xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 1689c357ae8059d238f28f587047e7f010910d6e)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GetElementPtrTypeIterator.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/DebugCounter.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/ValueMapper.h"
39 
40 #include <cmath>
41 #include <optional>
42 #include <string>
43 
44 using namespace llvm;
45 using namespace PatternMatch;
46 
47 #define DEBUG_TYPE "constraint-elimination"
48 
49 STATISTIC(NumCondsRemoved, "Number of instructions removed");
50 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
51               "Controls which conditions are eliminated");
52 
53 static cl::opt<unsigned>
54     MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
55             cl::desc("Maximum number of rows to keep in constraint system"));
56 
57 static cl::opt<bool> DumpReproducers(
58     "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
59     cl::desc("Dump IR to reproduce successful transformations."));
60 
61 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
62 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
63 
64 // A helper to multiply 2 signed integers where overflowing is allowed.
65 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
66   int64_t Result;
67   MulOverflow(A, B, Result);
68   return Result;
69 }
70 
71 // A helper to add 2 signed integers where overflowing is allowed.
72 static int64_t addWithOverflow(int64_t A, int64_t B) {
73   int64_t Result;
74   AddOverflow(A, B, Result);
75   return Result;
76 }
77 
78 static Instruction *getContextInstForUse(Use &U) {
79   Instruction *UserI = cast<Instruction>(U.getUser());
80   if (auto *Phi = dyn_cast<PHINode>(UserI))
81     UserI = Phi->getIncomingBlock(U)->getTerminator();
82   return UserI;
83 }
84 
85 namespace {
86 /// Represents either
87 ///  * a condition that holds on entry to a block (=conditional fact)
88 ///  * an assume (=assume fact)
89 ///  * a use of a compare instruction to simplify.
90 /// It also tracks the Dominator DFS in and out numbers for each entry.
91 struct FactOrCheck {
92   union {
93     Instruction *Inst;
94     Use *U;
95   };
96   unsigned NumIn;
97   unsigned NumOut;
98   bool HasInst;
99   bool Not;
100 
101   FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool Not)
102       : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
103         HasInst(true), Not(Not) {}
104 
105   FactOrCheck(DomTreeNode *DTN, Use *U)
106       : U(U), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
107         HasInst(false), Not(false) {}
108 
109   static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst,
110                              bool Not = false) {
111     return FactOrCheck(DTN, Inst, Not);
112   }
113 
114   static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
115     return FactOrCheck(DTN, U);
116   }
117 
118   static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
119     return FactOrCheck(DTN, CI, false);
120   }
121 
122   bool isCheck() const {
123     return !HasInst ||
124            match(Inst, m_Intrinsic<Intrinsic::ssub_with_overflow>());
125   }
126 
127   Instruction *getContextInst() const {
128     if (HasInst)
129       return Inst;
130     return getContextInstForUse(*U);
131   }
132   Instruction *getInstructionToSimplify() const {
133     assert(isCheck());
134     if (HasInst)
135       return Inst;
136     // The use may have been simplified to a constant already.
137     return dyn_cast<Instruction>(*U);
138   }
139   bool isConditionFact() const { return !isCheck() && isa<CmpInst>(Inst); }
140 };
141 
142 /// Keep state required to build worklist.
143 struct State {
144   DominatorTree &DT;
145   SmallVector<FactOrCheck, 64> WorkList;
146 
147   State(DominatorTree &DT) : DT(DT) {}
148 
149   /// Process block \p BB and add known facts to work-list.
150   void addInfoFor(BasicBlock &BB);
151 
152   /// Returns true if we can add a known condition from BB to its successor
153   /// block Succ.
154   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
155     return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
156   }
157 };
158 
159 class ConstraintInfo;
160 
161 struct StackEntry {
162   unsigned NumIn;
163   unsigned NumOut;
164   bool IsSigned = false;
165   /// Variables that can be removed from the system once the stack entry gets
166   /// removed.
167   SmallVector<Value *, 2> ValuesToRelease;
168 
169   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
170              SmallVector<Value *, 2> ValuesToRelease)
171       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
172         ValuesToRelease(ValuesToRelease) {}
173 };
174 
175 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
176 struct PreconditionTy {
177   CmpInst::Predicate Pred;
178   Value *Op0;
179   Value *Op1;
180 
181   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
182       : Pred(Pred), Op0(Op0), Op1(Op1) {}
183 };
184 
185 struct ConstraintTy {
186   SmallVector<int64_t, 8> Coefficients;
187   SmallVector<PreconditionTy, 2> Preconditions;
188 
189   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
190 
191   bool IsSigned = false;
192 
193   ConstraintTy() = default;
194 
195   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq)
196       : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq) {}
197 
198   unsigned size() const { return Coefficients.size(); }
199 
200   unsigned empty() const { return Coefficients.empty(); }
201 
202   /// Returns true if all preconditions for this list of constraints are
203   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
204   bool isValid(const ConstraintInfo &Info) const;
205 
206   bool isEq() const { return IsEq; }
207 
208   /// Check if the current constraint is implied by the given ConstraintSystem.
209   ///
210   /// \return true or false if the constraint is proven to be respectively true,
211   /// or false. When the constraint cannot be proven to be either true or false,
212   /// std::nullopt is returned.
213   std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
214 
215 private:
216   bool IsEq = false;
217 };
218 
219 /// Wrapper encapsulating separate constraint systems and corresponding value
220 /// mappings for both unsigned and signed information. Facts are added to and
221 /// conditions are checked against the corresponding system depending on the
222 /// signed-ness of their predicates. While the information is kept separate
223 /// based on signed-ness, certain conditions can be transferred between the two
224 /// systems.
225 class ConstraintInfo {
226 
227   ConstraintSystem UnsignedCS;
228   ConstraintSystem SignedCS;
229 
230   const DataLayout &DL;
231 
232 public:
233   ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
234       : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {}
235 
236   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
237     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
238   }
239   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
240     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
241   }
242 
243   ConstraintSystem &getCS(bool Signed) {
244     return Signed ? SignedCS : UnsignedCS;
245   }
246   const ConstraintSystem &getCS(bool Signed) const {
247     return Signed ? SignedCS : UnsignedCS;
248   }
249 
250   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
251   void popLastNVariables(bool Signed, unsigned N) {
252     getCS(Signed).popLastNVariables(N);
253   }
254 
255   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
256 
257   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
258                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
259 
260   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
261   /// constraints, using indices from the corresponding constraint system.
262   /// New variables that need to be added to the system are collected in
263   /// \p NewVariables.
264   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
265                              SmallVectorImpl<Value *> &NewVariables) const;
266 
267   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
268   /// constraints using getConstraint. Returns an empty constraint if the result
269   /// cannot be used to query the existing constraint system, e.g. because it
270   /// would require adding new variables. Also tries to convert signed
271   /// predicates to unsigned ones if possible to allow using the unsigned system
272   /// which increases the effectiveness of the signed <-> unsigned transfer
273   /// logic.
274   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
275                                        Value *Op1) const;
276 
277   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
278   /// system if \p Pred is signed/unsigned.
279   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
280                              unsigned NumIn, unsigned NumOut,
281                              SmallVectorImpl<StackEntry> &DFSInStack);
282 };
283 
284 /// Represents a (Coefficient * Variable) entry after IR decomposition.
285 struct DecompEntry {
286   int64_t Coefficient;
287   Value *Variable;
288   /// True if the variable is known positive in the current constraint.
289   bool IsKnownNonNegative;
290 
291   DecompEntry(int64_t Coefficient, Value *Variable,
292               bool IsKnownNonNegative = false)
293       : Coefficient(Coefficient), Variable(Variable),
294         IsKnownNonNegative(IsKnownNonNegative) {}
295 };
296 
297 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
298 struct Decomposition {
299   int64_t Offset = 0;
300   SmallVector<DecompEntry, 3> Vars;
301 
302   Decomposition(int64_t Offset) : Offset(Offset) {}
303   Decomposition(Value *V, bool IsKnownNonNegative = false) {
304     Vars.emplace_back(1, V, IsKnownNonNegative);
305   }
306   Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
307       : Offset(Offset), Vars(Vars) {}
308 
309   void add(int64_t OtherOffset) {
310     Offset = addWithOverflow(Offset, OtherOffset);
311   }
312 
313   void add(const Decomposition &Other) {
314     add(Other.Offset);
315     append_range(Vars, Other.Vars);
316   }
317 
318   void mul(int64_t Factor) {
319     Offset = multiplyWithOverflow(Offset, Factor);
320     for (auto &Var : Vars)
321       Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
322   }
323 };
324 
325 } // namespace
326 
327 static Decomposition decompose(Value *V,
328                                SmallVectorImpl<PreconditionTy> &Preconditions,
329                                bool IsSigned, const DataLayout &DL);
330 
331 static bool canUseSExt(ConstantInt *CI) {
332   const APInt &Val = CI->getValue();
333   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
334 }
335 
336 static Decomposition
337 decomposeGEP(GEPOperator &GEP, SmallVectorImpl<PreconditionTy> &Preconditions,
338              bool IsSigned, const DataLayout &DL) {
339   // Do not reason about pointers where the index size is larger than 64 bits,
340   // as the coefficients used to encode constraints are 64 bit integers.
341   if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
342     return &GEP;
343 
344   if (!GEP.isInBounds())
345     return &GEP;
346 
347   assert(!IsSigned && "The logic below only supports decomposition for "
348                       "unsinged predicates at the moment.");
349   Type *PtrTy = GEP.getType()->getScalarType();
350   unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
351   MapVector<Value *, APInt> VariableOffsets;
352   APInt ConstantOffset(BitWidth, 0);
353   if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
354     return &GEP;
355 
356   // Handle the (gep (gep ....), C) case by incrementing the constant
357   // coefficient of the inner GEP, if C is a constant.
358   auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand());
359   if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) {
360     auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
361     Result.add(ConstantOffset.getSExtValue());
362 
363     if (ConstantOffset.isNegative()) {
364       unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType());
365       int64_t ConstantOffsetI = ConstantOffset.getSExtValue();
366       if (ConstantOffsetI % Scale != 0)
367         return &GEP;
368       // Add pre-condition ensuring the GEP is increasing monotonically and
369       // can be de-composed.
370       // Both sides are normalized by being divided by Scale.
371       Preconditions.emplace_back(
372           CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
373           ConstantInt::get(InnerGEP->getOperand(1)->getType(),
374                            -1 * (ConstantOffsetI / Scale)));
375     }
376     return Result;
377   }
378 
379   Decomposition Result(ConstantOffset.getSExtValue(),
380                        DecompEntry(1, GEP.getPointerOperand()));
381   for (auto [Index, Scale] : VariableOffsets) {
382     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
383     IdxResult.mul(Scale.getSExtValue());
384     Result.add(IdxResult);
385 
386     // If Op0 is signed non-negative, the GEP is increasing monotonically and
387     // can be de-composed.
388     if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
389       Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
390                                  ConstantInt::get(Index->getType(), 0));
391   }
392   return Result;
393 }
394 
395 // Decomposes \p V into a constant offset + list of pairs { Coefficient,
396 // Variable } where Coefficient * Variable. The sum of the constant offset and
397 // pairs equals \p V.
398 static Decomposition decompose(Value *V,
399                                SmallVectorImpl<PreconditionTy> &Preconditions,
400                                bool IsSigned, const DataLayout &DL) {
401 
402   auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
403                                                       bool IsSignedB) {
404     auto ResA = decompose(A, Preconditions, IsSigned, DL);
405     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
406     ResA.add(ResB);
407     return ResA;
408   };
409 
410   // Decompose \p V used with a signed predicate.
411   if (IsSigned) {
412     if (auto *CI = dyn_cast<ConstantInt>(V)) {
413       if (canUseSExt(CI))
414         return CI->getSExtValue();
415     }
416     Value *Op0;
417     Value *Op1;
418     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
419       return MergeResults(Op0, Op1, IsSigned);
420 
421     ConstantInt *CI;
422     if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI)))) {
423       auto Result = decompose(Op0, Preconditions, IsSigned, DL);
424       Result.mul(CI->getSExtValue());
425       return Result;
426     }
427 
428     return V;
429   }
430 
431   if (auto *CI = dyn_cast<ConstantInt>(V)) {
432     if (CI->uge(MaxConstraintValue))
433       return V;
434     return int64_t(CI->getZExtValue());
435   }
436 
437   if (auto *GEP = dyn_cast<GEPOperator>(V))
438     return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
439 
440   Value *Op0;
441   bool IsKnownNonNegative = false;
442   if (match(V, m_ZExt(m_Value(Op0)))) {
443     IsKnownNonNegative = true;
444     V = Op0;
445   }
446 
447   Value *Op1;
448   ConstantInt *CI;
449   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
450     return MergeResults(Op0, Op1, IsSigned);
451   }
452   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
453     if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
454       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
455                                  ConstantInt::get(Op0->getType(), 0));
456     if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
457       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
458                                  ConstantInt::get(Op1->getType(), 0));
459 
460     return MergeResults(Op0, Op1, IsSigned);
461   }
462 
463   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
464       canUseSExt(CI)) {
465     Preconditions.emplace_back(
466         CmpInst::ICMP_UGE, Op0,
467         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
468     return MergeResults(Op0, CI, true);
469   }
470 
471   // Decompose or as an add if there are no common bits between the operands.
472   if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) &&
473       haveNoCommonBitsSet(Op0, CI, DL)) {
474     return MergeResults(Op0, CI, IsSigned);
475   }
476 
477   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
478     if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
479       return {V, IsKnownNonNegative};
480     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
481     Result.mul(int64_t{1} << CI->getSExtValue());
482     return Result;
483   }
484 
485   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
486       (!CI->isNegative())) {
487     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
488     Result.mul(CI->getSExtValue());
489     return Result;
490   }
491 
492   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI))
493     return {-1 * CI->getSExtValue(), {{1, Op0}}};
494   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
495     return {0, {{1, Op0}, {-1, Op1}}};
496 
497   return {V, IsKnownNonNegative};
498 }
499 
500 ConstraintTy
501 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
502                               SmallVectorImpl<Value *> &NewVariables) const {
503   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
504   bool IsEq = false;
505   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
506   switch (Pred) {
507   case CmpInst::ICMP_UGT:
508   case CmpInst::ICMP_UGE:
509   case CmpInst::ICMP_SGT:
510   case CmpInst::ICMP_SGE: {
511     Pred = CmpInst::getSwappedPredicate(Pred);
512     std::swap(Op0, Op1);
513     break;
514   }
515   case CmpInst::ICMP_EQ:
516     if (match(Op1, m_Zero())) {
517       Pred = CmpInst::ICMP_ULE;
518     } else {
519       IsEq = true;
520       Pred = CmpInst::ICMP_ULE;
521     }
522     break;
523   case CmpInst::ICMP_NE:
524     if (!match(Op1, m_Zero()))
525       return {};
526     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
527     std::swap(Op0, Op1);
528     break;
529   default:
530     break;
531   }
532 
533   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
534       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
535     return {};
536 
537   SmallVector<PreconditionTy, 4> Preconditions;
538   bool IsSigned = CmpInst::isSigned(Pred);
539   auto &Value2Index = getValue2Index(IsSigned);
540   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
541                         Preconditions, IsSigned, DL);
542   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
543                         Preconditions, IsSigned, DL);
544   int64_t Offset1 = ADec.Offset;
545   int64_t Offset2 = BDec.Offset;
546   Offset1 *= -1;
547 
548   auto &VariablesA = ADec.Vars;
549   auto &VariablesB = BDec.Vars;
550 
551   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
552   // new entry to NewVariables.
553   DenseMap<Value *, unsigned> NewIndexMap;
554   auto GetOrAddIndex = [&Value2Index, &NewVariables,
555                         &NewIndexMap](Value *V) -> unsigned {
556     auto V2I = Value2Index.find(V);
557     if (V2I != Value2Index.end())
558       return V2I->second;
559     auto Insert =
560         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
561     if (Insert.second)
562       NewVariables.push_back(V);
563     return Insert.first->second;
564   };
565 
566   // Make sure all variables have entries in Value2Index or NewVariables.
567   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
568     GetOrAddIndex(KV.Variable);
569 
570   // Build result constraint, by first adding all coefficients from A and then
571   // subtracting all coefficients from B.
572   ConstraintTy Res(
573       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
574       IsSigned, IsEq);
575   // Collect variables that are known to be positive in all uses in the
576   // constraint.
577   DenseMap<Value *, bool> KnownNonNegativeVariables;
578   auto &R = Res.Coefficients;
579   for (const auto &KV : VariablesA) {
580     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
581     auto I =
582         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
583     I.first->second &= KV.IsKnownNonNegative;
584   }
585 
586   for (const auto &KV : VariablesB) {
587     if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient,
588                     R[GetOrAddIndex(KV.Variable)]))
589       return {};
590     auto I =
591         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
592     I.first->second &= KV.IsKnownNonNegative;
593   }
594 
595   int64_t OffsetSum;
596   if (AddOverflow(Offset1, Offset2, OffsetSum))
597     return {};
598   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
599     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
600       return {};
601   R[0] = OffsetSum;
602   Res.Preconditions = std::move(Preconditions);
603 
604   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
605   // variables.
606   while (!NewVariables.empty()) {
607     int64_t Last = R.back();
608     if (Last != 0)
609       break;
610     R.pop_back();
611     Value *RemovedV = NewVariables.pop_back_val();
612     NewIndexMap.erase(RemovedV);
613   }
614 
615   // Add extra constraints for variables that are known positive.
616   for (auto &KV : KnownNonNegativeVariables) {
617     if (!KV.second ||
618         (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
619       continue;
620     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
621     C[GetOrAddIndex(KV.first)] = -1;
622     Res.ExtraInfo.push_back(C);
623   }
624   return Res;
625 }
626 
627 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
628                                                      Value *Op0,
629                                                      Value *Op1) const {
630   // If both operands are known to be non-negative, change signed predicates to
631   // unsigned ones. This increases the reasoning effectiveness in combination
632   // with the signed <-> unsigned transfer logic.
633   if (CmpInst::isSigned(Pred) &&
634       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
635       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
636     Pred = CmpInst::getUnsignedPredicate(Pred);
637 
638   SmallVector<Value *> NewVariables;
639   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
640   if (!NewVariables.empty())
641     return {};
642   return R;
643 }
644 
645 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
646   return Coefficients.size() > 0 &&
647          all_of(Preconditions, [&Info](const PreconditionTy &C) {
648            return Info.doesHold(C.Pred, C.Op0, C.Op1);
649          });
650 }
651 
652 std::optional<bool>
653 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
654   bool IsConditionImplied = CS.isConditionImplied(Coefficients);
655 
656   if (IsEq) {
657     auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
658     bool IsNegatedOrEqualImplied =
659         !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
660 
661     // In order to check that `%a == %b` is true, we want to check that `%a >=
662     // %b` and `%a <= %b` must hold.
663     if (IsConditionImplied && IsNegatedOrEqualImplied)
664       return true;
665 
666     auto Negated = ConstraintSystem::negate(Coefficients);
667     bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
668 
669     auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
670     bool IsStrictLessThanImplied =
671         !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
672 
673     // In order to check that `%a == %b` is false, we want to check whether
674     // either `%a > %b` or `%a < %b` holds.
675     if (IsNegatedImplied || IsStrictLessThanImplied)
676       return false;
677 
678     return std::nullopt;
679   }
680 
681   if (IsConditionImplied)
682     return true;
683 
684   auto Negated = ConstraintSystem::negate(Coefficients);
685   auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
686   if (IsNegatedImplied)
687     return false;
688 
689   // Neither the condition nor its negated holds, did not prove anything.
690   return std::nullopt;
691 }
692 
693 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
694                               Value *B) const {
695   auto R = getConstraintForSolving(Pred, A, B);
696   return R.isValid(*this) &&
697          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
698 }
699 
700 void ConstraintInfo::transferToOtherSystem(
701     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
702     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
703   // Check if we can combine facts from the signed and unsigned systems to
704   // derive additional facts.
705   if (!A->getType()->isIntegerTy())
706     return;
707   // FIXME: This currently depends on the order we add facts. Ideally we
708   // would first add all known facts and only then try to add additional
709   // facts.
710   switch (Pred) {
711   default:
712     break;
713   case CmpInst::ICMP_ULT:
714     //  If B is a signed positive constant, A >=s 0 and A <s B.
715     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
716       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
717               NumOut, DFSInStack);
718       addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack);
719     }
720     break;
721   case CmpInst::ICMP_SLT:
722     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
723       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
724     break;
725   case CmpInst::ICMP_SGT: {
726     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
727       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
728               NumOut, DFSInStack);
729     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0)))
730       addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
731 
732     break;
733   }
734   case CmpInst::ICMP_SGE:
735     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
736       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
737     }
738     break;
739   }
740 }
741 
742 #ifndef NDEBUG
743 
744 static void dumpConstraint(ArrayRef<int64_t> C,
745                            const DenseMap<Value *, unsigned> &Value2Index) {
746   ConstraintSystem CS(Value2Index);
747   CS.addVariableRowFill(C);
748   CS.dump();
749 }
750 #endif
751 
752 void State::addInfoFor(BasicBlock &BB) {
753   // True as long as long as the current instruction is guaranteed to execute.
754   bool GuaranteedToExecute = true;
755   // Queue conditions and assumes.
756   for (Instruction &I : BB) {
757     if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
758       for (Use &U : Cmp->uses()) {
759         auto *UserI = getContextInstForUse(U);
760         auto *DTN = DT.getNode(UserI->getParent());
761         if (!DTN)
762           continue;
763         WorkList.push_back(FactOrCheck::getCheck(DTN, &U));
764       }
765       continue;
766     }
767 
768     if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) {
769       WorkList.push_back(
770           FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
771       continue;
772     }
773 
774     Value *Cond;
775     // For now, just handle assumes with a single compare as condition.
776     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
777         isa<ICmpInst>(Cond)) {
778       if (GuaranteedToExecute) {
779         // The assume is guaranteed to execute when BB is entered, hence Cond
780         // holds on entry to BB.
781         WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()),
782                                                    cast<Instruction>(Cond)));
783       } else {
784         WorkList.emplace_back(
785             FactOrCheck::getFact(DT.getNode(I.getParent()), &I));
786       }
787     }
788     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
789   }
790 
791   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
792   if (!Br || !Br->isConditional())
793     return;
794 
795   Value *Cond = Br->getCondition();
796 
797   // If the condition is a chain of ORs/AND and the successor only has the
798   // current block as predecessor, queue conditions for the successor.
799   Value *Op0, *Op1;
800   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
801       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
802     bool IsOr = match(Cond, m_LogicalOr());
803     bool IsAnd = match(Cond, m_LogicalAnd());
804     // If there's a select that matches both AND and OR, we need to commit to
805     // one of the options. Arbitrarily pick OR.
806     if (IsOr && IsAnd)
807       IsAnd = false;
808 
809     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
810     if (canAddSuccessor(BB, Successor)) {
811       SmallVector<Value *> CondWorkList;
812       SmallPtrSet<Value *, 8> SeenCond;
813       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
814         if (SeenCond.insert(V).second)
815           CondWorkList.push_back(V);
816       };
817       QueueValue(Op1);
818       QueueValue(Op0);
819       while (!CondWorkList.empty()) {
820         Value *Cur = CondWorkList.pop_back_val();
821         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
822           WorkList.emplace_back(
823               FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr));
824           continue;
825         }
826         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
827           QueueValue(Op1);
828           QueueValue(Op0);
829           continue;
830         }
831         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
832           QueueValue(Op1);
833           QueueValue(Op0);
834           continue;
835         }
836       }
837     }
838     return;
839   }
840 
841   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
842   if (!CmpI)
843     return;
844   if (canAddSuccessor(BB, Br->getSuccessor(0)))
845     WorkList.emplace_back(
846         FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI));
847   if (canAddSuccessor(BB, Br->getSuccessor(1)))
848     WorkList.emplace_back(
849         FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true));
850 }
851 
852 namespace {
853 /// Helper to keep track of a condition and if it should be treated as negated
854 /// for reproducer construction.
855 struct ReproducerEntry {
856   CmpInst *Cond;
857   bool IsNot;
858 
859   ReproducerEntry(CmpInst *Cond, bool IsNot) : Cond(Cond), IsNot(IsNot) {}
860 };
861 } // namespace
862 
863 /// Helper function to generate a reproducer function for simplifying \p Cond.
864 /// The reproducer function contains a series of @llvm.assume calls, one for
865 /// each condition in \p Stack. For each condition, the operand instruction are
866 /// cloned until we reach operands that have an entry in \p Value2Index. Those
867 /// will then be added as function arguments. \p DT is used to order cloned
868 /// instructions. The reproducer function will get added to \p M, if it is
869 /// non-null. Otherwise no reproducer function is generated.
870 static void generateReproducer(CmpInst *Cond, Module *M,
871                                ArrayRef<ReproducerEntry> Stack,
872                                ConstraintInfo &Info, DominatorTree &DT) {
873   if (!M)
874     return;
875 
876   LLVMContext &Ctx = Cond->getContext();
877 
878   LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
879 
880   ValueToValueMapTy Old2New;
881   SmallVector<Value *> Args;
882   SmallPtrSet<Value *, 8> Seen;
883   // Traverse Cond and its operands recursively until we reach a value that's in
884   // Value2Index or not an instruction, or not a operation that
885   // ConstraintElimination can decompose. Such values will be considered as
886   // external inputs to the reproducer, they are collected and added as function
887   // arguments later.
888   auto CollectArguments = [&](CmpInst *Cond) {
889     if (!Cond)
890       return;
891     auto &Value2Index =
892         Info.getValue2Index(CmpInst::isSigned(Cond->getPredicate()));
893     SmallVector<Value *, 4> WorkList;
894     WorkList.push_back(Cond);
895     while (!WorkList.empty()) {
896       Value *V = WorkList.pop_back_val();
897       if (!Seen.insert(V).second)
898         continue;
899       if (Old2New.find(V) != Old2New.end())
900         continue;
901       if (isa<Constant>(V))
902         continue;
903 
904       auto *I = dyn_cast<Instruction>(V);
905       if (Value2Index.contains(V) || !I ||
906           !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) {
907         Old2New[V] = V;
908         Args.push_back(V);
909         LLVM_DEBUG(dbgs() << "  found external input " << *V << "\n");
910       } else {
911         append_range(WorkList, I->operands());
912       }
913     }
914   };
915 
916   for (auto &Entry : Stack)
917     CollectArguments(Entry.Cond);
918   CollectArguments(Cond);
919 
920   SmallVector<Type *> ParamTys;
921   for (auto *P : Args)
922     ParamTys.push_back(P->getType());
923 
924   FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
925                                         /*isVarArg=*/false);
926   Function *F = Function::Create(FTy, Function::ExternalLinkage,
927                                  Cond->getModule()->getName() +
928                                      Cond->getFunction()->getName() + "repro",
929                                  M);
930   // Add arguments to the reproducer function for each external value collected.
931   for (unsigned I = 0; I < Args.size(); ++I) {
932     F->getArg(I)->setName(Args[I]->getName());
933     Old2New[Args[I]] = F->getArg(I);
934   }
935 
936   BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
937   IRBuilder<> Builder(Entry);
938   Builder.CreateRet(Builder.getTrue());
939   Builder.SetInsertPoint(Entry->getTerminator());
940 
941   // Clone instructions in \p Ops and their operands recursively until reaching
942   // an value in Value2Index (external input to the reproducer). Update Old2New
943   // mapping for the original and cloned instructions. Sort instructions to
944   // clone by dominance, then insert the cloned instructions in the function.
945   auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
946     SmallVector<Value *, 4> WorkList(Ops);
947     SmallVector<Instruction *> ToClone;
948     auto &Value2Index = Info.getValue2Index(IsSigned);
949     while (!WorkList.empty()) {
950       Value *V = WorkList.pop_back_val();
951       if (Old2New.find(V) != Old2New.end())
952         continue;
953 
954       auto *I = dyn_cast<Instruction>(V);
955       if (!Value2Index.contains(V) && I) {
956         Old2New[V] = nullptr;
957         ToClone.push_back(I);
958         append_range(WorkList, I->operands());
959       }
960     }
961 
962     sort(ToClone,
963          [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
964     for (Instruction *I : ToClone) {
965       Instruction *Cloned = I->clone();
966       Old2New[I] = Cloned;
967       Old2New[I]->setName(I->getName());
968       Cloned->insertBefore(&*Builder.GetInsertPoint());
969       Cloned->dropUnknownNonDebugMetadata();
970       Cloned->setDebugLoc({});
971     }
972   };
973 
974   // Materialize the assumptions for the reproducer using the entries in Stack.
975   // That is, first clone the operands of the condition recursively until we
976   // reach an external input to the reproducer and add them to the reproducer
977   // function. Then add an ICmp for the condition (with the inverse predicate if
978   // the entry is negated) and an assert using the ICmp.
979   for (auto &Entry : Stack) {
980     if (!Entry.Cond)
981       continue;
982 
983     LLVM_DEBUG(dbgs() << "  Materializing assumption " << *Entry.Cond << "\n");
984     CmpInst::Predicate Pred = Entry.Cond->getPredicate();
985     if (Entry.IsNot)
986       Pred = CmpInst::getInversePredicate(Pred);
987 
988     CloneInstructions({Entry.Cond->getOperand(0), Entry.Cond->getOperand(1)},
989                       CmpInst::isSigned(Entry.Cond->getPredicate()));
990 
991     auto *Cmp = Builder.CreateICmp(Pred, Entry.Cond->getOperand(0),
992                                    Entry.Cond->getOperand(1));
993     Builder.CreateAssumption(Cmp);
994   }
995 
996   // Finally, clone the condition to reproduce and remap instruction operands in
997   // the reproducer using Old2New.
998   CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
999   Entry->getTerminator()->setOperand(0, Cond);
1000   remapInstructionsInBlocks({Entry}, Old2New);
1001 
1002   assert(!verifyFunction(*F, &dbgs()));
1003 }
1004 
1005 static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info,
1006                                           unsigned NumIn, unsigned NumOut,
1007                                           Instruction *ContextInst) {
1008   LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
1009 
1010   CmpInst::Predicate Pred = Cmp->getPredicate();
1011   Value *A = Cmp->getOperand(0);
1012   Value *B = Cmp->getOperand(1);
1013 
1014   auto R = Info.getConstraintForSolving(Pred, A, B);
1015   if (R.empty() || !R.isValid(Info)){
1016     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
1017     return std::nullopt;
1018   }
1019 
1020   auto &CSToUse = Info.getCS(R.IsSigned);
1021 
1022   // If there was extra information collected during decomposition, apply
1023   // it now and remove it immediately once we are done with reasoning
1024   // about the constraint.
1025   for (auto &Row : R.ExtraInfo)
1026     CSToUse.addVariableRow(Row);
1027   auto InfoRestorer = make_scope_exit([&]() {
1028     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
1029       CSToUse.popLastConstraint();
1030   });
1031 
1032   if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) {
1033     if (!DebugCounter::shouldExecute(EliminatedCounter))
1034       return std::nullopt;
1035 
1036     LLVM_DEBUG({
1037       if (*ImpliedCondition) {
1038         dbgs() << "Condition " << *Cmp;
1039       } else {
1040         auto InversePred = Cmp->getInversePredicate();
1041         dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " "
1042                << *A << ", " << *B;
1043       }
1044       dbgs() << " implied by dominating constraints\n";
1045       CSToUse.dump();
1046     });
1047     return ImpliedCondition;
1048   }
1049 
1050   return std::nullopt;
1051 }
1052 
1053 static bool checkAndReplaceCondition(
1054     CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut,
1055     Instruction *ContextInst, Module *ReproducerModule,
1056     ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT) {
1057   auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
1058     generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
1059     Constant *ConstantC = ConstantInt::getBool(
1060         CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
1061     Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut,
1062                                        ContextInst](Use &U) {
1063       auto *UserI = getContextInstForUse(U);
1064       auto *DTN = DT.getNode(UserI->getParent());
1065       if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
1066         return false;
1067       if (UserI->getParent() == ContextInst->getParent() &&
1068           UserI->comesBefore(ContextInst))
1069         return false;
1070 
1071       // Conditions in an assume trivially simplify to true. Skip uses
1072       // in assume calls to not destroy the available information.
1073       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1074       return !II || II->getIntrinsicID() != Intrinsic::assume;
1075     });
1076     NumCondsRemoved++;
1077     return true;
1078   };
1079 
1080   if (auto ImpliedCondition =
1081           checkCondition(Cmp, Info, NumIn, NumOut, ContextInst))
1082     return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
1083   return false;
1084 }
1085 
1086 static void
1087 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
1088                      Module *ReproducerModule,
1089                      SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1090                      SmallVectorImpl<StackEntry> &DFSInStack) {
1091   Info.popLastConstraint(E.IsSigned);
1092   // Remove variables in the system that went out of scope.
1093   auto &Mapping = Info.getValue2Index(E.IsSigned);
1094   for (Value *V : E.ValuesToRelease)
1095     Mapping.erase(V);
1096   Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1097   DFSInStack.pop_back();
1098   if (ReproducerModule)
1099     ReproducerCondStack.pop_back();
1100 }
1101 
1102 /// Check if the first condition for an AND implies the second.
1103 static bool checkAndSecondOpImpliedByFirst(
1104     FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule,
1105     SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1106     SmallVectorImpl<StackEntry> &DFSInStack) {
1107   CmpInst::Predicate Pred;
1108   Value *A, *B;
1109   Instruction *And = CB.getContextInst();
1110   if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B))))
1111     return false;
1112 
1113   // Optimistically add fact from first condition.
1114   unsigned OldSize = DFSInStack.size();
1115   Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1116   if (OldSize == DFSInStack.size())
1117     return false;
1118 
1119   bool Changed = false;
1120   // Check if the second condition can be simplified now.
1121   if (auto ImpliedCondition =
1122           checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn,
1123                          CB.NumOut, CB.getContextInst())) {
1124     And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition));
1125     Changed = true;
1126   }
1127 
1128   // Remove entries again.
1129   while (OldSize < DFSInStack.size()) {
1130     StackEntry E = DFSInStack.back();
1131     removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack,
1132                          DFSInStack);
1133   }
1134   return Changed;
1135 }
1136 
1137 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
1138                              unsigned NumIn, unsigned NumOut,
1139                              SmallVectorImpl<StackEntry> &DFSInStack) {
1140   // If the constraint has a pre-condition, skip the constraint if it does not
1141   // hold.
1142   SmallVector<Value *> NewVariables;
1143   auto R = getConstraint(Pred, A, B, NewVariables);
1144   if (!R.isValid(*this))
1145     return;
1146 
1147   LLVM_DEBUG(dbgs() << "Adding '" << Pred << " ";
1148              A->printAsOperand(dbgs(), false); dbgs() << ", ";
1149              B->printAsOperand(dbgs(), false); dbgs() << "'\n");
1150   bool Added = false;
1151   auto &CSToUse = getCS(R.IsSigned);
1152   if (R.Coefficients.empty())
1153     return;
1154 
1155   Added |= CSToUse.addVariableRowFill(R.Coefficients);
1156 
1157   // If R has been added to the system, add the new variables and queue it for
1158   // removal once it goes out-of-scope.
1159   if (Added) {
1160     SmallVector<Value *, 2> ValuesToRelease;
1161     auto &Value2Index = getValue2Index(R.IsSigned);
1162     for (Value *V : NewVariables) {
1163       Value2Index.insert({V, Value2Index.size() + 1});
1164       ValuesToRelease.push_back(V);
1165     }
1166 
1167     LLVM_DEBUG({
1168       dbgs() << "  constraint: ";
1169       dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1170       dbgs() << "\n";
1171     });
1172 
1173     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1174                             std::move(ValuesToRelease));
1175 
1176     if (R.isEq()) {
1177       // Also add the inverted constraint for equality constraints.
1178       for (auto &Coeff : R.Coefficients)
1179         Coeff *= -1;
1180       CSToUse.addVariableRowFill(R.Coefficients);
1181 
1182       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1183                               SmallVector<Value *, 2>());
1184     }
1185   }
1186 }
1187 
1188 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
1189                                    SmallVectorImpl<Instruction *> &ToRemove) {
1190   bool Changed = false;
1191   IRBuilder<> Builder(II->getParent(), II->getIterator());
1192   Value *Sub = nullptr;
1193   for (User *U : make_early_inc_range(II->users())) {
1194     if (match(U, m_ExtractValue<0>(m_Value()))) {
1195       if (!Sub)
1196         Sub = Builder.CreateSub(A, B);
1197       U->replaceAllUsesWith(Sub);
1198       Changed = true;
1199     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
1200       U->replaceAllUsesWith(Builder.getFalse());
1201       Changed = true;
1202     } else
1203       continue;
1204 
1205     if (U->use_empty()) {
1206       auto *I = cast<Instruction>(U);
1207       ToRemove.push_back(I);
1208       I->setOperand(0, PoisonValue::get(II->getType()));
1209       Changed = true;
1210     }
1211   }
1212 
1213   if (II->use_empty()) {
1214     II->eraseFromParent();
1215     Changed = true;
1216   }
1217   return Changed;
1218 }
1219 
1220 static bool
1221 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
1222                           SmallVectorImpl<Instruction *> &ToRemove) {
1223   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1224                               ConstraintInfo &Info) {
1225     auto R = Info.getConstraintForSolving(Pred, A, B);
1226     if (R.size() < 2 || !R.isValid(Info))
1227       return false;
1228 
1229     auto &CSToUse = Info.getCS(R.IsSigned);
1230     return CSToUse.isConditionImplied(R.Coefficients);
1231   };
1232 
1233   bool Changed = false;
1234   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1235     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1236     // can be simplified to a regular sub.
1237     Value *A = II->getArgOperand(0);
1238     Value *B = II->getArgOperand(1);
1239     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1240         !DoesConditionHold(CmpInst::ICMP_SGE, B,
1241                            ConstantInt::get(A->getType(), 0), Info))
1242       return false;
1243     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
1244   }
1245   return Changed;
1246 }
1247 
1248 static bool eliminateConstraints(Function &F, DominatorTree &DT,
1249                                  OptimizationRemarkEmitter &ORE) {
1250   bool Changed = false;
1251   DT.updateDFSNumbers();
1252   SmallVector<Value *> FunctionArgs;
1253   for (Value &Arg : F.args())
1254     FunctionArgs.push_back(&Arg);
1255   ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs);
1256   State S(DT);
1257   std::unique_ptr<Module> ReproducerModule(
1258       DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1259 
1260   // First, collect conditions implied by branches and blocks with their
1261   // Dominator DFS in and out numbers.
1262   for (BasicBlock &BB : F) {
1263     if (!DT.getNode(&BB))
1264       continue;
1265     S.addInfoFor(BB);
1266   }
1267 
1268   // Next, sort worklist by dominance, so that dominating conditions to check
1269   // and facts come before conditions and facts dominated by them. If a
1270   // condition to check and a fact have the same numbers, conditional facts come
1271   // first. Assume facts and checks are ordered according to their relative
1272   // order in the containing basic block. Also make sure conditions with
1273   // constant operands come before conditions without constant operands. This
1274   // increases the effectiveness of the current signed <-> unsigned fact
1275   // transfer logic.
1276   stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1277     auto HasNoConstOp = [](const FactOrCheck &B) {
1278       return !isa<ConstantInt>(B.Inst->getOperand(0)) &&
1279              !isa<ConstantInt>(B.Inst->getOperand(1));
1280     };
1281     // If both entries have the same In numbers, conditional facts come first.
1282     // Otherwise use the relative order in the basic block.
1283     if (A.NumIn == B.NumIn) {
1284       if (A.isConditionFact() && B.isConditionFact()) {
1285         bool NoConstOpA = HasNoConstOp(A);
1286         bool NoConstOpB = HasNoConstOp(B);
1287         return NoConstOpA < NoConstOpB;
1288       }
1289       if (A.isConditionFact())
1290         return true;
1291       if (B.isConditionFact())
1292         return false;
1293       auto *InstA = A.getContextInst();
1294       auto *InstB = B.getContextInst();
1295       return InstA->comesBefore(InstB);
1296     }
1297     return A.NumIn < B.NumIn;
1298   });
1299 
1300   SmallVector<Instruction *> ToRemove;
1301 
1302   // Finally, process ordered worklist and eliminate implied conditions.
1303   SmallVector<StackEntry, 16> DFSInStack;
1304   SmallVector<ReproducerEntry> ReproducerCondStack;
1305   for (FactOrCheck &CB : S.WorkList) {
1306     // First, pop entries from the stack that are out-of-scope for CB. Remove
1307     // the corresponding entry from the constraint system.
1308     while (!DFSInStack.empty()) {
1309       auto &E = DFSInStack.back();
1310       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1311                         << "\n");
1312       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1313       assert(E.NumIn <= CB.NumIn);
1314       if (CB.NumOut <= E.NumOut)
1315         break;
1316       LLVM_DEBUG({
1317         dbgs() << "Removing ";
1318         dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1319                        Info.getValue2Index(E.IsSigned));
1320         dbgs() << "\n";
1321       });
1322       removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
1323                            DFSInStack);
1324     }
1325 
1326     LLVM_DEBUG(dbgs() << "Processing ");
1327 
1328     // For a block, check if any CmpInsts become known based on the current set
1329     // of constraints.
1330     if (CB.isCheck()) {
1331       Instruction *Inst = CB.getInstructionToSimplify();
1332       if (!Inst)
1333         continue;
1334       LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n");
1335       if (auto *II = dyn_cast<WithOverflowInst>(Inst)) {
1336         Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1337       } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) {
1338         bool Simplified = checkAndReplaceCondition(
1339             Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(),
1340             ReproducerModule.get(), ReproducerCondStack, S.DT);
1341         if (!Simplified && match(CB.getContextInst(),
1342                                  m_LogicalAnd(m_Value(), m_Specific(Inst)))) {
1343           Simplified =
1344               checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(),
1345                                              ReproducerCondStack, DFSInStack);
1346         }
1347         Changed |= Simplified;
1348       }
1349       continue;
1350     }
1351 
1352     LLVM_DEBUG(dbgs() << "fact to add to the system: " << *CB.Inst << "\n");
1353     ICmpInst::Predicate Pred;
1354     Value *A, *B;
1355     Value *Cmp = CB.Inst;
1356     match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp)));
1357     if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
1358       if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1359         LLVM_DEBUG(
1360             dbgs()
1361             << "Skip adding constraint because system has too many rows.\n");
1362         continue;
1363       }
1364 
1365       // Use the inverse predicate if required.
1366       if (CB.Not)
1367         Pred = CmpInst::getInversePredicate(Pred);
1368 
1369       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1370       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1371         ReproducerCondStack.emplace_back(cast<CmpInst>(Cmp), CB.Not);
1372 
1373       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1374       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
1375         // Add dummy entries to ReproducerCondStack to keep it in sync with
1376         // DFSInStack.
1377         for (unsigned I = 0,
1378                       E = (DFSInStack.size() - ReproducerCondStack.size());
1379              I < E; ++I) {
1380           ReproducerCondStack.emplace_back(nullptr, false);
1381         }
1382       }
1383     }
1384   }
1385 
1386   if (ReproducerModule && !ReproducerModule->functions().empty()) {
1387     std::string S;
1388     raw_string_ostream StringS(S);
1389     ReproducerModule->print(StringS, nullptr);
1390     StringS.flush();
1391     OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
1392     Rem << ore::NV("module") << S;
1393     ORE.emit(Rem);
1394   }
1395 
1396 #ifndef NDEBUG
1397   unsigned SignedEntries =
1398       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1399   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
1400          "updates to CS and DFSInStack are out of sync");
1401   assert(Info.getCS(true).size() == SignedEntries &&
1402          "updates to CS and DFSInStack are out of sync");
1403 #endif
1404 
1405   for (Instruction *I : ToRemove)
1406     I->eraseFromParent();
1407   return Changed;
1408 }
1409 
1410 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1411                                                  FunctionAnalysisManager &AM) {
1412   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1413   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1414   if (!eliminateConstraints(F, DT, ORE))
1415     return PreservedAnalyses::all();
1416 
1417   PreservedAnalyses PA;
1418   PA.preserve<DominatorTreeAnalysis>();
1419   PA.preserveSet<CFGAnalyses>();
1420   return PA;
1421 }
1422