1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/ValueMapper.h" 39 40 #include <cmath> 41 #include <string> 42 43 using namespace llvm; 44 using namespace PatternMatch; 45 46 #define DEBUG_TYPE "constraint-elimination" 47 48 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 49 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 50 "Controls which conditions are eliminated"); 51 52 static cl::opt<unsigned> 53 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 54 cl::desc("Maximum number of rows to keep in constraint system")); 55 56 static cl::opt<bool> DumpReproducers( 57 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 58 cl::desc("Dump IR to reproduce successful transformations.")); 59 60 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 61 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 62 63 // A helper to multiply 2 signed integers where overflowing is allowed. 64 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 65 int64_t Result; 66 MulOverflow(A, B, Result); 67 return Result; 68 } 69 70 // A helper to add 2 signed integers where overflowing is allowed. 71 static int64_t addWithOverflow(int64_t A, int64_t B) { 72 int64_t Result; 73 AddOverflow(A, B, Result); 74 return Result; 75 } 76 77 namespace { 78 79 class ConstraintInfo; 80 81 struct StackEntry { 82 unsigned NumIn; 83 unsigned NumOut; 84 bool IsSigned = false; 85 /// Variables that can be removed from the system once the stack entry gets 86 /// removed. 87 SmallVector<Value *, 2> ValuesToRelease; 88 89 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 90 SmallVector<Value *, 2> ValuesToRelease) 91 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 92 ValuesToRelease(ValuesToRelease) {} 93 }; 94 95 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 96 struct PreconditionTy { 97 CmpInst::Predicate Pred; 98 Value *Op0; 99 Value *Op1; 100 101 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 102 : Pred(Pred), Op0(Op0), Op1(Op1) {} 103 }; 104 105 struct ConstraintTy { 106 SmallVector<int64_t, 8> Coefficients; 107 SmallVector<PreconditionTy, 2> Preconditions; 108 109 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 110 111 bool IsSigned = false; 112 bool IsEq = false; 113 114 ConstraintTy() = default; 115 116 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 117 : Coefficients(Coefficients), IsSigned(IsSigned) {} 118 119 unsigned size() const { return Coefficients.size(); } 120 121 unsigned empty() const { return Coefficients.empty(); } 122 123 /// Returns true if all preconditions for this list of constraints are 124 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 125 bool isValid(const ConstraintInfo &Info) const; 126 }; 127 128 /// Wrapper encapsulating separate constraint systems and corresponding value 129 /// mappings for both unsigned and signed information. Facts are added to and 130 /// conditions are checked against the corresponding system depending on the 131 /// signed-ness of their predicates. While the information is kept separate 132 /// based on signed-ness, certain conditions can be transferred between the two 133 /// systems. 134 class ConstraintInfo { 135 136 ConstraintSystem UnsignedCS; 137 ConstraintSystem SignedCS; 138 139 const DataLayout &DL; 140 141 public: 142 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 143 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 144 145 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 146 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 147 } 148 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 149 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 150 } 151 152 ConstraintSystem &getCS(bool Signed) { 153 return Signed ? SignedCS : UnsignedCS; 154 } 155 const ConstraintSystem &getCS(bool Signed) const { 156 return Signed ? SignedCS : UnsignedCS; 157 } 158 159 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 160 void popLastNVariables(bool Signed, unsigned N) { 161 getCS(Signed).popLastNVariables(N); 162 } 163 164 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 165 166 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 167 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 168 169 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 170 /// constraints, using indices from the corresponding constraint system. 171 /// New variables that need to be added to the system are collected in 172 /// \p NewVariables. 173 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 174 SmallVectorImpl<Value *> &NewVariables) const; 175 176 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 177 /// constraints using getConstraint. Returns an empty constraint if the result 178 /// cannot be used to query the existing constraint system, e.g. because it 179 /// would require adding new variables. Also tries to convert signed 180 /// predicates to unsigned ones if possible to allow using the unsigned system 181 /// which increases the effectiveness of the signed <-> unsigned transfer 182 /// logic. 183 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 184 Value *Op1) const; 185 186 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 187 /// system if \p Pred is signed/unsigned. 188 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 189 unsigned NumIn, unsigned NumOut, 190 SmallVectorImpl<StackEntry> &DFSInStack); 191 }; 192 193 /// Represents a (Coefficient * Variable) entry after IR decomposition. 194 struct DecompEntry { 195 int64_t Coefficient; 196 Value *Variable; 197 /// True if the variable is known positive in the current constraint. 198 bool IsKnownNonNegative; 199 200 DecompEntry(int64_t Coefficient, Value *Variable, 201 bool IsKnownNonNegative = false) 202 : Coefficient(Coefficient), Variable(Variable), 203 IsKnownNonNegative(IsKnownNonNegative) {} 204 }; 205 206 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 207 struct Decomposition { 208 int64_t Offset = 0; 209 SmallVector<DecompEntry, 3> Vars; 210 211 Decomposition(int64_t Offset) : Offset(Offset) {} 212 Decomposition(Value *V, bool IsKnownNonNegative = false) { 213 Vars.emplace_back(1, V, IsKnownNonNegative); 214 } 215 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 216 : Offset(Offset), Vars(Vars) {} 217 218 void add(int64_t OtherOffset) { 219 Offset = addWithOverflow(Offset, OtherOffset); 220 } 221 222 void add(const Decomposition &Other) { 223 add(Other.Offset); 224 append_range(Vars, Other.Vars); 225 } 226 227 void mul(int64_t Factor) { 228 Offset = multiplyWithOverflow(Offset, Factor); 229 for (auto &Var : Vars) 230 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 231 } 232 }; 233 234 } // namespace 235 236 static Decomposition decompose(Value *V, 237 SmallVectorImpl<PreconditionTy> &Preconditions, 238 bool IsSigned, const DataLayout &DL); 239 240 static bool canUseSExt(ConstantInt *CI) { 241 const APInt &Val = CI->getValue(); 242 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 243 } 244 245 static Decomposition 246 decomposeGEP(GEPOperator &GEP, SmallVectorImpl<PreconditionTy> &Preconditions, 247 bool IsSigned, const DataLayout &DL) { 248 // Do not reason about pointers where the index size is larger than 64 bits, 249 // as the coefficients used to encode constraints are 64 bit integers. 250 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 251 return &GEP; 252 253 if (!GEP.isInBounds()) 254 return &GEP; 255 256 assert(!IsSigned && "The logic below only supports decomposition for " 257 "unsinged predicates at the moment."); 258 Type *PtrTy = GEP.getType()->getScalarType(); 259 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 260 MapVector<Value *, APInt> VariableOffsets; 261 APInt ConstantOffset(BitWidth, 0); 262 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 263 return &GEP; 264 265 // Handle the (gep (gep ....), C) case by incrementing the constant 266 // coefficient of the inner GEP, if C is a constant. 267 auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand()); 268 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 269 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 270 Result.add(ConstantOffset.getSExtValue()); 271 272 if (ConstantOffset.isNegative()) { 273 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 274 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 275 if (ConstantOffsetI % Scale != 0) 276 return &GEP; 277 // Add pre-condition ensuring the GEP is increasing monotonically and 278 // can be de-composed. 279 // Both sides are normalized by being divided by Scale. 280 Preconditions.emplace_back( 281 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 282 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 283 -1 * (ConstantOffsetI / Scale))); 284 } 285 return Result; 286 } 287 288 Decomposition Result(ConstantOffset.getSExtValue(), 289 DecompEntry(1, GEP.getPointerOperand())); 290 for (auto [Index, Scale] : VariableOffsets) { 291 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 292 IdxResult.mul(Scale.getSExtValue()); 293 Result.add(IdxResult); 294 295 // If Op0 is signed non-negative, the GEP is increasing monotonically and 296 // can be de-composed. 297 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 298 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 299 ConstantInt::get(Index->getType(), 0)); 300 } 301 return Result; 302 } 303 304 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 305 // Variable } where Coefficient * Variable. The sum of the constant offset and 306 // pairs equals \p V. 307 static Decomposition decompose(Value *V, 308 SmallVectorImpl<PreconditionTy> &Preconditions, 309 bool IsSigned, const DataLayout &DL) { 310 311 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 312 bool IsSignedB) { 313 auto ResA = decompose(A, Preconditions, IsSigned, DL); 314 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 315 ResA.add(ResB); 316 return ResA; 317 }; 318 319 // Decompose \p V used with a signed predicate. 320 if (IsSigned) { 321 if (auto *CI = dyn_cast<ConstantInt>(V)) { 322 if (canUseSExt(CI)) 323 return CI->getSExtValue(); 324 } 325 Value *Op0; 326 Value *Op1; 327 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 328 return MergeResults(Op0, Op1, IsSigned); 329 330 return V; 331 } 332 333 if (auto *CI = dyn_cast<ConstantInt>(V)) { 334 if (CI->uge(MaxConstraintValue)) 335 return V; 336 return int64_t(CI->getZExtValue()); 337 } 338 339 if (auto *GEP = dyn_cast<GEPOperator>(V)) 340 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 341 342 Value *Op0; 343 bool IsKnownNonNegative = false; 344 if (match(V, m_ZExt(m_Value(Op0)))) { 345 IsKnownNonNegative = true; 346 V = Op0; 347 } 348 349 Value *Op1; 350 ConstantInt *CI; 351 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 352 return MergeResults(Op0, Op1, IsSigned); 353 } 354 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 355 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 356 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 357 ConstantInt::get(Op0->getType(), 0)); 358 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 359 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 360 ConstantInt::get(Op1->getType(), 0)); 361 362 return MergeResults(Op0, Op1, IsSigned); 363 } 364 365 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 366 canUseSExt(CI)) { 367 Preconditions.emplace_back( 368 CmpInst::ICMP_UGE, Op0, 369 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 370 return MergeResults(Op0, CI, true); 371 } 372 373 // Decompose or as an add if there are no common bits between the operands. 374 if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && 375 haveNoCommonBitsSet(Op0, CI, DL)) { 376 return MergeResults(Op0, CI, IsSigned); 377 } 378 379 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 380 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 381 return {V, IsKnownNonNegative}; 382 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 383 Result.mul(int64_t{1} << CI->getSExtValue()); 384 return Result; 385 } 386 387 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 388 (!CI->isNegative())) { 389 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 390 Result.mul(CI->getSExtValue()); 391 return Result; 392 } 393 394 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 395 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 396 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 397 return {0, {{1, Op0}, {-1, Op1}}}; 398 399 return {V, IsKnownNonNegative}; 400 } 401 402 ConstraintTy 403 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 404 SmallVectorImpl<Value *> &NewVariables) const { 405 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 406 bool IsEq = false; 407 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 408 switch (Pred) { 409 case CmpInst::ICMP_UGT: 410 case CmpInst::ICMP_UGE: 411 case CmpInst::ICMP_SGT: 412 case CmpInst::ICMP_SGE: { 413 Pred = CmpInst::getSwappedPredicate(Pred); 414 std::swap(Op0, Op1); 415 break; 416 } 417 case CmpInst::ICMP_EQ: 418 if (match(Op1, m_Zero())) { 419 Pred = CmpInst::ICMP_ULE; 420 } else { 421 IsEq = true; 422 Pred = CmpInst::ICMP_ULE; 423 } 424 break; 425 case CmpInst::ICMP_NE: 426 if (!match(Op1, m_Zero())) 427 return {}; 428 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 429 std::swap(Op0, Op1); 430 break; 431 default: 432 break; 433 } 434 435 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 436 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 437 return {}; 438 439 SmallVector<PreconditionTy, 4> Preconditions; 440 bool IsSigned = CmpInst::isSigned(Pred); 441 auto &Value2Index = getValue2Index(IsSigned); 442 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 443 Preconditions, IsSigned, DL); 444 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 445 Preconditions, IsSigned, DL); 446 int64_t Offset1 = ADec.Offset; 447 int64_t Offset2 = BDec.Offset; 448 Offset1 *= -1; 449 450 auto &VariablesA = ADec.Vars; 451 auto &VariablesB = BDec.Vars; 452 453 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 454 // new entry to NewVariables. 455 DenseMap<Value *, unsigned> NewIndexMap; 456 auto GetOrAddIndex = [&Value2Index, &NewVariables, 457 &NewIndexMap](Value *V) -> unsigned { 458 auto V2I = Value2Index.find(V); 459 if (V2I != Value2Index.end()) 460 return V2I->second; 461 auto Insert = 462 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 463 if (Insert.second) 464 NewVariables.push_back(V); 465 return Insert.first->second; 466 }; 467 468 // Make sure all variables have entries in Value2Index or NewVariables. 469 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 470 GetOrAddIndex(KV.Variable); 471 472 // Build result constraint, by first adding all coefficients from A and then 473 // subtracting all coefficients from B. 474 ConstraintTy Res( 475 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 476 IsSigned); 477 // Collect variables that are known to be positive in all uses in the 478 // constraint. 479 DenseMap<Value *, bool> KnownNonNegativeVariables; 480 Res.IsEq = IsEq; 481 auto &R = Res.Coefficients; 482 for (const auto &KV : VariablesA) { 483 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 484 auto I = 485 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 486 I.first->second &= KV.IsKnownNonNegative; 487 } 488 489 for (const auto &KV : VariablesB) { 490 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 491 auto I = 492 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 493 I.first->second &= KV.IsKnownNonNegative; 494 } 495 496 int64_t OffsetSum; 497 if (AddOverflow(Offset1, Offset2, OffsetSum)) 498 return {}; 499 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 500 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 501 return {}; 502 R[0] = OffsetSum; 503 Res.Preconditions = std::move(Preconditions); 504 505 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 506 // variables. 507 while (!NewVariables.empty()) { 508 int64_t Last = R.back(); 509 if (Last != 0) 510 break; 511 R.pop_back(); 512 Value *RemovedV = NewVariables.pop_back_val(); 513 NewIndexMap.erase(RemovedV); 514 } 515 516 // Add extra constraints for variables that are known positive. 517 for (auto &KV : KnownNonNegativeVariables) { 518 if (!KV.second || 519 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 520 continue; 521 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 522 C[GetOrAddIndex(KV.first)] = -1; 523 Res.ExtraInfo.push_back(C); 524 } 525 return Res; 526 } 527 528 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 529 Value *Op0, 530 Value *Op1) const { 531 // If both operands are known to be non-negative, change signed predicates to 532 // unsigned ones. This increases the reasoning effectiveness in combination 533 // with the signed <-> unsigned transfer logic. 534 if (CmpInst::isSigned(Pred) && 535 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 536 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 537 Pred = CmpInst::getUnsignedPredicate(Pred); 538 539 SmallVector<Value *> NewVariables; 540 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 541 if (R.IsEq || !NewVariables.empty()) 542 return {}; 543 return R; 544 } 545 546 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 547 return Coefficients.size() > 0 && 548 all_of(Preconditions, [&Info](const PreconditionTy &C) { 549 return Info.doesHold(C.Pred, C.Op0, C.Op1); 550 }); 551 } 552 553 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 554 Value *B) const { 555 auto R = getConstraintForSolving(Pred, A, B); 556 return R.Preconditions.empty() && !R.empty() && 557 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 558 } 559 560 void ConstraintInfo::transferToOtherSystem( 561 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 562 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 563 // Check if we can combine facts from the signed and unsigned systems to 564 // derive additional facts. 565 if (!A->getType()->isIntegerTy()) 566 return; 567 // FIXME: This currently depends on the order we add facts. Ideally we 568 // would first add all known facts and only then try to add additional 569 // facts. 570 switch (Pred) { 571 default: 572 break; 573 case CmpInst::ICMP_ULT: 574 // If B is a signed positive constant, A >=s 0 and A <s B. 575 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 576 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 577 NumOut, DFSInStack); 578 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 579 } 580 break; 581 case CmpInst::ICMP_SLT: 582 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 583 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 584 break; 585 case CmpInst::ICMP_SGT: 586 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 587 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 588 NumOut, DFSInStack); 589 break; 590 case CmpInst::ICMP_SGE: 591 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 592 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 593 } 594 break; 595 } 596 } 597 598 namespace { 599 /// Represents either 600 /// * a condition that holds on entry to a block (=conditional fact) 601 /// * an assume (=assume fact) 602 /// * an instruction to simplify. 603 /// It also tracks the Dominator DFS in and out numbers for each entry. 604 struct FactOrCheck { 605 Instruction *Inst; 606 unsigned NumIn; 607 unsigned NumOut; 608 bool IsCheck; 609 bool Not; 610 611 FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool IsCheck, bool Not) 612 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 613 IsCheck(IsCheck), Not(Not) {} 614 615 static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst, 616 bool Not = false) { 617 return FactOrCheck(DTN, Inst, false, Not); 618 } 619 620 static FactOrCheck getCheck(DomTreeNode *DTN, Instruction *Inst) { 621 return FactOrCheck(DTN, Inst, true, false); 622 } 623 624 bool isAssumeFact() const { 625 if (!IsCheck && isa<IntrinsicInst>(Inst)) { 626 assert(match(Inst, m_Intrinsic<Intrinsic::assume>())); 627 return true; 628 } 629 return false; 630 } 631 632 bool isConditionFact() const { return !IsCheck && isa<CmpInst>(Inst); } 633 }; 634 635 /// Keep state required to build worklist. 636 struct State { 637 DominatorTree &DT; 638 SmallVector<FactOrCheck, 64> WorkList; 639 640 State(DominatorTree &DT) : DT(DT) {} 641 642 /// Process block \p BB and add known facts to work-list. 643 void addInfoFor(BasicBlock &BB); 644 645 /// Returns true if we can add a known condition from BB to its successor 646 /// block Succ. 647 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 648 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 649 } 650 }; 651 652 } // namespace 653 654 #ifndef NDEBUG 655 656 static void dumpConstraint(ArrayRef<int64_t> C, 657 const DenseMap<Value *, unsigned> &Value2Index) { 658 ConstraintSystem CS(Value2Index); 659 CS.addVariableRowFill(C); 660 CS.dump(); 661 } 662 #endif 663 664 void State::addInfoFor(BasicBlock &BB) { 665 // True as long as long as the current instruction is guaranteed to execute. 666 bool GuaranteedToExecute = true; 667 // Queue conditions and assumes. 668 for (Instruction &I : BB) { 669 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 670 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), Cmp)); 671 continue; 672 } 673 674 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 675 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), &I)); 676 continue; 677 } 678 679 Value *Cond; 680 // For now, just handle assumes with a single compare as condition. 681 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 682 isa<ICmpInst>(Cond)) { 683 if (GuaranteedToExecute) { 684 // The assume is guaranteed to execute when BB is entered, hence Cond 685 // holds on entry to BB. 686 WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()), 687 cast<Instruction>(Cond))); 688 } else { 689 WorkList.emplace_back( 690 FactOrCheck::getFact(DT.getNode(I.getParent()), &I)); 691 } 692 } 693 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 694 } 695 696 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 697 if (!Br || !Br->isConditional()) 698 return; 699 700 Value *Cond = Br->getCondition(); 701 702 // If the condition is a chain of ORs/AND and the successor only has the 703 // current block as predecessor, queue conditions for the successor. 704 Value *Op0, *Op1; 705 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 706 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 707 bool IsOr = match(Cond, m_LogicalOr()); 708 bool IsAnd = match(Cond, m_LogicalAnd()); 709 // If there's a select that matches both AND and OR, we need to commit to 710 // one of the options. Arbitrarily pick OR. 711 if (IsOr && IsAnd) 712 IsAnd = false; 713 714 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 715 if (canAddSuccessor(BB, Successor)) { 716 SmallVector<Value *> CondWorkList; 717 SmallPtrSet<Value *, 8> SeenCond; 718 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 719 if (SeenCond.insert(V).second) 720 CondWorkList.push_back(V); 721 }; 722 QueueValue(Op1); 723 QueueValue(Op0); 724 while (!CondWorkList.empty()) { 725 Value *Cur = CondWorkList.pop_back_val(); 726 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 727 WorkList.emplace_back( 728 FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr)); 729 continue; 730 } 731 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 732 QueueValue(Op1); 733 QueueValue(Op0); 734 continue; 735 } 736 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 737 QueueValue(Op1); 738 QueueValue(Op0); 739 continue; 740 } 741 } 742 } 743 return; 744 } 745 746 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 747 if (!CmpI) 748 return; 749 if (canAddSuccessor(BB, Br->getSuccessor(0))) 750 WorkList.emplace_back( 751 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI)); 752 if (canAddSuccessor(BB, Br->getSuccessor(1))) 753 WorkList.emplace_back( 754 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true)); 755 } 756 757 namespace { 758 /// Helper to keep track of a condition and if it should be treated as negated 759 /// for reproducer construction. 760 struct ReproducerEntry { 761 CmpInst *Cond; 762 bool IsNot; 763 764 ReproducerEntry(CmpInst *Cond, bool IsNot) : Cond(Cond), IsNot(IsNot) {} 765 }; 766 } // namespace 767 768 /// Helper function to generate a reproducer function for simplifying \p Cond. 769 /// The reproducer function contains a series of @llvm.assume calls, one for 770 /// each condition in \p Stack. For each condition, the operand instruction are 771 /// cloned until we reach operands that have an entry in \p Value2Index. Those 772 /// will then be added as function arguments. \p DT is used to order cloned 773 /// instructions. The reproducer function will get added to \p M, if it is 774 /// non-null. Otherwise no reproducer function is generated. 775 static void generateReproducer(CmpInst *Cond, Module *M, 776 ArrayRef<ReproducerEntry> Stack, 777 ConstraintInfo &Info, DominatorTree &DT) { 778 if (!M) 779 return; 780 781 LLVMContext &Ctx = Cond->getContext(); 782 783 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 784 785 ValueToValueMapTy Old2New; 786 SmallVector<Value *> Args; 787 SmallPtrSet<Value *, 8> Seen; 788 // Traverse Cond and its operands recursively until we reach a value that's in 789 // Value2Index or not an instruction, or not a operation that 790 // ConstraintElimination can decompose. Such values will be considered as 791 // external inputs to the reproducer, they are collected and added as function 792 // arguments later. 793 auto CollectArguments = [&](CmpInst *Cond) { 794 if (!Cond) 795 return; 796 auto &Value2Index = 797 Info.getValue2Index(CmpInst::isSigned(Cond->getPredicate())); 798 SmallVector<Value *, 4> WorkList; 799 WorkList.push_back(Cond); 800 while (!WorkList.empty()) { 801 Value *V = WorkList.pop_back_val(); 802 if (!Seen.insert(V).second) 803 continue; 804 if (Old2New.find(V) != Old2New.end()) 805 continue; 806 if (isa<Constant>(V)) 807 continue; 808 809 auto *I = dyn_cast<Instruction>(V); 810 if (Value2Index.contains(V) || !I || 811 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 812 Old2New[V] = V; 813 Args.push_back(V); 814 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 815 } else { 816 append_range(WorkList, I->operands()); 817 } 818 } 819 }; 820 821 for (auto &Entry : Stack) 822 CollectArguments(Entry.Cond); 823 CollectArguments(Cond); 824 825 SmallVector<Type *> ParamTys; 826 for (auto *P : Args) 827 ParamTys.push_back(P->getType()); 828 829 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 830 /*isVarArg=*/false); 831 Function *F = Function::Create(FTy, Function::ExternalLinkage, 832 Cond->getModule()->getName() + 833 Cond->getFunction()->getName() + "repro", 834 M); 835 // Add arguments to the reproducer function for each external value collected. 836 for (unsigned I = 0; I < Args.size(); ++I) { 837 F->getArg(I)->setName(Args[I]->getName()); 838 Old2New[Args[I]] = F->getArg(I); 839 } 840 841 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 842 IRBuilder<> Builder(Entry); 843 Builder.CreateRet(Builder.getTrue()); 844 Builder.SetInsertPoint(Entry->getTerminator()); 845 846 // Clone instructions in \p Ops and their operands recursively until reaching 847 // an value in Value2Index (external input to the reproducer). Update Old2New 848 // mapping for the original and cloned instructions. Sort instructions to 849 // clone by dominance, then insert the cloned instructions in the function. 850 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 851 SmallVector<Value *, 4> WorkList(Ops); 852 SmallVector<Instruction *> ToClone; 853 auto &Value2Index = Info.getValue2Index(IsSigned); 854 while (!WorkList.empty()) { 855 Value *V = WorkList.pop_back_val(); 856 if (Old2New.find(V) != Old2New.end()) 857 continue; 858 859 auto *I = dyn_cast<Instruction>(V); 860 if (!Value2Index.contains(V) && I) { 861 Old2New[V] = nullptr; 862 ToClone.push_back(I); 863 append_range(WorkList, I->operands()); 864 } 865 } 866 867 sort(ToClone, 868 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 869 for (Instruction *I : ToClone) { 870 Instruction *Cloned = I->clone(); 871 Old2New[I] = Cloned; 872 Old2New[I]->setName(I->getName()); 873 Cloned->insertBefore(&*Builder.GetInsertPoint()); 874 Cloned->dropUnknownNonDebugMetadata(); 875 Cloned->setDebugLoc({}); 876 } 877 }; 878 879 // Materialize the assumptions for the reproducer using the entries in Stack. 880 // That is, first clone the operands of the condition recursively until we 881 // reach an external input to the reproducer and add them to the reproducer 882 // function. Then add an ICmp for the condition (with the inverse predicate if 883 // the entry is negated) and an assert using the ICmp. 884 for (auto &Entry : Stack) { 885 if (!Entry.Cond) 886 continue; 887 888 LLVM_DEBUG(dbgs() << " Materializing assumption " << *Entry.Cond << "\n"); 889 CmpInst::Predicate Pred = Entry.Cond->getPredicate(); 890 if (Entry.IsNot) 891 Pred = CmpInst::getInversePredicate(Pred); 892 893 CloneInstructions({Entry.Cond->getOperand(0), Entry.Cond->getOperand(1)}, 894 CmpInst::isSigned(Entry.Cond->getPredicate())); 895 896 auto *Cmp = Builder.CreateICmp(Pred, Entry.Cond->getOperand(0), 897 Entry.Cond->getOperand(1)); 898 Builder.CreateAssumption(Cmp); 899 } 900 901 // Finally, clone the condition to reproduce and remap instruction operands in 902 // the reproducer using Old2New. 903 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 904 Entry->getTerminator()->setOperand(0, Cond); 905 remapInstructionsInBlocks({Entry}, Old2New); 906 907 assert(!verifyFunction(*F, &dbgs())); 908 } 909 910 static bool checkAndReplaceCondition( 911 CmpInst *Cmp, ConstraintInfo &Info, Module *ReproducerModule, 912 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT) { 913 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 914 915 CmpInst::Predicate Pred = Cmp->getPredicate(); 916 Value *A = Cmp->getOperand(0); 917 Value *B = Cmp->getOperand(1); 918 919 auto R = Info.getConstraintForSolving(Pred, A, B); 920 if (R.empty() || !R.isValid(Info)){ 921 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 922 return false; 923 } 924 925 auto &CSToUse = Info.getCS(R.IsSigned); 926 927 // If there was extra information collected during decomposition, apply 928 // it now and remove it immediately once we are done with reasoning 929 // about the constraint. 930 for (auto &Row : R.ExtraInfo) 931 CSToUse.addVariableRow(Row); 932 auto InfoRestorer = make_scope_exit([&]() { 933 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 934 CSToUse.popLastConstraint(); 935 }); 936 937 bool Changed = false; 938 if (CSToUse.isConditionImplied(R.Coefficients)) { 939 if (!DebugCounter::shouldExecute(EliminatedCounter)) 940 return false; 941 942 LLVM_DEBUG({ 943 dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n"; 944 CSToUse.dump(); 945 }); 946 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 947 Constant *TrueC = 948 ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType())); 949 Cmp->replaceUsesWithIf(TrueC, [](Use &U) { 950 // Conditions in an assume trivially simplify to true. Skip uses 951 // in assume calls to not destroy the available information. 952 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 953 return !II || II->getIntrinsicID() != Intrinsic::assume; 954 }); 955 NumCondsRemoved++; 956 Changed = true; 957 } 958 if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) { 959 if (!DebugCounter::shouldExecute(EliminatedCounter)) 960 return false; 961 962 LLVM_DEBUG({ 963 dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n"; 964 CSToUse.dump(); 965 }); 966 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 967 Constant *FalseC = 968 ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType())); 969 Cmp->replaceAllUsesWith(FalseC); 970 NumCondsRemoved++; 971 Changed = true; 972 } 973 return Changed; 974 } 975 976 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 977 unsigned NumIn, unsigned NumOut, 978 SmallVectorImpl<StackEntry> &DFSInStack) { 979 // If the constraint has a pre-condition, skip the constraint if it does not 980 // hold. 981 SmallVector<Value *> NewVariables; 982 auto R = getConstraint(Pred, A, B, NewVariables); 983 if (!R.isValid(*this)) 984 return; 985 986 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; 987 A->printAsOperand(dbgs(), false); dbgs() << ", "; 988 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 989 bool Added = false; 990 auto &CSToUse = getCS(R.IsSigned); 991 if (R.Coefficients.empty()) 992 return; 993 994 Added |= CSToUse.addVariableRowFill(R.Coefficients); 995 996 // If R has been added to the system, add the new variables and queue it for 997 // removal once it goes out-of-scope. 998 if (Added) { 999 SmallVector<Value *, 2> ValuesToRelease; 1000 auto &Value2Index = getValue2Index(R.IsSigned); 1001 for (Value *V : NewVariables) { 1002 Value2Index.insert({V, Value2Index.size() + 1}); 1003 ValuesToRelease.push_back(V); 1004 } 1005 1006 LLVM_DEBUG({ 1007 dbgs() << " constraint: "; 1008 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1009 dbgs() << "\n"; 1010 }); 1011 1012 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1013 std::move(ValuesToRelease)); 1014 1015 if (R.IsEq) { 1016 // Also add the inverted constraint for equality constraints. 1017 for (auto &Coeff : R.Coefficients) 1018 Coeff *= -1; 1019 CSToUse.addVariableRowFill(R.Coefficients); 1020 1021 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1022 SmallVector<Value *, 2>()); 1023 } 1024 } 1025 } 1026 1027 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1028 SmallVectorImpl<Instruction *> &ToRemove) { 1029 bool Changed = false; 1030 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1031 Value *Sub = nullptr; 1032 for (User *U : make_early_inc_range(II->users())) { 1033 if (match(U, m_ExtractValue<0>(m_Value()))) { 1034 if (!Sub) 1035 Sub = Builder.CreateSub(A, B); 1036 U->replaceAllUsesWith(Sub); 1037 Changed = true; 1038 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1039 U->replaceAllUsesWith(Builder.getFalse()); 1040 Changed = true; 1041 } else 1042 continue; 1043 1044 if (U->use_empty()) { 1045 auto *I = cast<Instruction>(U); 1046 ToRemove.push_back(I); 1047 I->setOperand(0, PoisonValue::get(II->getType())); 1048 Changed = true; 1049 } 1050 } 1051 1052 if (II->use_empty()) { 1053 II->eraseFromParent(); 1054 Changed = true; 1055 } 1056 return Changed; 1057 } 1058 1059 static bool 1060 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1061 SmallVectorImpl<Instruction *> &ToRemove) { 1062 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1063 ConstraintInfo &Info) { 1064 auto R = Info.getConstraintForSolving(Pred, A, B); 1065 if (R.size() < 2 || !R.isValid(Info)) 1066 return false; 1067 1068 auto &CSToUse = Info.getCS(R.IsSigned); 1069 return CSToUse.isConditionImplied(R.Coefficients); 1070 }; 1071 1072 bool Changed = false; 1073 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1074 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1075 // can be simplified to a regular sub. 1076 Value *A = II->getArgOperand(0); 1077 Value *B = II->getArgOperand(1); 1078 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1079 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1080 ConstantInt::get(A->getType(), 0), Info)) 1081 return false; 1082 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1083 } 1084 return Changed; 1085 } 1086 1087 static bool eliminateConstraints(Function &F, DominatorTree &DT, 1088 OptimizationRemarkEmitter &ORE) { 1089 bool Changed = false; 1090 DT.updateDFSNumbers(); 1091 SmallVector<Value *> FunctionArgs; 1092 for (Value &Arg : F.args()) 1093 FunctionArgs.push_back(&Arg); 1094 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1095 State S(DT); 1096 std::unique_ptr<Module> ReproducerModule( 1097 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1098 1099 // First, collect conditions implied by branches and blocks with their 1100 // Dominator DFS in and out numbers. 1101 for (BasicBlock &BB : F) { 1102 if (!DT.getNode(&BB)) 1103 continue; 1104 S.addInfoFor(BB); 1105 } 1106 1107 // Next, sort worklist by dominance, so that dominating conditions to check 1108 // and facts come before conditions and facts dominated by them. If a 1109 // condition to check and a fact have the same numbers, conditional facts come 1110 // first. Assume facts and checks are ordered according to their relative 1111 // order in the containing basic block. Also make sure conditions with 1112 // constant operands come before conditions without constant operands. This 1113 // increases the effectiveness of the current signed <-> unsigned fact 1114 // transfer logic. 1115 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1116 auto HasNoConstOp = [](const FactOrCheck &B) { 1117 return !isa<ConstantInt>(B.Inst->getOperand(0)) && 1118 !isa<ConstantInt>(B.Inst->getOperand(1)); 1119 }; 1120 // If both entries have the same In numbers, conditional facts come first. 1121 // Otherwise use the relative order in the basic block. 1122 if (A.NumIn == B.NumIn) { 1123 if (A.isConditionFact() && B.isConditionFact()) { 1124 bool NoConstOpA = HasNoConstOp(A); 1125 bool NoConstOpB = HasNoConstOp(B); 1126 return NoConstOpA < NoConstOpB; 1127 } 1128 if (A.isConditionFact()) 1129 return true; 1130 if (B.isConditionFact()) 1131 return false; 1132 return A.Inst->comesBefore(B.Inst); 1133 } 1134 return A.NumIn < B.NumIn; 1135 }); 1136 1137 SmallVector<Instruction *> ToRemove; 1138 1139 // Finally, process ordered worklist and eliminate implied conditions. 1140 SmallVector<StackEntry, 16> DFSInStack; 1141 SmallVector<ReproducerEntry> ReproducerCondStack; 1142 for (FactOrCheck &CB : S.WorkList) { 1143 // First, pop entries from the stack that are out-of-scope for CB. Remove 1144 // the corresponding entry from the constraint system. 1145 while (!DFSInStack.empty()) { 1146 auto &E = DFSInStack.back(); 1147 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1148 << "\n"); 1149 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1150 assert(E.NumIn <= CB.NumIn); 1151 if (CB.NumOut <= E.NumOut) 1152 break; 1153 LLVM_DEBUG({ 1154 dbgs() << "Removing "; 1155 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1156 Info.getValue2Index(E.IsSigned)); 1157 dbgs() << "\n"; 1158 }); 1159 1160 Info.popLastConstraint(E.IsSigned); 1161 // Remove variables in the system that went out of scope. 1162 auto &Mapping = Info.getValue2Index(E.IsSigned); 1163 for (Value *V : E.ValuesToRelease) 1164 Mapping.erase(V); 1165 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1166 DFSInStack.pop_back(); 1167 if (ReproducerModule) 1168 ReproducerCondStack.pop_back(); 1169 } 1170 1171 LLVM_DEBUG({ 1172 dbgs() << "Processing "; 1173 if (CB.IsCheck) 1174 dbgs() << "condition to simplify: " << *CB.Inst; 1175 else 1176 dbgs() << "fact to add to the system: " << *CB.Inst; 1177 dbgs() << "\n"; 1178 }); 1179 1180 // For a block, check if any CmpInsts become known based on the current set 1181 // of constraints. 1182 if (CB.IsCheck) { 1183 if (auto *II = dyn_cast<WithOverflowInst>(CB.Inst)) { 1184 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1185 } else if (auto *Cmp = dyn_cast<ICmpInst>(CB.Inst)) { 1186 Changed |= checkAndReplaceCondition(Cmp, Info, ReproducerModule.get(), 1187 ReproducerCondStack, S.DT); 1188 } 1189 continue; 1190 } 1191 1192 ICmpInst::Predicate Pred; 1193 Value *A, *B; 1194 Value *Cmp = CB.Inst; 1195 match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp))); 1196 if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 1197 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1198 LLVM_DEBUG( 1199 dbgs() 1200 << "Skip adding constraint because system has too many rows.\n"); 1201 continue; 1202 } 1203 1204 // Use the inverse predicate if required. 1205 if (CB.Not) 1206 Pred = CmpInst::getInversePredicate(Pred); 1207 1208 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1209 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1210 ReproducerCondStack.emplace_back(cast<CmpInst>(Cmp), CB.Not); 1211 1212 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1213 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1214 // Add dummy entries to ReproducerCondStack to keep it in sync with 1215 // DFSInStack. 1216 for (unsigned I = 0, 1217 E = (DFSInStack.size() - ReproducerCondStack.size()); 1218 I < E; ++I) { 1219 ReproducerCondStack.emplace_back(nullptr, false); 1220 } 1221 } 1222 } 1223 } 1224 1225 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1226 std::string S; 1227 raw_string_ostream StringS(S); 1228 ReproducerModule->print(StringS, nullptr); 1229 StringS.flush(); 1230 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1231 Rem << ore::NV("module") << S; 1232 ORE.emit(Rem); 1233 } 1234 1235 #ifndef NDEBUG 1236 unsigned SignedEntries = 1237 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1238 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1239 "updates to CS and DFSInStack are out of sync"); 1240 assert(Info.getCS(true).size() == SignedEntries && 1241 "updates to CS and DFSInStack are out of sync"); 1242 #endif 1243 1244 for (Instruction *I : ToRemove) 1245 I->eraseFromParent(); 1246 return Changed; 1247 } 1248 1249 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1250 FunctionAnalysisManager &AM) { 1251 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1252 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1253 if (!eliminateConstraints(F, DT, ORE)) 1254 return PreservedAnalyses::all(); 1255 1256 PreservedAnalyses PA; 1257 PA.preserve<DominatorTreeAnalysis>(); 1258 PA.preserveSet<CFGAnalyses>(); 1259 return PA; 1260 } 1261