // can be simplified to a regular sub. 1477 Value *A = II->getArgOperand(0); 1478 Value *B = II->getArgOperand(1); 1479 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1480 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1481 ConstantInt::get(A->getType(), 0), Info)) 1482 return false; 1483 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1484 } 1485 return Changed; 1486 } 1487 1488 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI, 1489 ScalarEvolution &SE, 1490 OptimizationRemarkEmitter &ORE) { 1491 bool Changed = false; 1492 DT.updateDFSNumbers(); 1493 SmallVector<Value *> FunctionArgs; 1494 for (Value &Arg : F.args()) 1495 FunctionArgs.push_back(&Arg); 1496 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1497 State S(DT, LI, SE); 1498 std::unique_ptr<Module> ReproducerModule( 1499 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1500 1501 // First, collect conditions implied by branches and blocks with their 1502 // Dominator DFS in and out numbers. 1503 for (BasicBlock &BB : F) { 1504 if (!DT.getNode(&BB)) 1505 continue; 1506 S.addInfoFor(BB); 1507 } 1508 1509 // Next, sort worklist by dominance, so that dominating conditions to check 1510 // and facts come before conditions and facts dominated by them. If a 1511 // condition to check and a fact have the same numbers, conditional facts come 1512 // first. Assume facts and checks are ordered according to their relative 1513 // order in the containing basic block. Also make sure conditions with 1514 // constant operands come before conditions without constant operands. This 1515 // increases the effectiveness of the current signed <-> unsigned fact 1516 // transfer logic. 1517 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1518 auto HasNoConstOp = [](const FactOrCheck &B) { 1519 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 1520 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 1521 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1522 }; 1523 // If both entries have the same In numbers, conditional facts come first. 1524 // Otherwise use the relative order in the basic block. 1525 if (A.NumIn == B.NumIn) { 1526 if (A.isConditionFact() && B.isConditionFact()) { 1527 bool NoConstOpA = HasNoConstOp(A); 1528 bool NoConstOpB = HasNoConstOp(B); 1529 return NoConstOpA < NoConstOpB; 1530 } 1531 if (A.isConditionFact()) 1532 return true; 1533 if (B.isConditionFact()) 1534 return false; 1535 auto *InstA = A.getContextInst(); 1536 auto *InstB = B.getContextInst(); 1537 return InstA->comesBefore(InstB); 1538 } 1539 return A.NumIn < B.NumIn; 1540 }); 1541 1542 SmallVector<Instruction *> ToRemove; 1543 1544 // Finally, process ordered worklist and eliminate implied conditions. 1545 SmallVector<StackEntry, 16> DFSInStack; 1546 SmallVector<ReproducerEntry> ReproducerCondStack; 1547 for (FactOrCheck &CB : S.WorkList) { 1548 // First, pop entries from the stack that are out-of-scope for CB. Remove 1549 // the corresponding entry from the constraint system. 1550 while (!DFSInStack.empty()) { 1551 auto &E = DFSInStack.back(); 1552 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1553 << "\n"); 1554 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1555 assert(E.NumIn <= CB.NumIn); 1556 if (CB.NumOut <= E.NumOut) 1557 break; 1558 LLVM_DEBUG({ 1559 dbgs() << "Removing "; 1560 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1561 Info.getValue2Index(E.IsSigned)); 1562 dbgs() << "\n"; 1563 }); 1564 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1565 DFSInStack); 1566 } 1567 1568 LLVM_DEBUG(dbgs() << "Processing "); 1569 1570 // For a block, check if any CmpInsts become known based on the current set 1571 // of constraints. 1572 if (CB.isCheck()) { 1573 Instruction *Inst = CB.getInstructionToSimplify(); 1574 if (!Inst) 1575 continue; 1576 LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 1577 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1578 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1579 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1580 bool Simplified = checkAndReplaceCondition( 1581 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1582 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1583 if (!Simplified && match(CB.getContextInst(), 1584 m_LogicalAnd(m_Value(), m_Specific(Inst)))) { 1585 Simplified = 1586 checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(), 1587 ReproducerCondStack, DFSInStack); 1588 } 1589 Changed |= Simplified; 1590 } 1591 continue; 1592 } 1593 1594 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1595 LLVM_DEBUG(dbgs() << "fact to add to the system: " 1596 << CmpInst::getPredicateName(Pred) << " "; 1597 A->printAsOperand(dbgs()); dbgs() << ", "; 1598 B->printAsOperand(dbgs()); dbgs() << "\n"); 1599 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1600 LLVM_DEBUG( 1601 dbgs() 1602 << "Skip adding constraint because system has too many rows.\n"); 1603 return; 1604 } 1605 1606 LLVM_DEBUG({ 1607 dbgs() << "Processing fact to add to the system: " << Pred << " "; 1608 A->printAsOperand(dbgs()); 1609 dbgs() << ", "; 1610 B->printAsOperand(dbgs(), false); 1611 dbgs() << "\n"; 1612 }); 1613 1614 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1615 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1616 ReproducerCondStack.emplace_back(Pred, A, B); 1617 1618 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1619 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1620 // Add dummy entries to ReproducerCondStack to keep it in sync with 1621 // DFSInStack. 1622 for (unsigned I = 0, 1623 E = (DFSInStack.size() - ReproducerCondStack.size()); 1624 I < E; ++I) { 1625 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1626 nullptr, nullptr); 1627 } 1628 } 1629 }; 1630 1631 ICmpInst::Predicate Pred; 1632 if (!CB.isConditionFact()) { 1633 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1634 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1635 AddFact(Pred, MinMax, MinMax->getLHS()); 1636 AddFact(Pred, MinMax, MinMax->getRHS()); 1637 continue; 1638 } 1639 } 1640 1641 Value *A = nullptr, *B = nullptr; 1642 if (CB.isConditionFact()) { 1643 Pred = CB.Cond.Pred; 1644 A = CB.Cond.Op0; 1645 B = CB.Cond.Op1; 1646 if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE && 1647 !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) 1648 continue; 1649 } else { 1650 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 1651 m_ICmp(Pred, m_Value(A), m_Value(B)))); 1652 (void)Matched; 1653 assert(Matched && "Must have an assume intrinsic with a icmp operand"); 1654 } 1655 AddFact(Pred, A, B); 1656 } 1657 1658 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1659 std::string S; 1660 raw_string_ostream StringS(S); 1661 ReproducerModule->print(StringS, nullptr); 1662 StringS.flush(); 1663 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1664 Rem << ore::NV("module") << S; 1665 ORE.emit(Rem); 1666 } 1667 1668 #ifndef NDEBUG 1669 unsigned SignedEntries = 1670 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1671 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1672 "updates to CS and DFSInStack are out of sync"); 1673 assert(Info.getCS(true).size() == SignedEntries && 1674 "updates to CS and DFSInStack are out of sync"); 1675 #endif 1676 1677 for (Instruction *I : ToRemove) 1678 I->eraseFromParent(); 1679 return Changed; 1680 } 1681 1682 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1683 FunctionAnalysisManager &AM) { 1684 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1685 auto &LI = AM.getResult<LoopAnalysis>(F); 1686 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1687 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1688 if (!eliminateConstraints(F, DT, LI, SE, ORE)) 1689 return PreservedAnalyses::all(); 1690 1691 PreservedAnalyses PA; 1692 PA.preserve<DominatorTreeAnalysis>(); 1693 PA.preserve<LoopAnalysis>(); 1694 PA.preserve<ScalarEvolutionAnalysis>(); 1695 PA.preserveSet<CFGAnalyses>(); 1696 return PA; 1697 } 1698