xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 0b28d756af183b9f294ddca5432a0ad5054ac9c2)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/DebugCounter.h"
30 #include "llvm/Transforms/Scalar.h"
31 
32 using namespace llvm;
33 using namespace PatternMatch;
34 
35 #define DEBUG_TYPE "constraint-elimination"
36 
37 STATISTIC(NumCondsRemoved, "Number of instructions removed");
38 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
39               "Controls which conditions are eliminated");
40 
41 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
42 
43 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
44 // sum of the pairs equals \p V.  The first pair is the constant-factor and X
45 // must be nullptr. If the expression cannot be decomposed, returns an empty
46 // vector.
47 static SmallVector<std::pair<int64_t, Value *>, 4> decompose(Value *V) {
48   if (auto *CI = dyn_cast<ConstantInt>(V)) {
49     if (CI->isNegative() || CI->uge(MaxConstraintValue))
50       return {};
51     return {{CI->getSExtValue(), nullptr}};
52   }
53   auto *GEP = dyn_cast<GetElementPtrInst>(V);
54   if (GEP && GEP->getNumOperands() == 2) {
55     if (isa<ConstantInt>(GEP->getOperand(GEP->getNumOperands() - 1))) {
56       return {{cast<ConstantInt>(GEP->getOperand(GEP->getNumOperands() - 1))
57                    ->getSExtValue(),
58                nullptr},
59               {1, GEP->getPointerOperand()}};
60     }
61     Value *Op0;
62     ConstantInt *CI;
63     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
64               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))))
65       return {{0, nullptr},
66               {1, GEP->getPointerOperand()},
67               {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
68     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
69               m_ZExt(m_NUWShl(m_Value(Op0), m_ConstantInt(CI)))))
70       return {{0, nullptr},
71               {1, GEP->getPointerOperand()},
72               {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
73 
74     return {{0, nullptr},
75             {1, GEP->getPointerOperand()},
76             {1, GEP->getOperand(GEP->getNumOperands() - 1)}};
77   }
78 
79   Value *Op0;
80   Value *Op1;
81   ConstantInt *CI;
82   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))))
83     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
84   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
85     return {{0, nullptr}, {1, Op0}, {1, Op1}};
86 
87   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))))
88     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
89   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
90     return {{0, nullptr}, {1, Op0}, {1, Op1}};
91 
92   return {{0, nullptr}, {1, V}};
93 }
94 
95 struct ConstraintTy {
96   SmallVector<int64_t, 8> Coefficients;
97 
98   ConstraintTy(SmallVector<int64_t, 8> Coefficients)
99       : Coefficients(Coefficients) {}
100 
101   unsigned size() const { return Coefficients.size(); }
102 };
103 
104 /// Turn a condition \p CmpI into a constraint vector, using indices from \p
105 /// Value2Index. If \p ShouldAdd is true, new indices are added for values not
106 /// yet in \p Value2Index.
107 static SmallVector<ConstraintTy, 4>
108 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
109               DenseMap<Value *, unsigned> &Value2Index, bool ShouldAdd) {
110   int64_t Offset1 = 0;
111   int64_t Offset2 = 0;
112 
113   auto TryToGetIndex = [ShouldAdd,
114                         &Value2Index](Value *V) -> Optional<unsigned> {
115     if (ShouldAdd) {
116       Value2Index.insert({V, Value2Index.size() + 1});
117       return Value2Index[V];
118     }
119     auto I = Value2Index.find(V);
120     if (I == Value2Index.end())
121       return None;
122     return I->second;
123   };
124 
125   if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE)
126     return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0,
127                          Value2Index, ShouldAdd);
128 
129   if (Pred == CmpInst::ICMP_EQ) {
130     auto A = getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, ShouldAdd);
131     auto B = getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, ShouldAdd);
132     append_range(A, B);
133     return A;
134   }
135 
136   // Only ULE and ULT predicates are supported at the moment.
137   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT)
138     return {};
139 
140   auto ADec = decompose(Op0);
141   auto BDec = decompose(Op1);
142   // Skip if decomposing either of the values failed.
143   if (ADec.empty() || BDec.empty())
144     return {};
145 
146   // Skip trivial constraints without any variables.
147   if (ADec.size() == 1 && BDec.size() == 1)
148     return {};
149 
150   Offset1 = ADec[0].first;
151   Offset2 = BDec[0].first;
152   Offset1 *= -1;
153 
154   // Create iterator ranges that skip the constant-factor.
155   auto VariablesA = make_range(std::next(ADec.begin()), ADec.end());
156   auto VariablesB = make_range(std::next(BDec.begin()), BDec.end());
157 
158   // Check if each referenced value in the constraint is already in the system
159   // or can be added (if ShouldAdd is true).
160   for (const auto &KV :
161        concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
162     if (!TryToGetIndex(KV.second))
163       return {};
164 
165   // Build result constraint, by first adding all coefficients from A and then
166   // subtracting all coefficients from B.
167   SmallVector<int64_t, 8> R(Value2Index.size() + 1, 0);
168   for (const auto &KV : VariablesA)
169     R[Value2Index[KV.second]] += KV.first;
170 
171   for (const auto &KV : VariablesB)
172     R[Value2Index[KV.second]] -= KV.first;
173 
174   R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0);
175   return {R};
176 }
177 
178 static SmallVector<ConstraintTy, 4>
179 getConstraint(CmpInst *Cmp, DenseMap<Value *, unsigned> &Value2Index,
180               bool ShouldAdd) {
181   return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
182                        Cmp->getOperand(1), Value2Index, ShouldAdd);
183 }
184 
185 namespace {
186 /// Represents either a condition that holds on entry to a block or a basic
187 /// block, with their respective Dominator DFS in and out numbers.
188 struct ConstraintOrBlock {
189   unsigned NumIn;
190   unsigned NumOut;
191   bool IsBlock;
192   bool Not;
193   union {
194     BasicBlock *BB;
195     CmpInst *Condition;
196   };
197 
198   ConstraintOrBlock(DomTreeNode *DTN)
199       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
200         BB(DTN->getBlock()) {}
201   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
202       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
203         Not(Not), Condition(Condition) {}
204 };
205 
206 struct StackEntry {
207   unsigned NumIn;
208   unsigned NumOut;
209   CmpInst *Condition;
210   bool IsNot;
211 
212   StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot)
213       : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {}
214 };
215 } // namespace
216 
217 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
218   bool Changed = false;
219   DT.updateDFSNumbers();
220   ConstraintSystem CS;
221 
222   SmallVector<ConstraintOrBlock, 64> WorkList;
223 
224   // First, collect conditions implied by branches and blocks with their
225   // Dominator DFS in and out numbers.
226   for (BasicBlock &BB : F) {
227     if (!DT.getNode(&BB))
228       continue;
229     WorkList.emplace_back(DT.getNode(&BB));
230 
231     auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
232     if (!Br || !Br->isConditional())
233       continue;
234 
235     // If the condition is an OR of 2 compares and the false successor only has
236     // the current block as predecessor, queue both negated conditions for the
237     // false successor.
238     Value *Op0, *Op1;
239     if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
240         match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
241       BasicBlock *FalseSuccessor = Br->getSuccessor(1);
242       if (FalseSuccessor->getSinglePredecessor()) {
243         WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0),
244                               true);
245         WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1),
246                               true);
247       }
248       continue;
249     }
250 
251     // If the condition is an AND of 2 compares and the true successor only has
252     // the current block as predecessor, queue both conditions for the true
253     // successor.
254     if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
255         match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
256       BasicBlock *TrueSuccessor = Br->getSuccessor(0);
257       if (TrueSuccessor->getSinglePredecessor()) {
258         WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0),
259                               false);
260         WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1),
261                               false);
262       }
263       continue;
264     }
265 
266     auto *CmpI = dyn_cast<CmpInst>(Br->getCondition());
267     if (!CmpI)
268       continue;
269     if (Br->getSuccessor(0)->getSinglePredecessor())
270       WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
271     if (Br->getSuccessor(1)->getSinglePredecessor())
272       WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
273   }
274 
275   // Next, sort worklist by dominance, so that dominating blocks and conditions
276   // come before blocks and conditions dominated by them. If a block and a
277   // condition have the same numbers, the condition comes before the block, as
278   // it holds on entry to the block.
279   sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
280     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
281   });
282 
283   // Finally, process ordered worklist and eliminate implied conditions.
284   SmallVector<StackEntry, 16> DFSInStack;
285   DenseMap<Value *, unsigned> Value2Index;
286   for (ConstraintOrBlock &CB : WorkList) {
287     // First, pop entries from the stack that are out-of-scope for CB. Remove
288     // the corresponding entry from the constraint system.
289     while (!DFSInStack.empty()) {
290       auto &E = DFSInStack.back();
291       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
292                         << "\n");
293       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
294       assert(E.NumIn <= CB.NumIn);
295       if (CB.NumOut <= E.NumOut)
296         break;
297       LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
298                         << "\n");
299       DFSInStack.pop_back();
300       CS.popLastConstraint();
301     }
302 
303     LLVM_DEBUG({
304       dbgs() << "Processing ";
305       if (CB.IsBlock)
306         dbgs() << *CB.BB;
307       else
308         dbgs() << *CB.Condition;
309       dbgs() << "\n";
310     });
311 
312     // For a block, check if any CmpInsts become known based on the current set
313     // of constraints.
314     if (CB.IsBlock) {
315       for (Instruction &I : *CB.BB) {
316         auto *Cmp = dyn_cast<CmpInst>(&I);
317         if (!Cmp)
318           continue;
319         auto R = getConstraint(Cmp, Value2Index, false);
320         if (R.size() != 1 || R[0].size() == 1)
321           continue;
322         if (CS.isConditionImplied(R[0].Coefficients)) {
323           if (!DebugCounter::shouldExecute(EliminatedCounter))
324             continue;
325 
326           LLVM_DEBUG(dbgs() << "Condition " << *Cmp
327                             << " implied by dominating constraints\n");
328           LLVM_DEBUG({
329             for (auto &E : reverse(DFSInStack))
330               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
331           });
332           Cmp->replaceAllUsesWith(
333               ConstantInt::getTrue(F.getParent()->getContext()));
334           NumCondsRemoved++;
335           Changed = true;
336         }
337         if (CS.isConditionImplied(
338                 ConstraintSystem::negate(R[0].Coefficients))) {
339           if (!DebugCounter::shouldExecute(EliminatedCounter))
340             continue;
341 
342           LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
343                             << " implied by dominating constraints\n");
344           LLVM_DEBUG({
345             for (auto &E : reverse(DFSInStack))
346               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
347           });
348           Cmp->replaceAllUsesWith(
349               ConstantInt::getFalse(F.getParent()->getContext()));
350           NumCondsRemoved++;
351           Changed = true;
352         }
353       }
354       continue;
355     }
356 
357     // Set up a function to restore the predicate at the end of the scope if it
358     // has been negated. Negate the predicate in-place, if required.
359     auto *CI = dyn_cast<CmpInst>(CB.Condition);
360     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
361       if (CB.Not && CI)
362         CI->setPredicate(CI->getInversePredicate());
363     });
364     if (CB.Not) {
365       if (CI) {
366         CI->setPredicate(CI->getInversePredicate());
367       } else {
368         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
369         continue;
370       }
371     }
372 
373     // Otherwise, add the condition to the system and stack, if we can transform
374     // it into a constraint.
375     auto R = getConstraint(CB.Condition, Value2Index, true);
376     if (R.empty())
377       continue;
378 
379     LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n");
380     bool Added = false;
381     for (auto &C : R) {
382       auto Coeffs = C.Coefficients;
383 
384       Added |= CS.addVariableRowFill(Coeffs);
385       // If R has been added to the system, queue it for removal once it goes
386       // out-of-scope.
387       if (Added)
388         DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not);
389     }
390   }
391 
392   assert(CS.size() == DFSInStack.size() &&
393          "updates to CS and DFSInStack are out of sync");
394   return Changed;
395 }
396 
397 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
398                                                  FunctionAnalysisManager &AM) {
399   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
400   if (!eliminateConstraints(F, DT))
401     return PreservedAnalyses::all();
402 
403   PreservedAnalyses PA;
404   PA.preserve<DominatorTreeAnalysis>();
405   PA.preserve<GlobalsAA>();
406   PA.preserveSet<CFGAnalyses>();
407   return PA;
408 }
409 
410 namespace {
411 
412 class ConstraintElimination : public FunctionPass {
413 public:
414   static char ID;
415 
416   ConstraintElimination() : FunctionPass(ID) {
417     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
418   }
419 
420   bool runOnFunction(Function &F) override {
421     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
422     return eliminateConstraints(F, DT);
423   }
424 
425   void getAnalysisUsage(AnalysisUsage &AU) const override {
426     AU.setPreservesCFG();
427     AU.addRequired<DominatorTreeWrapperPass>();
428     AU.addPreserved<GlobalsAAWrapperPass>();
429     AU.addPreserved<DominatorTreeWrapperPass>();
430   }
431 };
432 
433 } // end anonymous namespace
434 
435 char ConstraintElimination::ID = 0;
436 
437 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
438                       "Constraint Elimination", false, false)
439 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
440 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
441 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
442                     "Constraint Elimination", false, false)
443 
444 FunctionPass *llvm::createConstraintEliminationPass() {
445   return new ConstraintElimination();
446 }
447