xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 11a6e64ba7bed04c03ca52e13567ebe4ec7014a5)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/DebugCounter.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Transforms/Scalar.h"
34 
35 #include <cmath>
36 #include <string>
37 
38 using namespace llvm;
39 using namespace PatternMatch;
40 
41 #define DEBUG_TYPE "constraint-elimination"
42 
43 STATISTIC(NumCondsRemoved, "Number of instructions removed");
44 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
45               "Controls which conditions are eliminated");
46 
47 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
48 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
49 
50 namespace {
51 
52 class ConstraintInfo;
53 
54 struct StackEntry {
55   unsigned NumIn;
56   unsigned NumOut;
57   bool IsSigned = false;
58   /// Variables that can be removed from the system once the stack entry gets
59   /// removed.
60   SmallVector<Value *, 2> ValuesToRelease;
61 
62   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
63              SmallVector<Value *, 2> ValuesToRelease)
64       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
65         ValuesToRelease(ValuesToRelease) {}
66 };
67 
68 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
69 struct PreconditionTy {
70   CmpInst::Predicate Pred;
71   Value *Op0;
72   Value *Op1;
73 
74   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
75       : Pred(Pred), Op0(Op0), Op1(Op1) {}
76 };
77 
78 struct ConstraintTy {
79   SmallVector<int64_t, 8> Coefficients;
80   SmallVector<PreconditionTy, 2> Preconditions;
81 
82   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
83 
84   bool IsSigned = false;
85   bool IsEq = false;
86 
87   ConstraintTy() = default;
88 
89   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
90       : Coefficients(Coefficients), IsSigned(IsSigned) {}
91 
92   unsigned size() const { return Coefficients.size(); }
93 
94   unsigned empty() const { return Coefficients.empty(); }
95 
96   /// Returns true if all preconditions for this list of constraints are
97   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
98   bool isValid(const ConstraintInfo &Info) const;
99 };
100 
101 /// Wrapper encapsulating separate constraint systems and corresponding value
102 /// mappings for both unsigned and signed information. Facts are added to and
103 /// conditions are checked against the corresponding system depending on the
104 /// signed-ness of their predicates. While the information is kept separate
105 /// based on signed-ness, certain conditions can be transferred between the two
106 /// systems.
107 class ConstraintInfo {
108   DenseMap<Value *, unsigned> UnsignedValue2Index;
109   DenseMap<Value *, unsigned> SignedValue2Index;
110 
111   ConstraintSystem UnsignedCS;
112   ConstraintSystem SignedCS;
113 
114   const DataLayout &DL;
115 
116 public:
117   ConstraintInfo(const DataLayout &DL) : DL(DL) {}
118 
119   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
120     return Signed ? SignedValue2Index : UnsignedValue2Index;
121   }
122   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
123     return Signed ? SignedValue2Index : UnsignedValue2Index;
124   }
125 
126   ConstraintSystem &getCS(bool Signed) {
127     return Signed ? SignedCS : UnsignedCS;
128   }
129   const ConstraintSystem &getCS(bool Signed) const {
130     return Signed ? SignedCS : UnsignedCS;
131   }
132 
133   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
134   void popLastNVariables(bool Signed, unsigned N) {
135     getCS(Signed).popLastNVariables(N);
136   }
137 
138   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
139 
140   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
141                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
142 
143   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
144   /// constraints, using indices from the corresponding constraint system.
145   /// New variables that need to be added to the system are collected in
146   /// \p NewVariables.
147   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
148                              SmallVectorImpl<Value *> &NewVariables) const;
149 
150   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
151   /// constraints using getConstraint. Returns an empty constraint if the result
152   /// cannot be used to query the existing constraint system, e.g. because it
153   /// would require adding new variables. Also tries to convert signed
154   /// predicates to unsigned ones if possible to allow using the unsigned system
155   /// which increases the effectiveness of the signed <-> unsigned transfer
156   /// logic.
157   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
158                                        Value *Op1) const;
159 
160   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
161   /// system if \p Pred is signed/unsigned.
162   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
163                              unsigned NumIn, unsigned NumOut,
164                              SmallVectorImpl<StackEntry> &DFSInStack);
165 };
166 
167 /// Represents a (Coefficient * Variable) entry after IR decomposition.
168 struct DecompEntry {
169   int64_t Coefficient;
170   Value *Variable;
171   /// True if the variable is known positive in the current constraint.
172   bool IsKnownPositive;
173 
174   DecompEntry(int64_t Coefficient, Value *Variable,
175               bool IsKnownPositive = false)
176       : Coefficient(Coefficient), Variable(Variable),
177         IsKnownPositive(IsKnownPositive) {}
178 };
179 
180 } // namespace
181 
182 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable
183 // } where Coefficient * Variable. The sum of the pairs equals \p V.  The first
184 // pair is the constant-factor and X must be nullptr. If the expression cannot
185 // be decomposed, returns an empty vector.
186 static SmallVector<DecompEntry, 4>
187 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
188           bool IsSigned) {
189 
190   auto CanUseSExt = [](ConstantInt *CI) {
191     const APInt &Val = CI->getValue();
192     return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
193   };
194   // Decompose \p V used with a signed predicate.
195   if (IsSigned) {
196     if (auto *CI = dyn_cast<ConstantInt>(V)) {
197       if (CanUseSExt(CI))
198         return {{CI->getSExtValue(), nullptr}};
199     }
200 
201     return {{0, nullptr}, {1, V}};
202   }
203 
204   if (auto *CI = dyn_cast<ConstantInt>(V)) {
205     if (CI->uge(MaxConstraintValue))
206       return {};
207     return {{int64_t(CI->getZExtValue()), nullptr}};
208   }
209   auto *GEP = dyn_cast<GetElementPtrInst>(V);
210   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
211     Value *Op0, *Op1;
212     ConstantInt *CI;
213 
214     // Handle the (gep (gep ....), C) case by incrementing the constant
215     // coefficient of the inner GEP, if C is a constant.
216     auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP->getPointerOperand());
217     if (InnerGEP && InnerGEP->getNumOperands() == 2 &&
218         isa<ConstantInt>(GEP->getOperand(1))) {
219       APInt Offset = cast<ConstantInt>(GEP->getOperand(1))->getValue();
220       auto Result = decompose(InnerGEP, Preconditions, IsSigned);
221       Result[0].Coefficient += Offset.getSExtValue();
222       if (Offset.isNegative()) {
223         // Add pre-condition ensuring the GEP is increasing monotonically and
224         // can be de-composed.
225         Preconditions.emplace_back(
226             CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
227             ConstantInt::get(InnerGEP->getOperand(1)->getType(),
228                              -1 * Offset.getSExtValue()));
229       }
230       return Result;
231     }
232 
233     // If the index is zero-extended, it is guaranteed to be positive.
234     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
235               m_ZExt(m_Value(Op0)))) {
236       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) &&
237           CanUseSExt(CI))
238         return {{0, nullptr},
239                 {1, GEP->getPointerOperand()},
240                 {int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op1}};
241       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) &&
242           CanUseSExt(CI))
243         return {{CI->getSExtValue(), nullptr},
244                 {1, GEP->getPointerOperand()},
245                 {1, Op1}};
246       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0, true}};
247     }
248 
249     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
250         !CI->isNegative() && CanUseSExt(CI))
251       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
252 
253     SmallVector<DecompEntry, 4> Result;
254     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
255               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) &&
256         CanUseSExt(CI))
257       Result = {{0, nullptr},
258                 {1, GEP->getPointerOperand()},
259                 {int(std::pow(int64_t(2), CI->getSExtValue())), Op0}};
260     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
261                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
262              CanUseSExt(CI))
263       Result = {{CI->getSExtValue(), nullptr},
264                 {1, GEP->getPointerOperand()},
265                 {1, Op0}};
266     else {
267       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
268       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
269     }
270     // If Op0 is signed non-negative, the GEP is increasing monotonically and
271     // can be de-composed.
272     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
273                                ConstantInt::get(Op0->getType(), 0));
274     return Result;
275   }
276 
277   Value *Op0;
278   bool IsKnownPositive = false;
279   if (match(V, m_ZExt(m_Value(Op0)))) {
280     IsKnownPositive = true;
281     V = Op0;
282   }
283 
284   auto MergeResults = [&Preconditions, IsSigned](
285                           Value *A, Value *B,
286                           bool IsSignedB) -> SmallVector<DecompEntry, 4> {
287     auto ResA = decompose(A, Preconditions, IsSigned);
288     auto ResB = decompose(B, Preconditions, IsSignedB);
289     if (ResA.empty() || ResB.empty())
290       return {};
291     ResA[0].Coefficient += ResB[0].Coefficient;
292     append_range(ResA, drop_begin(ResB));
293     return ResA;
294   };
295   Value *Op1;
296   ConstantInt *CI;
297   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
298     return MergeResults(Op0, Op1, IsSigned);
299   }
300   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
301       CanUseSExt(CI)) {
302     Preconditions.emplace_back(
303         CmpInst::ICMP_UGE, Op0,
304         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
305     return MergeResults(Op0, CI, true);
306   }
307 
308   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI))
309     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
310   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
311     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
312 
313   return {{0, nullptr}, {1, V, IsKnownPositive}};
314 }
315 
316 ConstraintTy
317 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
318                               SmallVectorImpl<Value *> &NewVariables) const {
319   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
320   bool IsEq = false;
321   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
322   switch (Pred) {
323   case CmpInst::ICMP_UGT:
324   case CmpInst::ICMP_UGE:
325   case CmpInst::ICMP_SGT:
326   case CmpInst::ICMP_SGE: {
327     Pred = CmpInst::getSwappedPredicate(Pred);
328     std::swap(Op0, Op1);
329     break;
330   }
331   case CmpInst::ICMP_EQ:
332     if (match(Op1, m_Zero())) {
333       Pred = CmpInst::ICMP_ULE;
334     } else {
335       IsEq = true;
336       Pred = CmpInst::ICMP_ULE;
337     }
338     break;
339   case CmpInst::ICMP_NE:
340     if (!match(Op1, m_Zero()))
341       return {};
342     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
343     std::swap(Op0, Op1);
344     break;
345   default:
346     break;
347   }
348 
349   // Only ULE and ULT predicates are supported at the moment.
350   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
351       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
352     return {};
353 
354   SmallVector<PreconditionTy, 4> Preconditions;
355   bool IsSigned = CmpInst::isSigned(Pred);
356   auto &Value2Index = getValue2Index(IsSigned);
357   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
358                         Preconditions, IsSigned);
359   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
360                         Preconditions, IsSigned);
361   // Skip if decomposing either of the values failed.
362   if (ADec.empty() || BDec.empty())
363     return {};
364 
365   int64_t Offset1 = ADec[0].Coefficient;
366   int64_t Offset2 = BDec[0].Coefficient;
367   Offset1 *= -1;
368 
369   // Create iterator ranges that skip the constant-factor.
370   auto VariablesA = llvm::drop_begin(ADec);
371   auto VariablesB = llvm::drop_begin(BDec);
372 
373   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
374   // new entry to NewVariables.
375   DenseMap<Value *, unsigned> NewIndexMap;
376   auto GetOrAddIndex = [&Value2Index, &NewVariables,
377                         &NewIndexMap](Value *V) -> unsigned {
378     auto V2I = Value2Index.find(V);
379     if (V2I != Value2Index.end())
380       return V2I->second;
381     auto Insert =
382         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
383     if (Insert.second)
384       NewVariables.push_back(V);
385     return Insert.first->second;
386   };
387 
388   // Make sure all variables have entries in Value2Index or NewVariables.
389   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
390     GetOrAddIndex(KV.Variable);
391 
392   // Build result constraint, by first adding all coefficients from A and then
393   // subtracting all coefficients from B.
394   ConstraintTy Res(
395       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
396       IsSigned);
397   // Collect variables that are known to be positive in all uses in the
398   // constraint.
399   DenseMap<Value *, bool> KnownPositiveVariables;
400   Res.IsEq = IsEq;
401   auto &R = Res.Coefficients;
402   for (const auto &KV : VariablesA) {
403     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
404     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
405     I.first->second &= KV.IsKnownPositive;
406   }
407 
408   for (const auto &KV : VariablesB) {
409     R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient;
410     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
411     I.first->second &= KV.IsKnownPositive;
412   }
413 
414   int64_t OffsetSum;
415   if (AddOverflow(Offset1, Offset2, OffsetSum))
416     return {};
417   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
418     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
419       return {};
420   R[0] = OffsetSum;
421   Res.Preconditions = std::move(Preconditions);
422 
423   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
424   // variables.
425   while (!NewVariables.empty()) {
426     int64_t Last = R.back();
427     if (Last != 0)
428       break;
429     R.pop_back();
430     Value *RemovedV = NewVariables.pop_back_val();
431     NewIndexMap.erase(RemovedV);
432   }
433 
434   // Add extra constraints for variables that are known positive.
435   for (auto &KV : KnownPositiveVariables) {
436     if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() &&
437                        NewIndexMap.find(KV.first) == NewIndexMap.end()))
438       continue;
439     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
440     C[GetOrAddIndex(KV.first)] = -1;
441     Res.ExtraInfo.push_back(C);
442   }
443   return Res;
444 }
445 
446 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
447                                                      Value *Op0,
448                                                      Value *Op1) const {
449   // If both operands are known to be non-negative, change signed predicates to
450   // unsigned ones. This increases the reasoning effectiveness in combination
451   // with the signed <-> unsigned transfer logic.
452   if (CmpInst::isSigned(Pred) &&
453       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
454       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
455     Pred = CmpInst::getUnsignedPredicate(Pred);
456 
457   SmallVector<Value *> NewVariables;
458   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
459   if (R.IsEq || !NewVariables.empty())
460     return {};
461   return R;
462 }
463 
464 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
465   return Coefficients.size() > 0 &&
466          all_of(Preconditions, [&Info](const PreconditionTy &C) {
467            return Info.doesHold(C.Pred, C.Op0, C.Op1);
468          });
469 }
470 
471 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
472                               Value *B) const {
473   auto R = getConstraintForSolving(Pred, A, B);
474   return R.Preconditions.empty() && !R.empty() &&
475          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
476 }
477 
478 void ConstraintInfo::transferToOtherSystem(
479     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
480     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
481   // Check if we can combine facts from the signed and unsigned systems to
482   // derive additional facts.
483   if (!A->getType()->isIntegerTy())
484     return;
485   // FIXME: This currently depends on the order we add facts. Ideally we
486   // would first add all known facts and only then try to add additional
487   // facts.
488   switch (Pred) {
489   default:
490     break;
491   case CmpInst::ICMP_ULT:
492     //  If B is a signed positive constant, A >=s 0 and A <s B.
493     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
494       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
495               NumOut, DFSInStack);
496       addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack);
497     }
498     break;
499   case CmpInst::ICMP_SLT:
500     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
501       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
502     break;
503   case CmpInst::ICMP_SGT:
504     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
505       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
506               NumOut, DFSInStack);
507     break;
508   case CmpInst::ICMP_SGE:
509     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
510       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
511     }
512     break;
513   }
514 }
515 
516 namespace {
517 /// Represents either a condition that holds on entry to a block or a basic
518 /// block, with their respective Dominator DFS in and out numbers.
519 struct ConstraintOrBlock {
520   unsigned NumIn;
521   unsigned NumOut;
522   bool IsBlock;
523   bool Not;
524   union {
525     BasicBlock *BB;
526     CmpInst *Condition;
527   };
528 
529   ConstraintOrBlock(DomTreeNode *DTN)
530       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
531         BB(DTN->getBlock()) {}
532   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
533       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
534         Not(Not), Condition(Condition) {}
535 };
536 
537 /// Keep state required to build worklist.
538 struct State {
539   DominatorTree &DT;
540   SmallVector<ConstraintOrBlock, 64> WorkList;
541 
542   State(DominatorTree &DT) : DT(DT) {}
543 
544   /// Process block \p BB and add known facts to work-list.
545   void addInfoFor(BasicBlock &BB);
546 
547   /// Returns true if we can add a known condition from BB to its successor
548   /// block Succ. Each predecessor of Succ can either be BB or be dominated
549   /// by Succ (e.g. the case when adding a condition from a pre-header to a
550   /// loop header).
551   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
552     if (BB.getSingleSuccessor()) {
553       assert(BB.getSingleSuccessor() == Succ);
554       return DT.properlyDominates(&BB, Succ);
555     }
556     return any_of(successors(&BB),
557                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
558            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
559              return Pred == &BB || DT.dominates(Succ, Pred);
560            });
561   }
562 };
563 
564 } // namespace
565 
566 #ifndef NDEBUG
567 static void dumpWithNames(const ConstraintSystem &CS,
568                           DenseMap<Value *, unsigned> &Value2Index) {
569   SmallVector<std::string> Names(Value2Index.size(), "");
570   for (auto &KV : Value2Index) {
571     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
572   }
573   CS.dump(Names);
574 }
575 
576 static void dumpWithNames(ArrayRef<int64_t> C,
577                           DenseMap<Value *, unsigned> &Value2Index) {
578   ConstraintSystem CS;
579   CS.addVariableRowFill(C);
580   dumpWithNames(CS, Value2Index);
581 }
582 #endif
583 
584 void State::addInfoFor(BasicBlock &BB) {
585   WorkList.emplace_back(DT.getNode(&BB));
586 
587   // True as long as long as the current instruction is guaranteed to execute.
588   bool GuaranteedToExecute = true;
589   // Scan BB for assume calls.
590   // TODO: also use this scan to queue conditions to simplify, so we can
591   // interleave facts from assumes and conditions to simplify in a single
592   // basic block. And to skip another traversal of each basic block when
593   // simplifying.
594   for (Instruction &I : BB) {
595     Value *Cond;
596     // For now, just handle assumes with a single compare as condition.
597     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
598         isa<ICmpInst>(Cond)) {
599       if (GuaranteedToExecute) {
600         // The assume is guaranteed to execute when BB is entered, hence Cond
601         // holds on entry to BB.
602         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
603       } else {
604         // Otherwise the condition only holds in the successors.
605         for (BasicBlock *Succ : successors(&BB)) {
606           if (!canAddSuccessor(BB, Succ))
607             continue;
608           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
609         }
610       }
611     }
612     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
613   }
614 
615   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
616   if (!Br || !Br->isConditional())
617     return;
618 
619   Value *Cond = Br->getCondition();
620 
621   // If the condition is a chain of ORs/AND and the successor only has the
622   // current block as predecessor, queue conditions for the successor.
623   Value *Op0, *Op1;
624   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
625       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
626     bool IsOr = match(Cond, m_LogicalOr());
627     bool IsAnd = match(Cond, m_LogicalAnd());
628     // If there's a select that matches both AND and OR, we need to commit to
629     // one of the options. Arbitrarily pick OR.
630     if (IsOr && IsAnd)
631       IsAnd = false;
632 
633     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
634     if (canAddSuccessor(BB, Successor)) {
635       SmallVector<Value *> CondWorkList;
636       SmallPtrSet<Value *, 8> SeenCond;
637       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
638         if (SeenCond.insert(V).second)
639           CondWorkList.push_back(V);
640       };
641       QueueValue(Op1);
642       QueueValue(Op0);
643       while (!CondWorkList.empty()) {
644         Value *Cur = CondWorkList.pop_back_val();
645         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
646           WorkList.emplace_back(DT.getNode(Successor), Cmp, IsOr);
647           continue;
648         }
649         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
650           QueueValue(Op1);
651           QueueValue(Op0);
652           continue;
653         }
654         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
655           QueueValue(Op1);
656           QueueValue(Op0);
657           continue;
658         }
659       }
660     }
661     return;
662   }
663 
664   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
665   if (!CmpI)
666     return;
667   if (canAddSuccessor(BB, Br->getSuccessor(0)))
668     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
669   if (canAddSuccessor(BB, Br->getSuccessor(1)))
670     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
671 }
672 
673 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
674                              unsigned NumIn, unsigned NumOut,
675                              SmallVectorImpl<StackEntry> &DFSInStack) {
676   // If the constraint has a pre-condition, skip the constraint if it does not
677   // hold.
678   SmallVector<Value *> NewVariables;
679   auto R = getConstraint(Pred, A, B, NewVariables);
680   if (!R.isValid(*this))
681     return;
682 
683   LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " ";
684              A->printAsOperand(dbgs(), false); dbgs() << ", ";
685              B->printAsOperand(dbgs(), false); dbgs() << "'\n");
686   bool Added = false;
687   auto &CSToUse = getCS(R.IsSigned);
688   if (R.Coefficients.empty())
689     return;
690 
691   Added |= CSToUse.addVariableRowFill(R.Coefficients);
692 
693   // If R has been added to the system, add the new variables and queue it for
694   // removal once it goes out-of-scope.
695   if (Added) {
696     SmallVector<Value *, 2> ValuesToRelease;
697     auto &Value2Index = getValue2Index(R.IsSigned);
698     for (Value *V : NewVariables) {
699       Value2Index.insert({V, Value2Index.size() + 1});
700       ValuesToRelease.push_back(V);
701     }
702 
703     LLVM_DEBUG({
704       dbgs() << "  constraint: ";
705       dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
706       dbgs() << "\n";
707     });
708 
709     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease);
710 
711     if (R.IsEq) {
712       // Also add the inverted constraint for equality constraints.
713       for (auto &Coeff : R.Coefficients)
714         Coeff *= -1;
715       CSToUse.addVariableRowFill(R.Coefficients);
716 
717       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
718                               SmallVector<Value *, 2>());
719     }
720   }
721 }
722 
723 static bool
724 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
725                           SmallVectorImpl<Instruction *> &ToRemove) {
726   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
727                               ConstraintInfo &Info) {
728     auto R = Info.getConstraintForSolving(Pred, A, B);
729     if (R.size() < 2 || !R.isValid(Info))
730       return false;
731 
732     auto &CSToUse = Info.getCS(R.IsSigned);
733     return CSToUse.isConditionImplied(R.Coefficients);
734   };
735 
736   bool Changed = false;
737   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
738     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
739     // can be simplified to a regular sub.
740     Value *A = II->getArgOperand(0);
741     Value *B = II->getArgOperand(1);
742     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
743         !DoesConditionHold(CmpInst::ICMP_SGE, B,
744                            ConstantInt::get(A->getType(), 0), Info))
745       return false;
746 
747     IRBuilder<> Builder(II->getParent(), II->getIterator());
748     Value *Sub = nullptr;
749     for (User *U : make_early_inc_range(II->users())) {
750       if (match(U, m_ExtractValue<0>(m_Value()))) {
751         if (!Sub)
752           Sub = Builder.CreateSub(A, B);
753         U->replaceAllUsesWith(Sub);
754         Changed = true;
755       } else if (match(U, m_ExtractValue<1>(m_Value()))) {
756         U->replaceAllUsesWith(Builder.getFalse());
757         Changed = true;
758       } else
759         continue;
760 
761       if (U->use_empty()) {
762         auto *I = cast<Instruction>(U);
763         ToRemove.push_back(I);
764         I->setOperand(0, PoisonValue::get(II->getType()));
765         Changed = true;
766       }
767     }
768 
769     if (II->use_empty()) {
770       II->eraseFromParent();
771       Changed = true;
772     }
773   }
774   return Changed;
775 }
776 
777 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
778   bool Changed = false;
779   DT.updateDFSNumbers();
780 
781   ConstraintInfo Info(F.getParent()->getDataLayout());
782   State S(DT);
783 
784   // First, collect conditions implied by branches and blocks with their
785   // Dominator DFS in and out numbers.
786   for (BasicBlock &BB : F) {
787     if (!DT.getNode(&BB))
788       continue;
789     S.addInfoFor(BB);
790   }
791 
792   // Next, sort worklist by dominance, so that dominating blocks and conditions
793   // come before blocks and conditions dominated by them. If a block and a
794   // condition have the same numbers, the condition comes before the block, as
795   // it holds on entry to the block. Also make sure conditions with constant
796   // operands come before conditions without constant operands. This increases
797   // the effectiveness of the current signed <-> unsigned fact transfer logic.
798   stable_sort(
799       S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
800         auto HasNoConstOp = [](const ConstraintOrBlock &B) {
801           return !B.IsBlock && !isa<ConstantInt>(B.Condition->getOperand(0)) &&
802                  !isa<ConstantInt>(B.Condition->getOperand(1));
803         };
804         bool NoConstOpA = HasNoConstOp(A);
805         bool NoConstOpB = HasNoConstOp(B);
806         return std::tie(A.NumIn, A.IsBlock, NoConstOpA) <
807                std::tie(B.NumIn, B.IsBlock, NoConstOpB);
808       });
809 
810   SmallVector<Instruction *> ToRemove;
811 
812   // Finally, process ordered worklist and eliminate implied conditions.
813   SmallVector<StackEntry, 16> DFSInStack;
814   for (ConstraintOrBlock &CB : S.WorkList) {
815     // First, pop entries from the stack that are out-of-scope for CB. Remove
816     // the corresponding entry from the constraint system.
817     while (!DFSInStack.empty()) {
818       auto &E = DFSInStack.back();
819       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
820                         << "\n");
821       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
822       assert(E.NumIn <= CB.NumIn);
823       if (CB.NumOut <= E.NumOut)
824         break;
825       LLVM_DEBUG({
826         dbgs() << "Removing ";
827         dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
828                       Info.getValue2Index(E.IsSigned));
829         dbgs() << "\n";
830       });
831 
832       Info.popLastConstraint(E.IsSigned);
833       // Remove variables in the system that went out of scope.
834       auto &Mapping = Info.getValue2Index(E.IsSigned);
835       for (Value *V : E.ValuesToRelease)
836         Mapping.erase(V);
837       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
838       DFSInStack.pop_back();
839     }
840 
841     LLVM_DEBUG({
842       dbgs() << "Processing ";
843       if (CB.IsBlock)
844         dbgs() << *CB.BB;
845       else
846         dbgs() << *CB.Condition;
847       dbgs() << "\n";
848     });
849 
850     // For a block, check if any CmpInsts become known based on the current set
851     // of constraints.
852     if (CB.IsBlock) {
853       for (Instruction &I : make_early_inc_range(*CB.BB)) {
854         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
855           Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
856           continue;
857         }
858         auto *Cmp = dyn_cast<ICmpInst>(&I);
859         if (!Cmp)
860           continue;
861 
862         LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
863         auto R = Info.getConstraintForSolving(
864             Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1));
865         if (R.empty() || !R.isValid(Info))
866           continue;
867 
868         auto &CSToUse = Info.getCS(R.IsSigned);
869 
870         // If there was extra information collected during decomposition, apply
871         // it now and remove it immediately once we are done with reasoning
872         // about the constraint.
873         for (auto &Row : R.ExtraInfo)
874           CSToUse.addVariableRow(Row);
875         auto InfoRestorer = make_scope_exit([&]() {
876           for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
877             CSToUse.popLastConstraint();
878         });
879 
880         if (CSToUse.isConditionImplied(R.Coefficients)) {
881           if (!DebugCounter::shouldExecute(EliminatedCounter))
882             continue;
883 
884           LLVM_DEBUG({
885             dbgs() << "Condition " << *Cmp
886                    << " implied by dominating constraints\n";
887             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
888           });
889           Cmp->replaceUsesWithIf(
890               ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
891                 // Conditions in an assume trivially simplify to true. Skip uses
892                 // in assume calls to not destroy the available information.
893                 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
894                 return !II || II->getIntrinsicID() != Intrinsic::assume;
895               });
896           NumCondsRemoved++;
897           Changed = true;
898         }
899         if (CSToUse.isConditionImplied(
900                 ConstraintSystem::negate(R.Coefficients))) {
901           if (!DebugCounter::shouldExecute(EliminatedCounter))
902             continue;
903 
904           LLVM_DEBUG({
905             dbgs() << "Condition !" << *Cmp
906                    << " implied by dominating constraints\n";
907             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
908           });
909           Cmp->replaceAllUsesWith(
910               ConstantInt::getFalse(F.getParent()->getContext()));
911           NumCondsRemoved++;
912           Changed = true;
913         }
914       }
915       continue;
916     }
917 
918     ICmpInst::Predicate Pred;
919     Value *A, *B;
920     if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
921       // Use the inverse predicate if required.
922       if (CB.Not)
923         Pred = CmpInst::getInversePredicate(Pred);
924 
925       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
926       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
927     }
928   }
929 
930 #ifndef NDEBUG
931   unsigned SignedEntries =
932       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
933   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
934          "updates to CS and DFSInStack are out of sync");
935   assert(Info.getCS(true).size() == SignedEntries &&
936          "updates to CS and DFSInStack are out of sync");
937 #endif
938 
939   for (Instruction *I : ToRemove)
940     I->eraseFromParent();
941   return Changed;
942 }
943 
944 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
945                                                  FunctionAnalysisManager &AM) {
946   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
947   if (!eliminateConstraints(F, DT))
948     return PreservedAnalyses::all();
949 
950   PreservedAnalyses PA;
951   PA.preserve<DominatorTreeAnalysis>();
952   PA.preserveSet<CFGAnalyses>();
953   return PA;
954 }
955 
956 namespace {
957 
958 class ConstraintElimination : public FunctionPass {
959 public:
960   static char ID;
961 
962   ConstraintElimination() : FunctionPass(ID) {
963     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
964   }
965 
966   bool runOnFunction(Function &F) override {
967     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
968     return eliminateConstraints(F, DT);
969   }
970 
971   void getAnalysisUsage(AnalysisUsage &AU) const override {
972     AU.setPreservesCFG();
973     AU.addRequired<DominatorTreeWrapperPass>();
974     AU.addPreserved<GlobalsAAWrapperPass>();
975     AU.addPreserved<DominatorTreeWrapperPass>();
976   }
977 };
978 
979 } // end anonymous namespace
980 
981 char ConstraintElimination::ID = 0;
982 
983 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
984                       "Constraint Elimination", false, false)
985 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
986 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
987 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
988                     "Constraint Elimination", false, false)
989 
990 FunctionPass *llvm::createConstraintEliminationPass() {
991   return new ConstraintElimination();
992 }
993