xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 1d43096e16ff7288c7feac1ae81fd4f745ce10bb)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/DebugCounter.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Transforms/Utils/Cloning.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
43 
44 #include <cmath>
45 #include <optional>
46 #include <string>
47 
48 using namespace llvm;
49 using namespace PatternMatch;
50 
51 #define DEBUG_TYPE "constraint-elimination"
52 
53 STATISTIC(NumCondsRemoved, "Number of instructions removed");
54 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
55               "Controls which conditions are eliminated");
56 
57 static cl::opt<unsigned>
58     MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
59             cl::desc("Maximum number of rows to keep in constraint system"));
60 
61 static cl::opt<bool> DumpReproducers(
62     "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
63     cl::desc("Dump IR to reproduce successful transformations."));
64 
65 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
66 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
67 
68 // A helper to multiply 2 signed integers where overflowing is allowed.
69 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
70   int64_t Result;
71   MulOverflow(A, B, Result);
72   return Result;
73 }
74 
75 // A helper to add 2 signed integers where overflowing is allowed.
76 static int64_t addWithOverflow(int64_t A, int64_t B) {
77   int64_t Result;
78   AddOverflow(A, B, Result);
79   return Result;
80 }
81 
82 static Instruction *getContextInstForUse(Use &U) {
83   Instruction *UserI = cast<Instruction>(U.getUser());
84   if (auto *Phi = dyn_cast<PHINode>(UserI))
85     UserI = Phi->getIncomingBlock(U)->getTerminator();
86   return UserI;
87 }
88 
89 namespace {
90 /// Struct to express a condition of the form %Op0 Pred %Op1.
91 struct ConditionTy {
92   CmpInst::Predicate Pred;
93   Value *Op0;
94   Value *Op1;
95 
96   ConditionTy()
97       : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {}
98   ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
99       : Pred(Pred), Op0(Op0), Op1(Op1) {}
100 };
101 
102 /// Represents either
103 ///  * a condition that holds on entry to a block (=condition fact)
104 ///  * an assume (=assume fact)
105 ///  * a use of a compare instruction to simplify.
106 /// It also tracks the Dominator DFS in and out numbers for each entry.
107 struct FactOrCheck {
108   enum class EntryTy {
109     ConditionFact, /// A condition that holds on entry to a block.
110     InstFact,      /// A fact that holds after Inst executed (e.g. an assume or
111                    /// min/mix intrinsic.
112     InstCheck,     /// An instruction to simplify (e.g. an overflow math
113                    /// intrinsics).
114     UseCheck       /// An use of a compare instruction to simplify.
115   };
116 
117   union {
118     Instruction *Inst;
119     Use *U;
120     ConditionTy Cond;
121   };
122 
123   /// A pre-condition that must hold for the current fact to be added to the
124   /// system.
125   ConditionTy DoesHold;
126 
127   unsigned NumIn;
128   unsigned NumOut;
129   EntryTy Ty;
130 
131   FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst)
132       : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
133         Ty(Ty) {}
134 
135   FactOrCheck(DomTreeNode *DTN, Use *U)
136       : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr),
137         NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
138         Ty(EntryTy::UseCheck) {}
139 
140   FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1,
141               ConditionTy Precond = ConditionTy())
142       : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()),
143         NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {}
144 
145   static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred,
146                                       Value *Op0, Value *Op1,
147                                       ConditionTy Precond = ConditionTy()) {
148     return FactOrCheck(DTN, Pred, Op0, Op1, Precond);
149   }
150 
151   static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) {
152     return FactOrCheck(EntryTy::InstFact, DTN, Inst);
153   }
154 
155   static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
156     return FactOrCheck(DTN, U);
157   }
158 
159   static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
160     return FactOrCheck(EntryTy::InstCheck, DTN, CI);
161   }
162 
163   bool isCheck() const {
164     return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck;
165   }
166 
167   Instruction *getContextInst() const {
168     if (Ty == EntryTy::UseCheck)
169       return getContextInstForUse(*U);
170     return Inst;
171   }
172 
173   Instruction *getInstructionToSimplify() const {
174     assert(isCheck());
175     if (Ty == EntryTy::InstCheck)
176       return Inst;
177     // The use may have been simplified to a constant already.
178     return dyn_cast<Instruction>(*U);
179   }
180 
181   bool isConditionFact() const { return Ty == EntryTy::ConditionFact; }
182 };
183 
184 /// Keep state required to build worklist.
185 struct State {
186   DominatorTree &DT;
187   LoopInfo &LI;
188   ScalarEvolution &SE;
189   SmallVector<FactOrCheck, 64> WorkList;
190 
191   State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE)
192       : DT(DT), LI(LI), SE(SE) {}
193 
194   /// Process block \p BB and add known facts to work-list.
195   void addInfoFor(BasicBlock &BB);
196 
197   /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares
198   /// controlling the loop header.
199   void addInfoForInductions(BasicBlock &BB);
200 
201   /// Returns true if we can add a known condition from BB to its successor
202   /// block Succ.
203   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
204     return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
205   }
206 };
207 
208 class ConstraintInfo;
209 
210 struct StackEntry {
211   unsigned NumIn;
212   unsigned NumOut;
213   bool IsSigned = false;
214   /// Variables that can be removed from the system once the stack entry gets
215   /// removed.
216   SmallVector<Value *, 2> ValuesToRelease;
217 
218   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
219              SmallVector<Value *, 2> ValuesToRelease)
220       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
221         ValuesToRelease(ValuesToRelease) {}
222 };
223 
224 struct ConstraintTy {
225   SmallVector<int64_t, 8> Coefficients;
226   SmallVector<ConditionTy, 2> Preconditions;
227 
228   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
229 
230   bool IsSigned = false;
231 
232   ConstraintTy() = default;
233 
234   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq,
235                bool IsNe)
236       : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) {
237   }
238 
239   unsigned size() const { return Coefficients.size(); }
240 
241   unsigned empty() const { return Coefficients.empty(); }
242 
243   /// Returns true if all preconditions for this list of constraints are
244   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
245   bool isValid(const ConstraintInfo &Info) const;
246 
247   bool isEq() const { return IsEq; }
248 
249   bool isNe() const { return IsNe; }
250 
251   /// Check if the current constraint is implied by the given ConstraintSystem.
252   ///
253   /// \return true or false if the constraint is proven to be respectively true,
254   /// or false. When the constraint cannot be proven to be either true or false,
255   /// std::nullopt is returned.
256   std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
257 
258 private:
259   bool IsEq = false;
260   bool IsNe = false;
261 };
262 
263 /// Wrapper encapsulating separate constraint systems and corresponding value
264 /// mappings for both unsigned and signed information. Facts are added to and
265 /// conditions are checked against the corresponding system depending on the
266 /// signed-ness of their predicates. While the information is kept separate
267 /// based on signed-ness, certain conditions can be transferred between the two
268 /// systems.
269 class ConstraintInfo {
270 
271   ConstraintSystem UnsignedCS;
272   ConstraintSystem SignedCS;
273 
274   const DataLayout &DL;
275 
276 public:
277   ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
278       : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {}
279 
280   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
281     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
282   }
283   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
284     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
285   }
286 
287   ConstraintSystem &getCS(bool Signed) {
288     return Signed ? SignedCS : UnsignedCS;
289   }
290   const ConstraintSystem &getCS(bool Signed) const {
291     return Signed ? SignedCS : UnsignedCS;
292   }
293 
294   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
295   void popLastNVariables(bool Signed, unsigned N) {
296     getCS(Signed).popLastNVariables(N);
297   }
298 
299   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
300 
301   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
302                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
303 
304   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
305   /// constraints, using indices from the corresponding constraint system.
306   /// New variables that need to be added to the system are collected in
307   /// \p NewVariables.
308   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
309                              SmallVectorImpl<Value *> &NewVariables) const;
310 
311   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
312   /// constraints using getConstraint. Returns an empty constraint if the result
313   /// cannot be used to query the existing constraint system, e.g. because it
314   /// would require adding new variables. Also tries to convert signed
315   /// predicates to unsigned ones if possible to allow using the unsigned system
316   /// which increases the effectiveness of the signed <-> unsigned transfer
317   /// logic.
318   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
319                                        Value *Op1) const;
320 
321   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
322   /// system if \p Pred is signed/unsigned.
323   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
324                              unsigned NumIn, unsigned NumOut,
325                              SmallVectorImpl<StackEntry> &DFSInStack);
326 };
327 
328 /// Represents a (Coefficient * Variable) entry after IR decomposition.
329 struct DecompEntry {
330   int64_t Coefficient;
331   Value *Variable;
332   /// True if the variable is known positive in the current constraint.
333   bool IsKnownNonNegative;
334 
335   DecompEntry(int64_t Coefficient, Value *Variable,
336               bool IsKnownNonNegative = false)
337       : Coefficient(Coefficient), Variable(Variable),
338         IsKnownNonNegative(IsKnownNonNegative) {}
339 };
340 
341 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
342 struct Decomposition {
343   int64_t Offset = 0;
344   SmallVector<DecompEntry, 3> Vars;
345 
346   Decomposition(int64_t Offset) : Offset(Offset) {}
347   Decomposition(Value *V, bool IsKnownNonNegative = false) {
348     Vars.emplace_back(1, V, IsKnownNonNegative);
349   }
350   Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
351       : Offset(Offset), Vars(Vars) {}
352 
353   void add(int64_t OtherOffset) {
354     Offset = addWithOverflow(Offset, OtherOffset);
355   }
356 
357   void add(const Decomposition &Other) {
358     add(Other.Offset);
359     append_range(Vars, Other.Vars);
360   }
361 
362   void mul(int64_t Factor) {
363     Offset = multiplyWithOverflow(Offset, Factor);
364     for (auto &Var : Vars)
365       Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
366   }
367 };
368 
369 } // namespace
370 
371 static Decomposition decompose(Value *V,
372                                SmallVectorImpl<ConditionTy> &Preconditions,
373                                bool IsSigned, const DataLayout &DL);
374 
375 static bool canUseSExt(ConstantInt *CI) {
376   const APInt &Val = CI->getValue();
377   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
378 }
379 
380 static Decomposition decomposeGEP(GEPOperator &GEP,
381                                   SmallVectorImpl<ConditionTy> &Preconditions,
382                                   bool IsSigned, const DataLayout &DL) {
383   // Do not reason about pointers where the index size is larger than 64 bits,
384   // as the coefficients used to encode constraints are 64 bit integers.
385   if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
386     return &GEP;
387 
388   if (!GEP.isInBounds())
389     return &GEP;
390 
391   assert(!IsSigned && "The logic below only supports decomposition for "
392                       "unsinged predicates at the moment.");
393   Type *PtrTy = GEP.getType()->getScalarType();
394   unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
395   MapVector<Value *, APInt> VariableOffsets;
396   APInt ConstantOffset(BitWidth, 0);
397   if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
398     return &GEP;
399 
400   // Handle the (gep (gep ....), C) case by incrementing the constant
401   // coefficient of the inner GEP, if C is a constant.
402   auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand());
403   if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) {
404     auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
405     Result.add(ConstantOffset.getSExtValue());
406 
407     if (ConstantOffset.isNegative()) {
408       unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType());
409       int64_t ConstantOffsetI = ConstantOffset.getSExtValue();
410       if (ConstantOffsetI % Scale != 0)
411         return &GEP;
412       // Add pre-condition ensuring the GEP is increasing monotonically and
413       // can be de-composed.
414       // Both sides are normalized by being divided by Scale.
415       Preconditions.emplace_back(
416           CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
417           ConstantInt::get(InnerGEP->getOperand(1)->getType(),
418                            -1 * (ConstantOffsetI / Scale)));
419     }
420     return Result;
421   }
422 
423   Decomposition Result(ConstantOffset.getSExtValue(),
424                        DecompEntry(1, GEP.getPointerOperand()));
425   for (auto [Index, Scale] : VariableOffsets) {
426     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
427     IdxResult.mul(Scale.getSExtValue());
428     Result.add(IdxResult);
429 
430     // If Op0 is signed non-negative, the GEP is increasing monotonically and
431     // can be de-composed.
432     if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
433       Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
434                                  ConstantInt::get(Index->getType(), 0));
435   }
436   return Result;
437 }
438 
439 // Decomposes \p V into a constant offset + list of pairs { Coefficient,
440 // Variable } where Coefficient * Variable. The sum of the constant offset and
441 // pairs equals \p V.
442 static Decomposition decompose(Value *V,
443                                SmallVectorImpl<ConditionTy> &Preconditions,
444                                bool IsSigned, const DataLayout &DL) {
445 
446   auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
447                                                       bool IsSignedB) {
448     auto ResA = decompose(A, Preconditions, IsSigned, DL);
449     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
450     ResA.add(ResB);
451     return ResA;
452   };
453 
454   Type *Ty = V->getType()->getScalarType();
455   if (Ty->isPointerTy() && !IsSigned) {
456     if (auto *GEP = dyn_cast<GEPOperator>(V))
457       return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
458     return V;
459   }
460 
461   // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so
462   // coefficient add/mul may wrap, while the operation in the full bit width
463   // would not.
464   if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64)
465     return V;
466 
467   // Decompose \p V used with a signed predicate.
468   if (IsSigned) {
469     if (auto *CI = dyn_cast<ConstantInt>(V)) {
470       if (canUseSExt(CI))
471         return CI->getSExtValue();
472     }
473     Value *Op0;
474     Value *Op1;
475     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
476       return MergeResults(Op0, Op1, IsSigned);
477 
478     ConstantInt *CI;
479     if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) {
480       auto Result = decompose(Op0, Preconditions, IsSigned, DL);
481       Result.mul(CI->getSExtValue());
482       return Result;
483     }
484 
485     return V;
486   }
487 
488   if (auto *CI = dyn_cast<ConstantInt>(V)) {
489     if (CI->uge(MaxConstraintValue))
490       return V;
491     return int64_t(CI->getZExtValue());
492   }
493 
494   Value *Op0;
495   bool IsKnownNonNegative = false;
496   if (match(V, m_ZExt(m_Value(Op0)))) {
497     IsKnownNonNegative = true;
498     V = Op0;
499   }
500 
501   Value *Op1;
502   ConstantInt *CI;
503   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
504     return MergeResults(Op0, Op1, IsSigned);
505   }
506   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
507     if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
508       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
509                                  ConstantInt::get(Op0->getType(), 0));
510     if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
511       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
512                                  ConstantInt::get(Op1->getType(), 0));
513 
514     return MergeResults(Op0, Op1, IsSigned);
515   }
516 
517   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
518       canUseSExt(CI)) {
519     Preconditions.emplace_back(
520         CmpInst::ICMP_UGE, Op0,
521         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
522     return MergeResults(Op0, CI, true);
523   }
524 
525   // Decompose or as an add if there are no common bits between the operands.
526   if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) &&
527       haveNoCommonBitsSet(Op0, CI, DL)) {
528     return MergeResults(Op0, CI, IsSigned);
529   }
530 
531   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
532     if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
533       return {V, IsKnownNonNegative};
534     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
535     Result.mul(int64_t{1} << CI->getSExtValue());
536     return Result;
537   }
538 
539   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
540       (!CI->isNegative())) {
541     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
542     Result.mul(CI->getSExtValue());
543     return Result;
544   }
545 
546   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI))
547     return {-1 * CI->getSExtValue(), {{1, Op0}}};
548   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
549     return {0, {{1, Op0}, {-1, Op1}}};
550 
551   return {V, IsKnownNonNegative};
552 }
553 
554 ConstraintTy
555 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
556                               SmallVectorImpl<Value *> &NewVariables) const {
557   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
558   bool IsEq = false;
559   bool IsNe = false;
560 
561   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
562   switch (Pred) {
563   case CmpInst::ICMP_UGT:
564   case CmpInst::ICMP_UGE:
565   case CmpInst::ICMP_SGT:
566   case CmpInst::ICMP_SGE: {
567     Pred = CmpInst::getSwappedPredicate(Pred);
568     std::swap(Op0, Op1);
569     break;
570   }
571   case CmpInst::ICMP_EQ:
572     if (match(Op1, m_Zero())) {
573       Pred = CmpInst::ICMP_ULE;
574     } else {
575       IsEq = true;
576       Pred = CmpInst::ICMP_ULE;
577     }
578     break;
579   case CmpInst::ICMP_NE:
580     if (match(Op1, m_Zero())) {
581       Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
582       std::swap(Op0, Op1);
583     } else {
584       IsNe = true;
585       Pred = CmpInst::ICMP_ULE;
586     }
587     break;
588   default:
589     break;
590   }
591 
592   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
593       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
594     return {};
595 
596   SmallVector<ConditionTy, 4> Preconditions;
597   bool IsSigned = CmpInst::isSigned(Pred);
598   auto &Value2Index = getValue2Index(IsSigned);
599   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
600                         Preconditions, IsSigned, DL);
601   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
602                         Preconditions, IsSigned, DL);
603   int64_t Offset1 = ADec.Offset;
604   int64_t Offset2 = BDec.Offset;
605   Offset1 *= -1;
606 
607   auto &VariablesA = ADec.Vars;
608   auto &VariablesB = BDec.Vars;
609 
610   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
611   // new entry to NewVariables.
612   DenseMap<Value *, unsigned> NewIndexMap;
613   auto GetOrAddIndex = [&Value2Index, &NewVariables,
614                         &NewIndexMap](Value *V) -> unsigned {
615     auto V2I = Value2Index.find(V);
616     if (V2I != Value2Index.end())
617       return V2I->second;
618     auto Insert =
619         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
620     if (Insert.second)
621       NewVariables.push_back(V);
622     return Insert.first->second;
623   };
624 
625   // Make sure all variables have entries in Value2Index or NewVariables.
626   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
627     GetOrAddIndex(KV.Variable);
628 
629   // Build result constraint, by first adding all coefficients from A and then
630   // subtracting all coefficients from B.
631   ConstraintTy Res(
632       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
633       IsSigned, IsEq, IsNe);
634   // Collect variables that are known to be positive in all uses in the
635   // constraint.
636   DenseMap<Value *, bool> KnownNonNegativeVariables;
637   auto &R = Res.Coefficients;
638   for (const auto &KV : VariablesA) {
639     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
640     auto I =
641         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
642     I.first->second &= KV.IsKnownNonNegative;
643   }
644 
645   for (const auto &KV : VariablesB) {
646     if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient,
647                     R[GetOrAddIndex(KV.Variable)]))
648       return {};
649     auto I =
650         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
651     I.first->second &= KV.IsKnownNonNegative;
652   }
653 
654   int64_t OffsetSum;
655   if (AddOverflow(Offset1, Offset2, OffsetSum))
656     return {};
657   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
658     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
659       return {};
660   R[0] = OffsetSum;
661   Res.Preconditions = std::move(Preconditions);
662 
663   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
664   // variables.
665   while (!NewVariables.empty()) {
666     int64_t Last = R.back();
667     if (Last != 0)
668       break;
669     R.pop_back();
670     Value *RemovedV = NewVariables.pop_back_val();
671     NewIndexMap.erase(RemovedV);
672   }
673 
674   // Add extra constraints for variables that are known positive.
675   for (auto &KV : KnownNonNegativeVariables) {
676     if (!KV.second ||
677         (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
678       continue;
679     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
680     C[GetOrAddIndex(KV.first)] = -1;
681     Res.ExtraInfo.push_back(C);
682   }
683   return Res;
684 }
685 
686 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
687                                                      Value *Op0,
688                                                      Value *Op1) const {
689   Constant *NullC = Constant::getNullValue(Op0->getType());
690   // Handle trivially true compares directly to avoid adding V UGE 0 constraints
691   // for all variables in the unsigned system.
692   if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) ||
693       (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) {
694     auto &Value2Index = getValue2Index(false);
695     // Return constraint that's trivially true.
696     return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false,
697                         false, false);
698   }
699 
700   // If both operands are known to be non-negative, change signed predicates to
701   // unsigned ones. This increases the reasoning effectiveness in combination
702   // with the signed <-> unsigned transfer logic.
703   if (CmpInst::isSigned(Pred) &&
704       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
705       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
706     Pred = CmpInst::getUnsignedPredicate(Pred);
707 
708   SmallVector<Value *> NewVariables;
709   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
710   if (!NewVariables.empty())
711     return {};
712   return R;
713 }
714 
715 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
716   return Coefficients.size() > 0 &&
717          all_of(Preconditions, [&Info](const ConditionTy &C) {
718            return Info.doesHold(C.Pred, C.Op0, C.Op1);
719          });
720 }
721 
722 std::optional<bool>
723 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
724   bool IsConditionImplied = CS.isConditionImplied(Coefficients);
725 
726   if (IsEq || IsNe) {
727     auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
728     bool IsNegatedOrEqualImplied =
729         !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
730 
731     // In order to check that `%a == %b` is true (equality), both conditions `%a
732     // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq`
733     // is true), we return true if they both hold, false in the other cases.
734     if (IsConditionImplied && IsNegatedOrEqualImplied)
735       return IsEq;
736 
737     auto Negated = ConstraintSystem::negate(Coefficients);
738     bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
739 
740     auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
741     bool IsStrictLessThanImplied =
742         !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
743 
744     // In order to check that `%a != %b` is true (non-equality), either
745     // condition `%a > %b` or `%a < %b` must hold true. When checking for
746     // non-equality (`IsNe` is true), we return true if one of the two holds,
747     // false in the other cases.
748     if (IsNegatedImplied || IsStrictLessThanImplied)
749       return IsNe;
750 
751     return std::nullopt;
752   }
753 
754   if (IsConditionImplied)
755     return true;
756 
757   auto Negated = ConstraintSystem::negate(Coefficients);
758   auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
759   if (IsNegatedImplied)
760     return false;
761 
762   // Neither the condition nor its negated holds, did not prove anything.
763   return std::nullopt;
764 }
765 
766 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
767                               Value *B) const {
768   auto R = getConstraintForSolving(Pred, A, B);
769   return R.isValid(*this) &&
770          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
771 }
772 
773 void ConstraintInfo::transferToOtherSystem(
774     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
775     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
776   // Check if we can combine facts from the signed and unsigned systems to
777   // derive additional facts.
778   if (!A->getType()->isIntegerTy())
779     return;
780   // FIXME: This currently depends on the order we add facts. Ideally we
781   // would first add all known facts and only then try to add additional
782   // facts.
783   switch (Pred) {
784   default:
785     break;
786   case CmpInst::ICMP_ULT:
787   case CmpInst::ICMP_ULE:
788     //  If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B.
789     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
790       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
791               NumOut, DFSInStack);
792       addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
793               DFSInStack);
794     }
795     break;
796   case CmpInst::ICMP_UGE:
797   case CmpInst::ICMP_UGT:
798     //  If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B.
799     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) {
800       addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn,
801               NumOut, DFSInStack);
802       addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
803               DFSInStack);
804     }
805     break;
806   case CmpInst::ICMP_SLT:
807     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
808       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
809     break;
810   case CmpInst::ICMP_SGT: {
811     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
812       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
813               NumOut, DFSInStack);
814     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0)))
815       addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
816 
817     break;
818   }
819   case CmpInst::ICMP_SGE:
820     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
821       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
822     }
823     break;
824   }
825 }
826 
827 #ifndef NDEBUG
828 
829 static void dumpConstraint(ArrayRef<int64_t> C,
830                            const DenseMap<Value *, unsigned> &Value2Index) {
831   ConstraintSystem CS(Value2Index);
832   CS.addVariableRowFill(C);
833   CS.dump();
834 }
835 #endif
836 
837 void State::addInfoForInductions(BasicBlock &BB) {
838   auto *L = LI.getLoopFor(&BB);
839   if (!L || L->getHeader() != &BB)
840     return;
841 
842   Value *A;
843   Value *B;
844   CmpInst::Predicate Pred;
845 
846   if (!match(BB.getTerminator(),
847              m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value())))
848     return;
849   PHINode *PN = dyn_cast<PHINode>(A);
850   if (!PN) {
851     Pred = CmpInst::getSwappedPredicate(Pred);
852     std::swap(A, B);
853     PN = dyn_cast<PHINode>(A);
854   }
855 
856   if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 ||
857       !SE.isSCEVable(PN->getType()))
858     return;
859 
860   BasicBlock *InLoopSucc = nullptr;
861   if (Pred == CmpInst::ICMP_NE)
862     InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0);
863   else if (Pred == CmpInst::ICMP_EQ)
864     InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1);
865   else
866     return;
867 
868   if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB)
869     return;
870 
871   auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN));
872   BasicBlock *LoopPred = L->getLoopPredecessor();
873   if (!AR || !LoopPred)
874     return;
875 
876   const SCEV *StartSCEV = AR->getStart();
877   Value *StartValue = nullptr;
878   if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) {
879     StartValue = C->getValue();
880   } else {
881     StartValue = PN->getIncomingValueForBlock(LoopPred);
882     assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value");
883   }
884 
885   DomTreeNode *DTN = DT.getNode(InLoopSucc);
886   auto Inc = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT);
887   bool MonotonicallyIncreasing =
888       Inc && *Inc == ScalarEvolution::MonotonicallyIncreasing;
889   if (MonotonicallyIncreasing) {
890     // SCEV guarantees that AR does not wrap, so PN >= StartValue can be added
891     // unconditionally.
892     WorkList.push_back(
893         FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue));
894   }
895 
896   APInt StepOffset;
897   if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
898     StepOffset = C->getAPInt();
899   else
900     return;
901 
902   // Handle negative steps.
903   if (StepOffset.isNegative()) {
904     // TODO: Extend to allow steps > -1.
905     if (!(-StepOffset).isOne())
906       return;
907 
908     // AR may wrap.
909     // Add StartValue >= PN conditional on B <= StartValue which guarantees that
910     // the loop exits before wrapping with a step of -1.
911     WorkList.push_back(FactOrCheck::getConditionFact(
912         DTN, CmpInst::ICMP_UGE, StartValue, PN,
913         ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
914     // Add PN > B conditional on B <= StartValue which guarantees that the loop
915     // exits when reaching B with a step of -1.
916     WorkList.push_back(FactOrCheck::getConditionFact(
917         DTN, CmpInst::ICMP_UGT, PN, B,
918         ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
919     return;
920   }
921 
922   // Make sure AR either steps by 1 or that the value we compare against is a
923   // GEP based on the same start value and all offsets are a multiple of the
924   // step size, to guarantee that the induction will reach the value.
925   if (StepOffset.isZero() || StepOffset.isNegative())
926     return;
927 
928   if (!StepOffset.isOne()) {
929     auto *UpperGEP = dyn_cast<GetElementPtrInst>(B);
930     if (!UpperGEP || UpperGEP->getPointerOperand() != StartValue ||
931         !UpperGEP->isInBounds())
932       return;
933 
934     MapVector<Value *, APInt> UpperVariableOffsets;
935     APInt UpperConstantOffset(StepOffset.getBitWidth(), 0);
936     const DataLayout &DL = BB.getModule()->getDataLayout();
937     if (!UpperGEP->collectOffset(DL, StepOffset.getBitWidth(),
938                                  UpperVariableOffsets, UpperConstantOffset))
939       return;
940     // All variable offsets and the constant offset have to be a multiple of the
941     // step.
942     if (!UpperConstantOffset.urem(StepOffset).isZero() ||
943         any_of(UpperVariableOffsets, [&StepOffset](const auto &P) {
944           return !P.second.urem(StepOffset).isZero();
945         }))
946       return;
947   }
948 
949   // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which
950   // guarantees that the loop exits before wrapping in combination with the
951   // restrictions on B and the step above.
952   if (!MonotonicallyIncreasing) {
953     WorkList.push_back(FactOrCheck::getConditionFact(
954         DTN, CmpInst::ICMP_UGE, PN, StartValue,
955         ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
956   }
957   WorkList.push_back(FactOrCheck::getConditionFact(
958       DTN, CmpInst::ICMP_ULT, PN, B,
959       ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
960 }
961 
962 void State::addInfoFor(BasicBlock &BB) {
963   addInfoForInductions(BB);
964 
965   // True as long as long as the current instruction is guaranteed to execute.
966   bool GuaranteedToExecute = true;
967   // Queue conditions and assumes.
968   for (Instruction &I : BB) {
969     if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
970       for (Use &U : Cmp->uses()) {
971         auto *UserI = getContextInstForUse(U);
972         auto *DTN = DT.getNode(UserI->getParent());
973         if (!DTN)
974           continue;
975         WorkList.push_back(FactOrCheck::getCheck(DTN, &U));
976       }
977       continue;
978     }
979 
980     if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) {
981       WorkList.push_back(
982           FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
983       continue;
984     }
985 
986     if (isa<MinMaxIntrinsic>(&I)) {
987       WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I));
988       continue;
989     }
990 
991     Value *A, *B;
992     CmpInst::Predicate Pred;
993     // For now, just handle assumes with a single compare as condition.
994     if (match(&I, m_Intrinsic<Intrinsic::assume>(
995                       m_ICmp(Pred, m_Value(A), m_Value(B))))) {
996       if (GuaranteedToExecute) {
997         // The assume is guaranteed to execute when BB is entered, hence Cond
998         // holds on entry to BB.
999         WorkList.emplace_back(FactOrCheck::getConditionFact(
1000             DT.getNode(I.getParent()), Pred, A, B));
1001       } else {
1002         WorkList.emplace_back(
1003             FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I));
1004       }
1005     }
1006     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
1007   }
1008 
1009   if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) {
1010     for (auto &Case : Switch->cases()) {
1011       BasicBlock *Succ = Case.getCaseSuccessor();
1012       Value *V = Case.getCaseValue();
1013       if (!canAddSuccessor(BB, Succ))
1014         continue;
1015       WorkList.emplace_back(FactOrCheck::getConditionFact(
1016           DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V));
1017     }
1018     return;
1019   }
1020 
1021   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
1022   if (!Br || !Br->isConditional())
1023     return;
1024 
1025   Value *Cond = Br->getCondition();
1026 
1027   // If the condition is a chain of ORs/AND and the successor only has the
1028   // current block as predecessor, queue conditions for the successor.
1029   Value *Op0, *Op1;
1030   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
1031       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1032     bool IsOr = match(Cond, m_LogicalOr());
1033     bool IsAnd = match(Cond, m_LogicalAnd());
1034     // If there's a select that matches both AND and OR, we need to commit to
1035     // one of the options. Arbitrarily pick OR.
1036     if (IsOr && IsAnd)
1037       IsAnd = false;
1038 
1039     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
1040     if (canAddSuccessor(BB, Successor)) {
1041       SmallVector<Value *> CondWorkList;
1042       SmallPtrSet<Value *, 8> SeenCond;
1043       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
1044         if (SeenCond.insert(V).second)
1045           CondWorkList.push_back(V);
1046       };
1047       QueueValue(Op1);
1048       QueueValue(Op0);
1049       while (!CondWorkList.empty()) {
1050         Value *Cur = CondWorkList.pop_back_val();
1051         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
1052           WorkList.emplace_back(FactOrCheck::getConditionFact(
1053               DT.getNode(Successor),
1054               IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate())
1055                    : Cmp->getPredicate(),
1056               Cmp->getOperand(0), Cmp->getOperand(1)));
1057           continue;
1058         }
1059         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
1060           QueueValue(Op1);
1061           QueueValue(Op0);
1062           continue;
1063         }
1064         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1065           QueueValue(Op1);
1066           QueueValue(Op0);
1067           continue;
1068         }
1069       }
1070     }
1071     return;
1072   }
1073 
1074   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
1075   if (!CmpI)
1076     return;
1077   if (canAddSuccessor(BB, Br->getSuccessor(0)))
1078     WorkList.emplace_back(FactOrCheck::getConditionFact(
1079         DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(),
1080         CmpI->getOperand(0), CmpI->getOperand(1)));
1081   if (canAddSuccessor(BB, Br->getSuccessor(1)))
1082     WorkList.emplace_back(FactOrCheck::getConditionFact(
1083         DT.getNode(Br->getSuccessor(1)),
1084         CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0),
1085         CmpI->getOperand(1)));
1086 }
1087 
1088 namespace {
1089 /// Helper to keep track of a condition and if it should be treated as negated
1090 /// for reproducer construction.
1091 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a
1092 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack.
1093 struct ReproducerEntry {
1094   ICmpInst::Predicate Pred;
1095   Value *LHS;
1096   Value *RHS;
1097 
1098   ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS)
1099       : Pred(Pred), LHS(LHS), RHS(RHS) {}
1100 };
1101 } // namespace
1102 
1103 /// Helper function to generate a reproducer function for simplifying \p Cond.
1104 /// The reproducer function contains a series of @llvm.assume calls, one for
1105 /// each condition in \p Stack. For each condition, the operand instruction are
1106 /// cloned until we reach operands that have an entry in \p Value2Index. Those
1107 /// will then be added as function arguments. \p DT is used to order cloned
1108 /// instructions. The reproducer function will get added to \p M, if it is
1109 /// non-null. Otherwise no reproducer function is generated.
1110 static void generateReproducer(CmpInst *Cond, Module *M,
1111                                ArrayRef<ReproducerEntry> Stack,
1112                                ConstraintInfo &Info, DominatorTree &DT) {
1113   if (!M)
1114     return;
1115 
1116   LLVMContext &Ctx = Cond->getContext();
1117 
1118   LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
1119 
1120   ValueToValueMapTy Old2New;
1121   SmallVector<Value *> Args;
1122   SmallPtrSet<Value *, 8> Seen;
1123   // Traverse Cond and its operands recursively until we reach a value that's in
1124   // Value2Index or not an instruction, or not a operation that
1125   // ConstraintElimination can decompose. Such values will be considered as
1126   // external inputs to the reproducer, they are collected and added as function
1127   // arguments later.
1128   auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1129     auto &Value2Index = Info.getValue2Index(IsSigned);
1130     SmallVector<Value *, 4> WorkList(Ops);
1131     while (!WorkList.empty()) {
1132       Value *V = WorkList.pop_back_val();
1133       if (!Seen.insert(V).second)
1134         continue;
1135       if (Old2New.find(V) != Old2New.end())
1136         continue;
1137       if (isa<Constant>(V))
1138         continue;
1139 
1140       auto *I = dyn_cast<Instruction>(V);
1141       if (Value2Index.contains(V) || !I ||
1142           !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) {
1143         Old2New[V] = V;
1144         Args.push_back(V);
1145         LLVM_DEBUG(dbgs() << "  found external input " << *V << "\n");
1146       } else {
1147         append_range(WorkList, I->operands());
1148       }
1149     }
1150   };
1151 
1152   for (auto &Entry : Stack)
1153     if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE)
1154       CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred));
1155   CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate()));
1156 
1157   SmallVector<Type *> ParamTys;
1158   for (auto *P : Args)
1159     ParamTys.push_back(P->getType());
1160 
1161   FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
1162                                         /*isVarArg=*/false);
1163   Function *F = Function::Create(FTy, Function::ExternalLinkage,
1164                                  Cond->getModule()->getName() +
1165                                      Cond->getFunction()->getName() + "repro",
1166                                  M);
1167   // Add arguments to the reproducer function for each external value collected.
1168   for (unsigned I = 0; I < Args.size(); ++I) {
1169     F->getArg(I)->setName(Args[I]->getName());
1170     Old2New[Args[I]] = F->getArg(I);
1171   }
1172 
1173   BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
1174   IRBuilder<> Builder(Entry);
1175   Builder.CreateRet(Builder.getTrue());
1176   Builder.SetInsertPoint(Entry->getTerminator());
1177 
1178   // Clone instructions in \p Ops and their operands recursively until reaching
1179   // an value in Value2Index (external input to the reproducer). Update Old2New
1180   // mapping for the original and cloned instructions. Sort instructions to
1181   // clone by dominance, then insert the cloned instructions in the function.
1182   auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1183     SmallVector<Value *, 4> WorkList(Ops);
1184     SmallVector<Instruction *> ToClone;
1185     auto &Value2Index = Info.getValue2Index(IsSigned);
1186     while (!WorkList.empty()) {
1187       Value *V = WorkList.pop_back_val();
1188       if (Old2New.find(V) != Old2New.end())
1189         continue;
1190 
1191       auto *I = dyn_cast<Instruction>(V);
1192       if (!Value2Index.contains(V) && I) {
1193         Old2New[V] = nullptr;
1194         ToClone.push_back(I);
1195         append_range(WorkList, I->operands());
1196       }
1197     }
1198 
1199     sort(ToClone,
1200          [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
1201     for (Instruction *I : ToClone) {
1202       Instruction *Cloned = I->clone();
1203       Old2New[I] = Cloned;
1204       Old2New[I]->setName(I->getName());
1205       Cloned->insertBefore(&*Builder.GetInsertPoint());
1206       Cloned->dropUnknownNonDebugMetadata();
1207       Cloned->setDebugLoc({});
1208     }
1209   };
1210 
1211   // Materialize the assumptions for the reproducer using the entries in Stack.
1212   // That is, first clone the operands of the condition recursively until we
1213   // reach an external input to the reproducer and add them to the reproducer
1214   // function. Then add an ICmp for the condition (with the inverse predicate if
1215   // the entry is negated) and an assert using the ICmp.
1216   for (auto &Entry : Stack) {
1217     if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE)
1218       continue;
1219 
1220     LLVM_DEBUG(
1221         dbgs() << "  Materializing assumption icmp " << Entry.Pred << ' ';
1222         Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", ";
1223         Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n");
1224     CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred));
1225 
1226     auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS);
1227     Builder.CreateAssumption(Cmp);
1228   }
1229 
1230   // Finally, clone the condition to reproduce and remap instruction operands in
1231   // the reproducer using Old2New.
1232   CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
1233   Entry->getTerminator()->setOperand(0, Cond);
1234   remapInstructionsInBlocks({Entry}, Old2New);
1235 
1236   assert(!verifyFunction(*F, &dbgs()));
1237 }
1238 
1239 static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info,
1240                                           unsigned NumIn, unsigned NumOut,
1241                                           Instruction *ContextInst) {
1242   LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
1243 
1244   CmpInst::Predicate Pred = Cmp->getPredicate();
1245   Value *A = Cmp->getOperand(0);
1246   Value *B = Cmp->getOperand(1);
1247 
1248   auto R = Info.getConstraintForSolving(Pred, A, B);
1249   if (R.empty() || !R.isValid(Info)){
1250     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
1251     return std::nullopt;
1252   }
1253 
1254   auto &CSToUse = Info.getCS(R.IsSigned);
1255 
1256   // If there was extra information collected during decomposition, apply
1257   // it now and remove it immediately once we are done with reasoning
1258   // about the constraint.
1259   for (auto &Row : R.ExtraInfo)
1260     CSToUse.addVariableRow(Row);
1261   auto InfoRestorer = make_scope_exit([&]() {
1262     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
1263       CSToUse.popLastConstraint();
1264   });
1265 
1266   if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) {
1267     if (!DebugCounter::shouldExecute(EliminatedCounter))
1268       return std::nullopt;
1269 
1270     LLVM_DEBUG({
1271       if (*ImpliedCondition) {
1272         dbgs() << "Condition " << *Cmp;
1273       } else {
1274         auto InversePred = Cmp->getInversePredicate();
1275         dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " "
1276                << *A << ", " << *B;
1277       }
1278       dbgs() << " implied by dominating constraints\n";
1279       CSToUse.dump();
1280     });
1281     return ImpliedCondition;
1282   }
1283 
1284   return std::nullopt;
1285 }
1286 
1287 static bool checkAndReplaceCondition(
1288     CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut,
1289     Instruction *ContextInst, Module *ReproducerModule,
1290     ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT,
1291     SmallVectorImpl<Instruction *> &ToRemove) {
1292   auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
1293     generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
1294     Constant *ConstantC = ConstantInt::getBool(
1295         CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
1296     Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut,
1297                                        ContextInst](Use &U) {
1298       auto *UserI = getContextInstForUse(U);
1299       auto *DTN = DT.getNode(UserI->getParent());
1300       if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
1301         return false;
1302       if (UserI->getParent() == ContextInst->getParent() &&
1303           UserI->comesBefore(ContextInst))
1304         return false;
1305 
1306       // Conditions in an assume trivially simplify to true. Skip uses
1307       // in assume calls to not destroy the available information.
1308       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1309       return !II || II->getIntrinsicID() != Intrinsic::assume;
1310     });
1311     NumCondsRemoved++;
1312     if (Cmp->use_empty())
1313       ToRemove.push_back(Cmp);
1314     return true;
1315   };
1316 
1317   if (auto ImpliedCondition =
1318           checkCondition(Cmp, Info, NumIn, NumOut, ContextInst))
1319     return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
1320   return false;
1321 }
1322 
1323 static void
1324 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
1325                      Module *ReproducerModule,
1326                      SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1327                      SmallVectorImpl<StackEntry> &DFSInStack) {
1328   Info.popLastConstraint(E.IsSigned);
1329   // Remove variables in the system that went out of scope.
1330   auto &Mapping = Info.getValue2Index(E.IsSigned);
1331   for (Value *V : E.ValuesToRelease)
1332     Mapping.erase(V);
1333   Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1334   DFSInStack.pop_back();
1335   if (ReproducerModule)
1336     ReproducerCondStack.pop_back();
1337 }
1338 
1339 /// Check if the first condition for an AND implies the second.
1340 static bool checkAndSecondOpImpliedByFirst(
1341     FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule,
1342     SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1343     SmallVectorImpl<StackEntry> &DFSInStack) {
1344 
1345   CmpInst::Predicate Pred;
1346   Value *A, *B;
1347   Instruction *And = CB.getContextInst();
1348   if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B))))
1349     return false;
1350 
1351   // Optimistically add fact from first condition.
1352   unsigned OldSize = DFSInStack.size();
1353   Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1354   if (OldSize == DFSInStack.size())
1355     return false;
1356 
1357   bool Changed = false;
1358   // Check if the second condition can be simplified now.
1359   if (auto ImpliedCondition =
1360           checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn,
1361                          CB.NumOut, CB.getContextInst())) {
1362     And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition));
1363     Changed = true;
1364   }
1365 
1366   // Remove entries again.
1367   while (OldSize < DFSInStack.size()) {
1368     StackEntry E = DFSInStack.back();
1369     removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack,
1370                          DFSInStack);
1371   }
1372   return Changed;
1373 }
1374 
1375 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
1376                              unsigned NumIn, unsigned NumOut,
1377                              SmallVectorImpl<StackEntry> &DFSInStack) {
1378   // If the constraint has a pre-condition, skip the constraint if it does not
1379   // hold.
1380   SmallVector<Value *> NewVariables;
1381   auto R = getConstraint(Pred, A, B, NewVariables);
1382 
1383   // TODO: Support non-equality for facts as well.
1384   if (!R.isValid(*this) || R.isNe())
1385     return;
1386 
1387   LLVM_DEBUG(dbgs() << "Adding '" << Pred << " ";
1388              A->printAsOperand(dbgs(), false); dbgs() << ", ";
1389              B->printAsOperand(dbgs(), false); dbgs() << "'\n");
1390   bool Added = false;
1391   auto &CSToUse = getCS(R.IsSigned);
1392   if (R.Coefficients.empty())
1393     return;
1394 
1395   Added |= CSToUse.addVariableRowFill(R.Coefficients);
1396 
1397   // If R has been added to the system, add the new variables and queue it for
1398   // removal once it goes out-of-scope.
1399   if (Added) {
1400     SmallVector<Value *, 2> ValuesToRelease;
1401     auto &Value2Index = getValue2Index(R.IsSigned);
1402     for (Value *V : NewVariables) {
1403       Value2Index.insert({V, Value2Index.size() + 1});
1404       ValuesToRelease.push_back(V);
1405     }
1406 
1407     LLVM_DEBUG({
1408       dbgs() << "  constraint: ";
1409       dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1410       dbgs() << "\n";
1411     });
1412 
1413     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1414                             std::move(ValuesToRelease));
1415 
1416     if (R.isEq()) {
1417       // Also add the inverted constraint for equality constraints.
1418       for (auto &Coeff : R.Coefficients)
1419         Coeff *= -1;
1420       CSToUse.addVariableRowFill(R.Coefficients);
1421 
1422       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1423                               SmallVector<Value *, 2>());
1424     }
1425   }
1426 }
1427 
1428 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
1429                                    SmallVectorImpl<Instruction *> &ToRemove) {
1430   bool Changed = false;
1431   IRBuilder<> Builder(II->getParent(), II->getIterator());
1432   Value *Sub = nullptr;
1433   for (User *U : make_early_inc_range(II->users())) {
1434     if (match(U, m_ExtractValue<0>(m_Value()))) {
1435       if (!Sub)
1436         Sub = Builder.CreateSub(A, B);
1437       U->replaceAllUsesWith(Sub);
1438       Changed = true;
1439     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
1440       U->replaceAllUsesWith(Builder.getFalse());
1441       Changed = true;
1442     } else
1443       continue;
1444 
1445     if (U->use_empty()) {
1446       auto *I = cast<Instruction>(U);
1447       ToRemove.push_back(I);
1448       I->setOperand(0, PoisonValue::get(II->getType()));
1449       Changed = true;
1450     }
1451   }
1452 
1453   if (II->use_empty()) {
1454     II->eraseFromParent();
1455     Changed = true;
1456   }
1457   return Changed;
1458 }
1459 
1460 static bool
1461 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
1462                           SmallVectorImpl<Instruction *> &ToRemove) {
1463   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1464                               ConstraintInfo &Info) {
1465     auto R = Info.getConstraintForSolving(Pred, A, B);
1466     if (R.size() < 2 || !R.isValid(Info))
1467       return false;
1468 
1469     auto &CSToUse = Info.getCS(R.IsSigned);
1470     return CSToUse.isConditionImplied(R.Coefficients);
1471   };
1472 
1473   bool Changed = false;
1474   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1475     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1476     // can be simplified to a regular sub.
1477     Value *A = II->getArgOperand(0);
1478     Value *B = II->getArgOperand(1);
1479     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1480         !DoesConditionHold(CmpInst::ICMP_SGE, B,
1481                            ConstantInt::get(A->getType(), 0), Info))
1482       return false;
1483     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
1484   }
1485   return Changed;
1486 }
1487 
1488 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI,
1489                                  ScalarEvolution &SE,
1490                                  OptimizationRemarkEmitter &ORE) {
1491   bool Changed = false;
1492   DT.updateDFSNumbers();
1493   SmallVector<Value *> FunctionArgs;
1494   for (Value &Arg : F.args())
1495     FunctionArgs.push_back(&Arg);
1496   ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs);
1497   State S(DT, LI, SE);
1498   std::unique_ptr<Module> ReproducerModule(
1499       DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1500 
1501   // First, collect conditions implied by branches and blocks with their
1502   // Dominator DFS in and out numbers.
1503   for (BasicBlock &BB : F) {
1504     if (!DT.getNode(&BB))
1505       continue;
1506     S.addInfoFor(BB);
1507   }
1508 
1509   // Next, sort worklist by dominance, so that dominating conditions to check
1510   // and facts come before conditions and facts dominated by them. If a
1511   // condition to check and a fact have the same numbers, conditional facts come
1512   // first. Assume facts and checks are ordered according to their relative
1513   // order in the containing basic block. Also make sure conditions with
1514   // constant operands come before conditions without constant operands. This
1515   // increases the effectiveness of the current signed <-> unsigned fact
1516   // transfer logic.
1517   stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1518     auto HasNoConstOp = [](const FactOrCheck &B) {
1519       Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0);
1520       Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1);
1521       return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1);
1522     };
1523     // If both entries have the same In numbers, conditional facts come first.
1524     // Otherwise use the relative order in the basic block.
1525     if (A.NumIn == B.NumIn) {
1526       if (A.isConditionFact() && B.isConditionFact()) {
1527         bool NoConstOpA = HasNoConstOp(A);
1528         bool NoConstOpB = HasNoConstOp(B);
1529         return NoConstOpA < NoConstOpB;
1530       }
1531       if (A.isConditionFact())
1532         return true;
1533       if (B.isConditionFact())
1534         return false;
1535       auto *InstA = A.getContextInst();
1536       auto *InstB = B.getContextInst();
1537       return InstA->comesBefore(InstB);
1538     }
1539     return A.NumIn < B.NumIn;
1540   });
1541 
1542   SmallVector<Instruction *> ToRemove;
1543 
1544   // Finally, process ordered worklist and eliminate implied conditions.
1545   SmallVector<StackEntry, 16> DFSInStack;
1546   SmallVector<ReproducerEntry> ReproducerCondStack;
1547   for (FactOrCheck &CB : S.WorkList) {
1548     // First, pop entries from the stack that are out-of-scope for CB. Remove
1549     // the corresponding entry from the constraint system.
1550     while (!DFSInStack.empty()) {
1551       auto &E = DFSInStack.back();
1552       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1553                         << "\n");
1554       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1555       assert(E.NumIn <= CB.NumIn);
1556       if (CB.NumOut <= E.NumOut)
1557         break;
1558       LLVM_DEBUG({
1559         dbgs() << "Removing ";
1560         dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1561                        Info.getValue2Index(E.IsSigned));
1562         dbgs() << "\n";
1563       });
1564       removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
1565                            DFSInStack);
1566     }
1567 
1568     LLVM_DEBUG(dbgs() << "Processing ");
1569 
1570     // For a block, check if any CmpInsts become known based on the current set
1571     // of constraints.
1572     if (CB.isCheck()) {
1573       Instruction *Inst = CB.getInstructionToSimplify();
1574       if (!Inst)
1575         continue;
1576       LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n");
1577       if (auto *II = dyn_cast<WithOverflowInst>(Inst)) {
1578         Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1579       } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) {
1580         bool Simplified = checkAndReplaceCondition(
1581             Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(),
1582             ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove);
1583         if (!Simplified && match(CB.getContextInst(),
1584                                  m_LogicalAnd(m_Value(), m_Specific(Inst)))) {
1585           Simplified =
1586               checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(),
1587                                              ReproducerCondStack, DFSInStack);
1588         }
1589         Changed |= Simplified;
1590       }
1591       continue;
1592     }
1593 
1594     auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) {
1595       LLVM_DEBUG(dbgs() << "fact to add to the system: "
1596                         << CmpInst::getPredicateName(Pred) << " ";
1597                  A->printAsOperand(dbgs()); dbgs() << ", ";
1598                  B->printAsOperand(dbgs()); dbgs() << "\n");
1599       if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1600         LLVM_DEBUG(
1601             dbgs()
1602             << "Skip adding constraint because system has too many rows.\n");
1603         return;
1604       }
1605 
1606       LLVM_DEBUG({
1607         dbgs() << "Processing fact to add to the system: " << Pred << " ";
1608         A->printAsOperand(dbgs());
1609         dbgs() << ", ";
1610         B->printAsOperand(dbgs(), false);
1611         dbgs() << "\n";
1612       });
1613 
1614       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1615       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1616         ReproducerCondStack.emplace_back(Pred, A, B);
1617 
1618       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1619       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
1620         // Add dummy entries to ReproducerCondStack to keep it in sync with
1621         // DFSInStack.
1622         for (unsigned I = 0,
1623                       E = (DFSInStack.size() - ReproducerCondStack.size());
1624              I < E; ++I) {
1625           ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE,
1626                                            nullptr, nullptr);
1627         }
1628       }
1629     };
1630 
1631     ICmpInst::Predicate Pred;
1632     if (!CB.isConditionFact()) {
1633       if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) {
1634         Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1635         AddFact(Pred, MinMax, MinMax->getLHS());
1636         AddFact(Pred, MinMax, MinMax->getRHS());
1637         continue;
1638       }
1639     }
1640 
1641     Value *A = nullptr, *B = nullptr;
1642     if (CB.isConditionFact()) {
1643       Pred = CB.Cond.Pred;
1644       A = CB.Cond.Op0;
1645       B = CB.Cond.Op1;
1646       if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE &&
1647           !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1))
1648         continue;
1649     } else {
1650       bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>(
1651                                         m_ICmp(Pred, m_Value(A), m_Value(B))));
1652       (void)Matched;
1653       assert(Matched && "Must have an assume intrinsic with a icmp operand");
1654     }
1655     AddFact(Pred, A, B);
1656   }
1657 
1658   if (ReproducerModule && !ReproducerModule->functions().empty()) {
1659     std::string S;
1660     raw_string_ostream StringS(S);
1661     ReproducerModule->print(StringS, nullptr);
1662     StringS.flush();
1663     OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
1664     Rem << ore::NV("module") << S;
1665     ORE.emit(Rem);
1666   }
1667 
1668 #ifndef NDEBUG
1669   unsigned SignedEntries =
1670       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1671   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
1672          "updates to CS and DFSInStack are out of sync");
1673   assert(Info.getCS(true).size() == SignedEntries &&
1674          "updates to CS and DFSInStack are out of sync");
1675 #endif
1676 
1677   for (Instruction *I : ToRemove)
1678     I->eraseFromParent();
1679   return Changed;
1680 }
1681 
1682 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1683                                                  FunctionAnalysisManager &AM) {
1684   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1685   auto &LI = AM.getResult<LoopAnalysis>(F);
1686   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1687   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1688   if (!eliminateConstraints(F, DT, LI, SE, ORE))
1689     return PreservedAnalyses::all();
1690 
1691   PreservedAnalyses PA;
1692   PA.preserve<DominatorTreeAnalysis>();
1693   PA.preserve<LoopAnalysis>();
1694   PA.preserve<ScalarEvolutionAnalysis>();
1695   PA.preserveSet<CFGAnalyses>();
1696   return PA;
1697 }
1698