1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DebugCounter.h" 31 #include "llvm/Transforms/Scalar.h" 32 33 #include <string> 34 35 using namespace llvm; 36 using namespace PatternMatch; 37 38 #define DEBUG_TYPE "constraint-elimination" 39 40 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 41 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 42 "Controls which conditions are eliminated"); 43 44 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 45 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 46 47 namespace { 48 49 /// Wrapper encapsulating separate constraint systems and corresponding value 50 /// mappings for both unsigned and signed information. Facts are added to and 51 /// conditions are checked against the corresponding system depending on the 52 /// signed-ness of their predicates. While the information is kept separate 53 /// based on signed-ness, certain conditions can be transferred between the two 54 /// systems. 55 class ConstraintInfo { 56 DenseMap<Value *, unsigned> UnsignedValue2Index; 57 DenseMap<Value *, unsigned> SignedValue2Index; 58 59 ConstraintSystem UnsignedCS; 60 ConstraintSystem SignedCS; 61 62 public: 63 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 64 return Signed ? SignedValue2Index : UnsignedValue2Index; 65 } 66 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 67 return Signed ? SignedValue2Index : UnsignedValue2Index; 68 } 69 70 ConstraintSystem &getCS(bool Signed) { 71 return Signed ? SignedCS : UnsignedCS; 72 } 73 const ConstraintSystem &getCS(bool Signed) const { 74 return Signed ? SignedCS : UnsignedCS; 75 } 76 77 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 78 }; 79 80 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 81 struct PreconditionTy { 82 CmpInst::Predicate Pred; 83 Value *Op0; 84 Value *Op1; 85 86 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 87 : Pred(Pred), Op0(Op0), Op1(Op1) {} 88 }; 89 90 struct ConstraintTy { 91 SmallVector<int64_t, 8> Coefficients; 92 93 bool IsSigned; 94 95 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 96 : Coefficients(Coefficients), IsSigned(IsSigned) {} 97 98 unsigned size() const { return Coefficients.size(); } 99 }; 100 101 /// Struct to manage a list of constraints with pre-conditions that must be 102 /// satisfied before using the constraints. 103 struct ConstraintListTy { 104 SmallVector<ConstraintTy, 4> Constraints; 105 SmallVector<PreconditionTy, 4> Preconditions; 106 107 ConstraintListTy() {} 108 109 ConstraintListTy(ArrayRef<ConstraintTy> Constraints, 110 ArrayRef<PreconditionTy> Preconditions) 111 : Constraints(Constraints.begin(), Constraints.end()), 112 Preconditions(Preconditions.begin(), Preconditions.end()) {} 113 114 void mergeIn(const ConstraintListTy &Other) { 115 append_range(Constraints, Other.Constraints); 116 // TODO: Do smarter merges here, e.g. exclude duplicates. 117 append_range(Preconditions, Other.Preconditions); 118 } 119 120 unsigned size() const { return Constraints.size(); } 121 122 unsigned empty() const { return Constraints.empty(); } 123 124 /// Returns true if any constraint has a non-zero coefficient for any of the 125 /// newly added indices. Zero coefficients for new indices are removed. If it 126 /// returns true, no new variable need to be added to the system. 127 bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) { 128 assert(size() == 1); 129 for (unsigned I = 0; I < NewIndices.size(); ++I) { 130 int64_t Last = get(0).Coefficients.pop_back_val(); 131 if (Last != 0) 132 return true; 133 } 134 return false; 135 } 136 137 ConstraintTy &get(unsigned I) { return Constraints[I]; } 138 139 /// Returns true if all preconditions for this list of constraints are 140 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 141 bool isValid(const ConstraintInfo &Info) const; 142 143 /// Returns true if there is exactly one constraint in the list and isValid is 144 /// also true. 145 bool isValidSingle(const ConstraintInfo &Info) const { 146 if (size() != 1) 147 return false; 148 return isValid(Info); 149 } 150 }; 151 152 } // namespace 153 154 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The 155 // sum of the pairs equals \p V. The first pair is the constant-factor and X 156 // must be nullptr. If the expression cannot be decomposed, returns an empty 157 // vector. 158 static SmallVector<std::pair<int64_t, Value *>, 4> 159 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 160 bool IsSigned) { 161 162 // Decompose \p V used with a signed predicate. 163 if (IsSigned) { 164 if (auto *CI = dyn_cast<ConstantInt>(V)) { 165 const APInt &Val = CI->getValue(); 166 if (Val.sle(MinSignedConstraintValue) || Val.sge(MaxConstraintValue)) 167 return {}; 168 return {{CI->getSExtValue(), nullptr}}; 169 } 170 171 return {{0, nullptr}, {1, V}}; 172 } 173 174 if (auto *CI = dyn_cast<ConstantInt>(V)) { 175 if (CI->isNegative() || CI->uge(MaxConstraintValue)) 176 return {}; 177 return {{CI->getSExtValue(), nullptr}}; 178 } 179 auto *GEP = dyn_cast<GetElementPtrInst>(V); 180 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 181 Value *Op0, *Op1; 182 ConstantInt *CI; 183 184 // If the index is zero-extended, it is guaranteed to be positive. 185 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 186 m_ZExt(m_Value(Op0)))) { 187 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI)))) 188 return {{0, nullptr}, 189 {1, GEP->getPointerOperand()}, 190 {std::pow(int64_t(2), CI->getSExtValue()), Op1}}; 191 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI)))) 192 return {{CI->getSExtValue(), nullptr}, 193 {1, GEP->getPointerOperand()}, 194 {1, Op1}}; 195 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 196 } 197 198 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 199 !CI->isNegative()) 200 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 201 202 SmallVector<std::pair<int64_t, Value *>, 4> Result; 203 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 204 m_NUWShl(m_Value(Op0), m_ConstantInt(CI)))) 205 Result = {{0, nullptr}, 206 {1, GEP->getPointerOperand()}, 207 {std::pow(int64_t(2), CI->getSExtValue()), Op0}}; 208 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 209 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI)))) 210 Result = {{CI->getSExtValue(), nullptr}, 211 {1, GEP->getPointerOperand()}, 212 {1, Op0}}; 213 else { 214 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 215 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 216 } 217 // If Op0 is signed non-negative, the GEP is increasing monotonically and 218 // can be de-composed. 219 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 220 ConstantInt::get(Op0->getType(), 0)); 221 return Result; 222 } 223 224 Value *Op0; 225 if (match(V, m_ZExt(m_Value(Op0)))) 226 V = Op0; 227 228 Value *Op1; 229 ConstantInt *CI; 230 if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI)))) 231 return {{CI->getSExtValue(), nullptr}, {1, Op0}}; 232 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) 233 return {{0, nullptr}, {1, Op0}, {1, Op1}}; 234 235 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI)))) 236 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 237 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 238 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 239 240 return {{0, nullptr}, {1, V}}; 241 } 242 243 /// Turn a condition \p CmpI into a vector of constraints, using indices from \p 244 /// Value2Index. Additional indices for newly discovered values are added to \p 245 /// NewIndices. 246 static ConstraintListTy 247 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 248 const DenseMap<Value *, unsigned> &Value2Index, 249 DenseMap<Value *, unsigned> &NewIndices) { 250 int64_t Offset1 = 0; 251 int64_t Offset2 = 0; 252 253 SmallVector<PreconditionTy, 4> Preconditions; 254 // First try to look up \p V in Value2Index and NewIndices. Otherwise add a 255 // new entry to NewIndices. 256 auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned { 257 auto V2I = Value2Index.find(V); 258 if (V2I != Value2Index.end()) 259 return V2I->second; 260 auto NewI = NewIndices.find(V); 261 if (NewI != NewIndices.end()) 262 return NewI->second; 263 auto Insert = 264 NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1}); 265 return Insert.first->second; 266 }; 267 268 if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE || 269 Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE) 270 return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0, 271 Value2Index, NewIndices); 272 273 if (Pred == CmpInst::ICMP_EQ) { 274 if (match(Op1, m_Zero())) 275 return getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, 276 NewIndices); 277 278 auto A = 279 getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, NewIndices); 280 auto B = 281 getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices); 282 A.mergeIn(B); 283 return A; 284 } 285 286 if (Pred == CmpInst::ICMP_NE && match(Op1, m_Zero())) { 287 return getConstraint(CmpInst::ICMP_UGT, Op0, Op1, Value2Index, NewIndices); 288 } 289 290 // Only ULE and ULT predicates are supported at the moment. 291 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 292 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 293 return {}; 294 295 bool IsSigned = CmpInst::isSigned(Pred); 296 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 297 Preconditions, IsSigned); 298 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 299 Preconditions, IsSigned); 300 // Skip if decomposing either of the values failed. 301 if (ADec.empty() || BDec.empty()) 302 return {}; 303 304 // Skip trivial constraints without any variables. 305 if (ADec.size() == 1 && BDec.size() == 1) 306 return {}; 307 308 Offset1 = ADec[0].first; 309 Offset2 = BDec[0].first; 310 Offset1 *= -1; 311 312 // Create iterator ranges that skip the constant-factor. 313 auto VariablesA = llvm::drop_begin(ADec); 314 auto VariablesB = llvm::drop_begin(BDec); 315 316 // Make sure all variables have entries in Value2Index or NewIndices. 317 for (const auto &KV : 318 concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB)) 319 GetOrAddIndex(KV.second); 320 321 // Build result constraint, by first adding all coefficients from A and then 322 // subtracting all coefficients from B. 323 SmallVector<int64_t, 8> R(Value2Index.size() + NewIndices.size() + 1, 0); 324 for (const auto &KV : VariablesA) 325 R[GetOrAddIndex(KV.second)] += KV.first; 326 327 for (const auto &KV : VariablesB) 328 R[GetOrAddIndex(KV.second)] -= KV.first; 329 330 R[0] = Offset1 + Offset2 + 331 (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT) ? -1 : 0); 332 return {{{R, IsSigned}}, Preconditions}; 333 } 334 335 static ConstraintListTy getConstraint(CmpInst *Cmp, ConstraintInfo &Info, 336 DenseMap<Value *, unsigned> &NewIndices) { 337 return getConstraint( 338 Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1), 339 Info.getValue2Index(CmpInst::isSigned(Cmp->getPredicate())), NewIndices); 340 } 341 342 bool ConstraintListTy::isValid(const ConstraintInfo &Info) const { 343 return all_of(Preconditions, [&Info](const PreconditionTy &C) { 344 DenseMap<Value *, unsigned> NewIndices; 345 auto R = getConstraint(C.Pred, C.Op0, C.Op1, 346 Info.getValue2Index(CmpInst::isSigned(C.Pred)), 347 NewIndices); 348 // TODO: properly check NewIndices. 349 return NewIndices.empty() && R.Preconditions.empty() && R.size() == 1 && 350 Info.getCS(CmpInst::isSigned(C.Pred)) 351 .isConditionImplied(R.get(0).Coefficients); 352 }); 353 } 354 355 namespace { 356 /// Represents either a condition that holds on entry to a block or a basic 357 /// block, with their respective Dominator DFS in and out numbers. 358 struct ConstraintOrBlock { 359 unsigned NumIn; 360 unsigned NumOut; 361 bool IsBlock; 362 bool Not; 363 union { 364 BasicBlock *BB; 365 CmpInst *Condition; 366 }; 367 368 ConstraintOrBlock(DomTreeNode *DTN) 369 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 370 BB(DTN->getBlock()) {} 371 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 372 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 373 Not(Not), Condition(Condition) {} 374 }; 375 376 struct StackEntry { 377 unsigned NumIn; 378 unsigned NumOut; 379 Instruction *Condition; 380 bool IsNot; 381 bool IsSigned = false; 382 383 StackEntry(unsigned NumIn, unsigned NumOut, Instruction *Condition, 384 bool IsNot, bool IsSigned) 385 : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot), 386 IsSigned(IsSigned) {} 387 }; 388 } // namespace 389 390 #ifndef NDEBUG 391 static void dumpWithNames(ConstraintTy &C, 392 DenseMap<Value *, unsigned> &Value2Index) { 393 SmallVector<std::string> Names(Value2Index.size(), ""); 394 for (auto &KV : Value2Index) { 395 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 396 } 397 ConstraintSystem CS; 398 CS.addVariableRowFill(C.Coefficients); 399 CS.dump(Names); 400 } 401 #endif 402 403 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 404 bool Changed = false; 405 DT.updateDFSNumbers(); 406 407 ConstraintInfo Info; 408 409 SmallVector<ConstraintOrBlock, 64> WorkList; 410 411 // First, collect conditions implied by branches and blocks with their 412 // Dominator DFS in and out numbers. 413 for (BasicBlock &BB : F) { 414 if (!DT.getNode(&BB)) 415 continue; 416 WorkList.emplace_back(DT.getNode(&BB)); 417 418 // True as long as long as the current instruction is guaranteed to execute. 419 bool GuaranteedToExecute = true; 420 // Scan BB for assume calls. 421 // TODO: also use this scan to queue conditions to simplify, so we can 422 // interleave facts from assumes and conditions to simplify in a single 423 // basic block. And to skip another traversal of each basic block when 424 // simplifying. 425 for (Instruction &I : BB) { 426 Value *Cond; 427 // For now, just handle assumes with a single compare as condition. 428 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 429 isa<CmpInst>(Cond)) { 430 if (GuaranteedToExecute) { 431 // The assume is guaranteed to execute when BB is entered, hence Cond 432 // holds on entry to BB. 433 WorkList.emplace_back(DT.getNode(&BB), cast<CmpInst>(Cond), false); 434 } else { 435 // Otherwise the condition only holds in the successors. 436 for (BasicBlock *Succ : successors(&BB)) 437 WorkList.emplace_back(DT.getNode(Succ), cast<CmpInst>(Cond), false); 438 } 439 } 440 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 441 } 442 443 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 444 if (!Br || !Br->isConditional()) 445 continue; 446 447 // Returns true if we can add a known condition from BB to its successor 448 // block Succ. Each predecessor of Succ can either be BB or be dominated by 449 // Succ (e.g. the case when adding a condition from a pre-header to a loop 450 // header). 451 auto CanAdd = [&BB, &DT](BasicBlock *Succ) { 452 assert(isa<BranchInst>(BB.getTerminator())); 453 return any_of(successors(&BB), 454 [Succ](const BasicBlock *S) { return S != Succ; }) && 455 all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) { 456 return Pred == &BB || DT.dominates(Succ, Pred); 457 }); 458 }; 459 // If the condition is an OR of 2 compares and the false successor only has 460 // the current block as predecessor, queue both negated conditions for the 461 // false successor. 462 Value *Op0, *Op1; 463 if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && 464 match(Op0, m_Cmp()) && match(Op1, m_Cmp())) { 465 BasicBlock *FalseSuccessor = Br->getSuccessor(1); 466 if (CanAdd(FalseSuccessor)) { 467 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0), 468 true); 469 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1), 470 true); 471 } 472 continue; 473 } 474 475 // If the condition is an AND of 2 compares and the true successor only has 476 // the current block as predecessor, queue both conditions for the true 477 // successor. 478 if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && 479 match(Op0, m_Cmp()) && match(Op1, m_Cmp())) { 480 BasicBlock *TrueSuccessor = Br->getSuccessor(0); 481 if (CanAdd(TrueSuccessor)) { 482 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0), 483 false); 484 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1), 485 false); 486 } 487 continue; 488 } 489 490 auto *CmpI = dyn_cast<CmpInst>(Br->getCondition()); 491 if (!CmpI) 492 continue; 493 if (CanAdd(Br->getSuccessor(0))) 494 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 495 if (CanAdd(Br->getSuccessor(1))) 496 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 497 } 498 499 // Next, sort worklist by dominance, so that dominating blocks and conditions 500 // come before blocks and conditions dominated by them. If a block and a 501 // condition have the same numbers, the condition comes before the block, as 502 // it holds on entry to the block. 503 sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 504 return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); 505 }); 506 507 // Finally, process ordered worklist and eliminate implied conditions. 508 SmallVector<StackEntry, 16> DFSInStack; 509 for (ConstraintOrBlock &CB : WorkList) { 510 // First, pop entries from the stack that are out-of-scope for CB. Remove 511 // the corresponding entry from the constraint system. 512 while (!DFSInStack.empty()) { 513 auto &E = DFSInStack.back(); 514 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 515 << "\n"); 516 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 517 assert(E.NumIn <= CB.NumIn); 518 if (CB.NumOut <= E.NumOut) 519 break; 520 LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot 521 << "\n"); 522 DFSInStack.pop_back(); 523 Info.popLastConstraint(E.IsSigned); 524 } 525 526 LLVM_DEBUG({ 527 dbgs() << "Processing "; 528 if (CB.IsBlock) 529 dbgs() << *CB.BB; 530 else 531 dbgs() << *CB.Condition; 532 dbgs() << "\n"; 533 }); 534 535 // For a block, check if any CmpInsts become known based on the current set 536 // of constraints. 537 if (CB.IsBlock) { 538 for (Instruction &I : *CB.BB) { 539 auto *Cmp = dyn_cast<CmpInst>(&I); 540 if (!Cmp) 541 continue; 542 543 DenseMap<Value *, unsigned> NewIndices; 544 auto R = getConstraint(Cmp, Info, NewIndices); 545 if (!R.isValidSingle(Info) || R.needsNewIndices(NewIndices)) 546 continue; 547 548 auto &CSToUse = Info.getCS(R.get(0).IsSigned); 549 if (CSToUse.isConditionImplied(R.get(0).Coefficients)) { 550 if (!DebugCounter::shouldExecute(EliminatedCounter)) 551 continue; 552 553 LLVM_DEBUG(dbgs() << "Condition " << *Cmp 554 << " implied by dominating constraints\n"); 555 LLVM_DEBUG({ 556 for (auto &E : reverse(DFSInStack)) 557 dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; 558 }); 559 Cmp->replaceUsesWithIf( 560 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 561 // Conditions in an assume trivially simplify to true. Skip uses 562 // in assume calls to not destroy the available information. 563 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 564 return !II || II->getIntrinsicID() != Intrinsic::assume; 565 }); 566 NumCondsRemoved++; 567 Changed = true; 568 } 569 if (CSToUse.isConditionImplied( 570 ConstraintSystem::negate(R.get(0).Coefficients))) { 571 if (!DebugCounter::shouldExecute(EliminatedCounter)) 572 continue; 573 574 LLVM_DEBUG(dbgs() << "Condition !" << *Cmp 575 << " implied by dominating constraints\n"); 576 LLVM_DEBUG({ 577 for (auto &E : reverse(DFSInStack)) 578 dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; 579 }); 580 Cmp->replaceAllUsesWith( 581 ConstantInt::getFalse(F.getParent()->getContext())); 582 NumCondsRemoved++; 583 Changed = true; 584 } 585 } 586 continue; 587 } 588 589 // Set up a function to restore the predicate at the end of the scope if it 590 // has been negated. Negate the predicate in-place, if required. 591 auto *CI = dyn_cast<CmpInst>(CB.Condition); 592 auto PredicateRestorer = make_scope_exit([CI, &CB]() { 593 if (CB.Not && CI) 594 CI->setPredicate(CI->getInversePredicate()); 595 }); 596 if (CB.Not) { 597 if (CI) { 598 CI->setPredicate(CI->getInversePredicate()); 599 } else { 600 LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n"); 601 continue; 602 } 603 } 604 605 // Otherwise, add the condition to the system and stack, if we can transform 606 // it into a constraint. 607 DenseMap<Value *, unsigned> NewIndices; 608 auto R = getConstraint(CB.Condition, Info, NewIndices); 609 if (!R.isValid(Info)) 610 continue; 611 612 for (auto &KV : NewIndices) 613 Info.getValue2Index(CmpInst::isSigned(CB.Condition->getPredicate())) 614 .insert(KV); 615 616 LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n"); 617 bool Added = false; 618 for (auto &E : R.Constraints) { 619 auto &CSToUse = Info.getCS(E.IsSigned); 620 if (E.Coefficients.empty()) 621 continue; 622 623 LLVM_DEBUG({ 624 dbgs() << " constraint: "; 625 dumpWithNames(E, Info.getValue2Index(E.IsSigned)); 626 }); 627 628 Added |= CSToUse.addVariableRowFill(E.Coefficients); 629 630 // If R has been added to the system, queue it for removal once it goes 631 // out-of-scope. 632 if (Added) 633 DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not, 634 E.IsSigned); 635 } 636 } 637 638 #ifndef NDEBUG 639 unsigned SignedEntries = 640 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 641 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 642 "updates to CS and DFSInStack are out of sync"); 643 assert(Info.getCS(true).size() == SignedEntries && 644 "updates to CS and DFSInStack are out of sync"); 645 #endif 646 647 return Changed; 648 } 649 650 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 651 FunctionAnalysisManager &AM) { 652 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 653 if (!eliminateConstraints(F, DT)) 654 return PreservedAnalyses::all(); 655 656 PreservedAnalyses PA; 657 PA.preserve<DominatorTreeAnalysis>(); 658 PA.preserveSet<CFGAnalyses>(); 659 return PA; 660 } 661 662 namespace { 663 664 class ConstraintElimination : public FunctionPass { 665 public: 666 static char ID; 667 668 ConstraintElimination() : FunctionPass(ID) { 669 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 670 } 671 672 bool runOnFunction(Function &F) override { 673 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 674 return eliminateConstraints(F, DT); 675 } 676 677 void getAnalysisUsage(AnalysisUsage &AU) const override { 678 AU.setPreservesCFG(); 679 AU.addRequired<DominatorTreeWrapperPass>(); 680 AU.addPreserved<GlobalsAAWrapperPass>(); 681 AU.addPreserved<DominatorTreeWrapperPass>(); 682 } 683 }; 684 685 } // end anonymous namespace 686 687 char ConstraintElimination::ID = 0; 688 689 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 690 "Constraint Elimination", false, false) 691 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 692 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 693 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 694 "Constraint Elimination", false, false) 695 696 FunctionPass *llvm::createConstraintEliminationPass() { 697 return new ConstraintElimination(); 698 } 699