1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/ValueMapper.h" 39 40 #include <cmath> 41 #include <string> 42 43 using namespace llvm; 44 using namespace PatternMatch; 45 46 #define DEBUG_TYPE "constraint-elimination" 47 48 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 49 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 50 "Controls which conditions are eliminated"); 51 52 static cl::opt<unsigned> 53 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 54 cl::desc("Maximum number of rows to keep in constraint system")); 55 56 static cl::opt<bool> DumpReproducers( 57 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 58 cl::desc("Dump IR to reproduce successful transformations.")); 59 60 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 61 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 62 63 // A helper to multiply 2 signed integers where overflowing is allowed. 64 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 65 int64_t Result; 66 MulOverflow(A, B, Result); 67 return Result; 68 } 69 70 // A helper to add 2 signed integers where overflowing is allowed. 71 static int64_t addWithOverflow(int64_t A, int64_t B) { 72 int64_t Result; 73 AddOverflow(A, B, Result); 74 return Result; 75 } 76 77 namespace { 78 79 class ConstraintInfo; 80 81 struct StackEntry { 82 unsigned NumIn; 83 unsigned NumOut; 84 bool IsSigned = false; 85 /// Variables that can be removed from the system once the stack entry gets 86 /// removed. 87 SmallVector<Value *, 2> ValuesToRelease; 88 89 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 90 SmallVector<Value *, 2> ValuesToRelease) 91 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 92 ValuesToRelease(ValuesToRelease) {} 93 }; 94 95 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 96 struct PreconditionTy { 97 CmpInst::Predicate Pred; 98 Value *Op0; 99 Value *Op1; 100 101 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 102 : Pred(Pred), Op0(Op0), Op1(Op1) {} 103 }; 104 105 struct ConstraintTy { 106 SmallVector<int64_t, 8> Coefficients; 107 SmallVector<PreconditionTy, 2> Preconditions; 108 109 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 110 111 bool IsSigned = false; 112 bool IsEq = false; 113 114 ConstraintTy() = default; 115 116 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 117 : Coefficients(Coefficients), IsSigned(IsSigned) {} 118 119 unsigned size() const { return Coefficients.size(); } 120 121 unsigned empty() const { return Coefficients.empty(); } 122 123 /// Returns true if all preconditions for this list of constraints are 124 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 125 bool isValid(const ConstraintInfo &Info) const; 126 }; 127 128 /// Wrapper encapsulating separate constraint systems and corresponding value 129 /// mappings for both unsigned and signed information. Facts are added to and 130 /// conditions are checked against the corresponding system depending on the 131 /// signed-ness of their predicates. While the information is kept separate 132 /// based on signed-ness, certain conditions can be transferred between the two 133 /// systems. 134 class ConstraintInfo { 135 136 ConstraintSystem UnsignedCS; 137 ConstraintSystem SignedCS; 138 139 const DataLayout &DL; 140 141 public: 142 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 143 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 144 145 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 146 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 147 } 148 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 149 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 150 } 151 152 ConstraintSystem &getCS(bool Signed) { 153 return Signed ? SignedCS : UnsignedCS; 154 } 155 const ConstraintSystem &getCS(bool Signed) const { 156 return Signed ? SignedCS : UnsignedCS; 157 } 158 159 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 160 void popLastNVariables(bool Signed, unsigned N) { 161 getCS(Signed).popLastNVariables(N); 162 } 163 164 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 165 166 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 167 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 168 169 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 170 /// constraints, using indices from the corresponding constraint system. 171 /// New variables that need to be added to the system are collected in 172 /// \p NewVariables. 173 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 174 SmallVectorImpl<Value *> &NewVariables) const; 175 176 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 177 /// constraints using getConstraint. Returns an empty constraint if the result 178 /// cannot be used to query the existing constraint system, e.g. because it 179 /// would require adding new variables. Also tries to convert signed 180 /// predicates to unsigned ones if possible to allow using the unsigned system 181 /// which increases the effectiveness of the signed <-> unsigned transfer 182 /// logic. 183 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 184 Value *Op1) const; 185 186 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 187 /// system if \p Pred is signed/unsigned. 188 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 189 unsigned NumIn, unsigned NumOut, 190 SmallVectorImpl<StackEntry> &DFSInStack); 191 }; 192 193 /// Represents a (Coefficient * Variable) entry after IR decomposition. 194 struct DecompEntry { 195 int64_t Coefficient; 196 Value *Variable; 197 /// True if the variable is known positive in the current constraint. 198 bool IsKnownNonNegative; 199 200 DecompEntry(int64_t Coefficient, Value *Variable, 201 bool IsKnownNonNegative = false) 202 : Coefficient(Coefficient), Variable(Variable), 203 IsKnownNonNegative(IsKnownNonNegative) {} 204 }; 205 206 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 207 struct Decomposition { 208 int64_t Offset = 0; 209 SmallVector<DecompEntry, 3> Vars; 210 211 Decomposition(int64_t Offset) : Offset(Offset) {} 212 Decomposition(Value *V, bool IsKnownNonNegative = false) { 213 Vars.emplace_back(1, V, IsKnownNonNegative); 214 } 215 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 216 : Offset(Offset), Vars(Vars) {} 217 218 void add(int64_t OtherOffset) { 219 Offset = addWithOverflow(Offset, OtherOffset); 220 } 221 222 void add(const Decomposition &Other) { 223 add(Other.Offset); 224 append_range(Vars, Other.Vars); 225 } 226 227 void mul(int64_t Factor) { 228 Offset = multiplyWithOverflow(Offset, Factor); 229 for (auto &Var : Vars) 230 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 231 } 232 }; 233 234 } // namespace 235 236 static Decomposition decompose(Value *V, 237 SmallVectorImpl<PreconditionTy> &Preconditions, 238 bool IsSigned, const DataLayout &DL); 239 240 static bool canUseSExt(ConstantInt *CI) { 241 const APInt &Val = CI->getValue(); 242 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 243 } 244 245 static Decomposition 246 decomposeGEP(GEPOperator &GEP, SmallVectorImpl<PreconditionTy> &Preconditions, 247 bool IsSigned, const DataLayout &DL) { 248 // Do not reason about pointers where the index size is larger than 64 bits, 249 // as the coefficients used to encode constraints are 64 bit integers. 250 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 251 return &GEP; 252 253 if (!GEP.isInBounds()) 254 return &GEP; 255 256 assert(!IsSigned && "The logic below only supports decomposition for " 257 "unsinged predicates at the moment."); 258 Type *PtrTy = GEP.getType()->getScalarType(); 259 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 260 MapVector<Value *, APInt> VariableOffsets; 261 APInt ConstantOffset(BitWidth, 0); 262 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 263 return &GEP; 264 265 // Handle the (gep (gep ....), C) case by incrementing the constant 266 // coefficient of the inner GEP, if C is a constant. 267 auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand()); 268 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 269 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 270 Result.add(ConstantOffset.getSExtValue()); 271 272 if (ConstantOffset.isNegative()) { 273 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 274 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 275 if (ConstantOffsetI % Scale != 0) 276 return &GEP; 277 // Add pre-condition ensuring the GEP is increasing monotonically and 278 // can be de-composed. 279 // Both sides are normalized by being divided by Scale. 280 Preconditions.emplace_back( 281 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 282 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 283 -1 * (ConstantOffsetI / Scale))); 284 } 285 return Result; 286 } 287 288 Decomposition Result(ConstantOffset.getSExtValue(), 289 DecompEntry(1, GEP.getPointerOperand())); 290 for (auto [Index, Scale] : VariableOffsets) { 291 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 292 IdxResult.mul(Scale.getSExtValue()); 293 Result.add(IdxResult); 294 295 // If Op0 is signed non-negative, the GEP is increasing monotonically and 296 // can be de-composed. 297 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 298 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 299 ConstantInt::get(Index->getType(), 0)); 300 } 301 return Result; 302 } 303 304 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 305 // Variable } where Coefficient * Variable. The sum of the constant offset and 306 // pairs equals \p V. 307 static Decomposition decompose(Value *V, 308 SmallVectorImpl<PreconditionTy> &Preconditions, 309 bool IsSigned, const DataLayout &DL) { 310 311 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 312 bool IsSignedB) { 313 auto ResA = decompose(A, Preconditions, IsSigned, DL); 314 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 315 ResA.add(ResB); 316 return ResA; 317 }; 318 319 // Decompose \p V used with a signed predicate. 320 if (IsSigned) { 321 if (auto *CI = dyn_cast<ConstantInt>(V)) { 322 if (canUseSExt(CI)) 323 return CI->getSExtValue(); 324 } 325 Value *Op0; 326 Value *Op1; 327 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 328 return MergeResults(Op0, Op1, IsSigned); 329 330 return V; 331 } 332 333 if (auto *CI = dyn_cast<ConstantInt>(V)) { 334 if (CI->uge(MaxConstraintValue)) 335 return V; 336 return int64_t(CI->getZExtValue()); 337 } 338 339 if (auto *GEP = dyn_cast<GEPOperator>(V)) 340 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 341 342 Value *Op0; 343 bool IsKnownNonNegative = false; 344 if (match(V, m_ZExt(m_Value(Op0)))) { 345 IsKnownNonNegative = true; 346 V = Op0; 347 } 348 349 Value *Op1; 350 ConstantInt *CI; 351 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 352 return MergeResults(Op0, Op1, IsSigned); 353 } 354 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 355 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 356 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 357 ConstantInt::get(Op0->getType(), 0)); 358 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 359 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 360 ConstantInt::get(Op1->getType(), 0)); 361 362 return MergeResults(Op0, Op1, IsSigned); 363 } 364 365 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 366 canUseSExt(CI)) { 367 Preconditions.emplace_back( 368 CmpInst::ICMP_UGE, Op0, 369 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 370 return MergeResults(Op0, CI, true); 371 } 372 373 // Decompose or as an add if there are no common bits between the operands. 374 if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && 375 haveNoCommonBitsSet(Op0, CI, DL)) { 376 return MergeResults(Op0, CI, IsSigned); 377 } 378 379 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 380 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 381 return {V, IsKnownNonNegative}; 382 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 383 Result.mul(int64_t{1} << CI->getSExtValue()); 384 return Result; 385 } 386 387 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 388 (!CI->isNegative())) { 389 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 390 Result.mul(CI->getSExtValue()); 391 return Result; 392 } 393 394 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 395 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 396 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 397 return {0, {{1, Op0}, {-1, Op1}}}; 398 399 return {V, IsKnownNonNegative}; 400 } 401 402 ConstraintTy 403 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 404 SmallVectorImpl<Value *> &NewVariables) const { 405 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 406 bool IsEq = false; 407 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 408 switch (Pred) { 409 case CmpInst::ICMP_UGT: 410 case CmpInst::ICMP_UGE: 411 case CmpInst::ICMP_SGT: 412 case CmpInst::ICMP_SGE: { 413 Pred = CmpInst::getSwappedPredicate(Pred); 414 std::swap(Op0, Op1); 415 break; 416 } 417 case CmpInst::ICMP_EQ: 418 if (match(Op1, m_Zero())) { 419 Pred = CmpInst::ICMP_ULE; 420 } else { 421 IsEq = true; 422 Pred = CmpInst::ICMP_ULE; 423 } 424 break; 425 case CmpInst::ICMP_NE: 426 if (!match(Op1, m_Zero())) 427 return {}; 428 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 429 std::swap(Op0, Op1); 430 break; 431 default: 432 break; 433 } 434 435 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 436 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 437 return {}; 438 439 SmallVector<PreconditionTy, 4> Preconditions; 440 bool IsSigned = CmpInst::isSigned(Pred); 441 auto &Value2Index = getValue2Index(IsSigned); 442 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 443 Preconditions, IsSigned, DL); 444 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 445 Preconditions, IsSigned, DL); 446 int64_t Offset1 = ADec.Offset; 447 int64_t Offset2 = BDec.Offset; 448 Offset1 *= -1; 449 450 auto &VariablesA = ADec.Vars; 451 auto &VariablesB = BDec.Vars; 452 453 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 454 // new entry to NewVariables. 455 DenseMap<Value *, unsigned> NewIndexMap; 456 auto GetOrAddIndex = [&Value2Index, &NewVariables, 457 &NewIndexMap](Value *V) -> unsigned { 458 auto V2I = Value2Index.find(V); 459 if (V2I != Value2Index.end()) 460 return V2I->second; 461 auto Insert = 462 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 463 if (Insert.second) 464 NewVariables.push_back(V); 465 return Insert.first->second; 466 }; 467 468 // Make sure all variables have entries in Value2Index or NewVariables. 469 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 470 GetOrAddIndex(KV.Variable); 471 472 // Build result constraint, by first adding all coefficients from A and then 473 // subtracting all coefficients from B. 474 ConstraintTy Res( 475 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 476 IsSigned); 477 // Collect variables that are known to be positive in all uses in the 478 // constraint. 479 DenseMap<Value *, bool> KnownNonNegativeVariables; 480 Res.IsEq = IsEq; 481 auto &R = Res.Coefficients; 482 for (const auto &KV : VariablesA) { 483 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 484 auto I = 485 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 486 I.first->second &= KV.IsKnownNonNegative; 487 } 488 489 for (const auto &KV : VariablesB) { 490 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 491 R[GetOrAddIndex(KV.Variable)])) 492 return {}; 493 auto I = 494 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 495 I.first->second &= KV.IsKnownNonNegative; 496 } 497 498 int64_t OffsetSum; 499 if (AddOverflow(Offset1, Offset2, OffsetSum)) 500 return {}; 501 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 502 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 503 return {}; 504 R[0] = OffsetSum; 505 Res.Preconditions = std::move(Preconditions); 506 507 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 508 // variables. 509 while (!NewVariables.empty()) { 510 int64_t Last = R.back(); 511 if (Last != 0) 512 break; 513 R.pop_back(); 514 Value *RemovedV = NewVariables.pop_back_val(); 515 NewIndexMap.erase(RemovedV); 516 } 517 518 // Add extra constraints for variables that are known positive. 519 for (auto &KV : KnownNonNegativeVariables) { 520 if (!KV.second || 521 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 522 continue; 523 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 524 C[GetOrAddIndex(KV.first)] = -1; 525 Res.ExtraInfo.push_back(C); 526 } 527 return Res; 528 } 529 530 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 531 Value *Op0, 532 Value *Op1) const { 533 // If both operands are known to be non-negative, change signed predicates to 534 // unsigned ones. This increases the reasoning effectiveness in combination 535 // with the signed <-> unsigned transfer logic. 536 if (CmpInst::isSigned(Pred) && 537 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 538 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 539 Pred = CmpInst::getUnsignedPredicate(Pred); 540 541 SmallVector<Value *> NewVariables; 542 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 543 if (R.IsEq || !NewVariables.empty()) 544 return {}; 545 return R; 546 } 547 548 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 549 return Coefficients.size() > 0 && 550 all_of(Preconditions, [&Info](const PreconditionTy &C) { 551 return Info.doesHold(C.Pred, C.Op0, C.Op1); 552 }); 553 } 554 555 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 556 Value *B) const { 557 auto R = getConstraintForSolving(Pred, A, B); 558 return R.Preconditions.empty() && !R.empty() && 559 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 560 } 561 562 void ConstraintInfo::transferToOtherSystem( 563 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 564 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 565 // Check if we can combine facts from the signed and unsigned systems to 566 // derive additional facts. 567 if (!A->getType()->isIntegerTy()) 568 return; 569 // FIXME: This currently depends on the order we add facts. Ideally we 570 // would first add all known facts and only then try to add additional 571 // facts. 572 switch (Pred) { 573 default: 574 break; 575 case CmpInst::ICMP_ULT: 576 // If B is a signed positive constant, A >=s 0 and A <s B. 577 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 578 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 579 NumOut, DFSInStack); 580 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 581 } 582 break; 583 case CmpInst::ICMP_SLT: 584 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 585 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 586 break; 587 case CmpInst::ICMP_SGT: { 588 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 589 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 590 NumOut, DFSInStack); 591 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) 592 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 593 594 break; 595 } 596 case CmpInst::ICMP_SGE: 597 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 598 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 599 } 600 break; 601 } 602 } 603 604 namespace { 605 /// Represents either 606 /// * a condition that holds on entry to a block (=conditional fact) 607 /// * an assume (=assume fact) 608 /// * an instruction to simplify. 609 /// It also tracks the Dominator DFS in and out numbers for each entry. 610 struct FactOrCheck { 611 Instruction *Inst; 612 unsigned NumIn; 613 unsigned NumOut; 614 bool IsCheck; 615 bool Not; 616 617 FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool IsCheck, bool Not) 618 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 619 IsCheck(IsCheck), Not(Not) {} 620 621 static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst, 622 bool Not = false) { 623 return FactOrCheck(DTN, Inst, false, Not); 624 } 625 626 static FactOrCheck getCheck(DomTreeNode *DTN, Instruction *Inst) { 627 return FactOrCheck(DTN, Inst, true, false); 628 } 629 630 bool isAssumeFact() const { 631 if (!IsCheck && isa<IntrinsicInst>(Inst)) { 632 assert(match(Inst, m_Intrinsic<Intrinsic::assume>())); 633 return true; 634 } 635 return false; 636 } 637 638 bool isConditionFact() const { return !IsCheck && isa<CmpInst>(Inst); } 639 }; 640 641 /// Keep state required to build worklist. 642 struct State { 643 DominatorTree &DT; 644 SmallVector<FactOrCheck, 64> WorkList; 645 646 State(DominatorTree &DT) : DT(DT) {} 647 648 /// Process block \p BB and add known facts to work-list. 649 void addInfoFor(BasicBlock &BB); 650 651 /// Returns true if we can add a known condition from BB to its successor 652 /// block Succ. 653 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 654 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 655 } 656 }; 657 658 } // namespace 659 660 #ifndef NDEBUG 661 662 static void dumpConstraint(ArrayRef<int64_t> C, 663 const DenseMap<Value *, unsigned> &Value2Index) { 664 ConstraintSystem CS(Value2Index); 665 CS.addVariableRowFill(C); 666 CS.dump(); 667 } 668 #endif 669 670 void State::addInfoFor(BasicBlock &BB) { 671 // True as long as long as the current instruction is guaranteed to execute. 672 bool GuaranteedToExecute = true; 673 // Queue conditions and assumes. 674 for (Instruction &I : BB) { 675 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 676 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), Cmp)); 677 continue; 678 } 679 680 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 681 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), &I)); 682 continue; 683 } 684 685 Value *Cond; 686 // For now, just handle assumes with a single compare as condition. 687 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 688 isa<ICmpInst>(Cond)) { 689 if (GuaranteedToExecute) { 690 // The assume is guaranteed to execute when BB is entered, hence Cond 691 // holds on entry to BB. 692 WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()), 693 cast<Instruction>(Cond))); 694 } else { 695 WorkList.emplace_back( 696 FactOrCheck::getFact(DT.getNode(I.getParent()), &I)); 697 } 698 } 699 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 700 } 701 702 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 703 if (!Br || !Br->isConditional()) 704 return; 705 706 Value *Cond = Br->getCondition(); 707 708 // If the condition is a chain of ORs/AND and the successor only has the 709 // current block as predecessor, queue conditions for the successor. 710 Value *Op0, *Op1; 711 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 712 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 713 bool IsOr = match(Cond, m_LogicalOr()); 714 bool IsAnd = match(Cond, m_LogicalAnd()); 715 // If there's a select that matches both AND and OR, we need to commit to 716 // one of the options. Arbitrarily pick OR. 717 if (IsOr && IsAnd) 718 IsAnd = false; 719 720 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 721 if (canAddSuccessor(BB, Successor)) { 722 SmallVector<Value *> CondWorkList; 723 SmallPtrSet<Value *, 8> SeenCond; 724 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 725 if (SeenCond.insert(V).second) 726 CondWorkList.push_back(V); 727 }; 728 QueueValue(Op1); 729 QueueValue(Op0); 730 while (!CondWorkList.empty()) { 731 Value *Cur = CondWorkList.pop_back_val(); 732 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 733 WorkList.emplace_back( 734 FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr)); 735 continue; 736 } 737 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 738 QueueValue(Op1); 739 QueueValue(Op0); 740 continue; 741 } 742 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 743 QueueValue(Op1); 744 QueueValue(Op0); 745 continue; 746 } 747 } 748 } 749 return; 750 } 751 752 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 753 if (!CmpI) 754 return; 755 if (canAddSuccessor(BB, Br->getSuccessor(0))) 756 WorkList.emplace_back( 757 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI)); 758 if (canAddSuccessor(BB, Br->getSuccessor(1))) 759 WorkList.emplace_back( 760 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true)); 761 } 762 763 namespace { 764 /// Helper to keep track of a condition and if it should be treated as negated 765 /// for reproducer construction. 766 struct ReproducerEntry { 767 CmpInst *Cond; 768 bool IsNot; 769 770 ReproducerEntry(CmpInst *Cond, bool IsNot) : Cond(Cond), IsNot(IsNot) {} 771 }; 772 } // namespace 773 774 /// Helper function to generate a reproducer function for simplifying \p Cond. 775 /// The reproducer function contains a series of @llvm.assume calls, one for 776 /// each condition in \p Stack. For each condition, the operand instruction are 777 /// cloned until we reach operands that have an entry in \p Value2Index. Those 778 /// will then be added as function arguments. \p DT is used to order cloned 779 /// instructions. The reproducer function will get added to \p M, if it is 780 /// non-null. Otherwise no reproducer function is generated. 781 static void generateReproducer(CmpInst *Cond, Module *M, 782 ArrayRef<ReproducerEntry> Stack, 783 ConstraintInfo &Info, DominatorTree &DT) { 784 if (!M) 785 return; 786 787 LLVMContext &Ctx = Cond->getContext(); 788 789 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 790 791 ValueToValueMapTy Old2New; 792 SmallVector<Value *> Args; 793 SmallPtrSet<Value *, 8> Seen; 794 // Traverse Cond and its operands recursively until we reach a value that's in 795 // Value2Index or not an instruction, or not a operation that 796 // ConstraintElimination can decompose. Such values will be considered as 797 // external inputs to the reproducer, they are collected and added as function 798 // arguments later. 799 auto CollectArguments = [&](CmpInst *Cond) { 800 if (!Cond) 801 return; 802 auto &Value2Index = 803 Info.getValue2Index(CmpInst::isSigned(Cond->getPredicate())); 804 SmallVector<Value *, 4> WorkList; 805 WorkList.push_back(Cond); 806 while (!WorkList.empty()) { 807 Value *V = WorkList.pop_back_val(); 808 if (!Seen.insert(V).second) 809 continue; 810 if (Old2New.find(V) != Old2New.end()) 811 continue; 812 if (isa<Constant>(V)) 813 continue; 814 815 auto *I = dyn_cast<Instruction>(V); 816 if (Value2Index.contains(V) || !I || 817 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 818 Old2New[V] = V; 819 Args.push_back(V); 820 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 821 } else { 822 append_range(WorkList, I->operands()); 823 } 824 } 825 }; 826 827 for (auto &Entry : Stack) 828 CollectArguments(Entry.Cond); 829 CollectArguments(Cond); 830 831 SmallVector<Type *> ParamTys; 832 for (auto *P : Args) 833 ParamTys.push_back(P->getType()); 834 835 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 836 /*isVarArg=*/false); 837 Function *F = Function::Create(FTy, Function::ExternalLinkage, 838 Cond->getModule()->getName() + 839 Cond->getFunction()->getName() + "repro", 840 M); 841 // Add arguments to the reproducer function for each external value collected. 842 for (unsigned I = 0; I < Args.size(); ++I) { 843 F->getArg(I)->setName(Args[I]->getName()); 844 Old2New[Args[I]] = F->getArg(I); 845 } 846 847 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 848 IRBuilder<> Builder(Entry); 849 Builder.CreateRet(Builder.getTrue()); 850 Builder.SetInsertPoint(Entry->getTerminator()); 851 852 // Clone instructions in \p Ops and their operands recursively until reaching 853 // an value in Value2Index (external input to the reproducer). Update Old2New 854 // mapping for the original and cloned instructions. Sort instructions to 855 // clone by dominance, then insert the cloned instructions in the function. 856 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 857 SmallVector<Value *, 4> WorkList(Ops); 858 SmallVector<Instruction *> ToClone; 859 auto &Value2Index = Info.getValue2Index(IsSigned); 860 while (!WorkList.empty()) { 861 Value *V = WorkList.pop_back_val(); 862 if (Old2New.find(V) != Old2New.end()) 863 continue; 864 865 auto *I = dyn_cast<Instruction>(V); 866 if (!Value2Index.contains(V) && I) { 867 Old2New[V] = nullptr; 868 ToClone.push_back(I); 869 append_range(WorkList, I->operands()); 870 } 871 } 872 873 sort(ToClone, 874 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 875 for (Instruction *I : ToClone) { 876 Instruction *Cloned = I->clone(); 877 Old2New[I] = Cloned; 878 Old2New[I]->setName(I->getName()); 879 Cloned->insertBefore(&*Builder.GetInsertPoint()); 880 Cloned->dropUnknownNonDebugMetadata(); 881 Cloned->setDebugLoc({}); 882 } 883 }; 884 885 // Materialize the assumptions for the reproducer using the entries in Stack. 886 // That is, first clone the operands of the condition recursively until we 887 // reach an external input to the reproducer and add them to the reproducer 888 // function. Then add an ICmp for the condition (with the inverse predicate if 889 // the entry is negated) and an assert using the ICmp. 890 for (auto &Entry : Stack) { 891 if (!Entry.Cond) 892 continue; 893 894 LLVM_DEBUG(dbgs() << " Materializing assumption " << *Entry.Cond << "\n"); 895 CmpInst::Predicate Pred = Entry.Cond->getPredicate(); 896 if (Entry.IsNot) 897 Pred = CmpInst::getInversePredicate(Pred); 898 899 CloneInstructions({Entry.Cond->getOperand(0), Entry.Cond->getOperand(1)}, 900 CmpInst::isSigned(Entry.Cond->getPredicate())); 901 902 auto *Cmp = Builder.CreateICmp(Pred, Entry.Cond->getOperand(0), 903 Entry.Cond->getOperand(1)); 904 Builder.CreateAssumption(Cmp); 905 } 906 907 // Finally, clone the condition to reproduce and remap instruction operands in 908 // the reproducer using Old2New. 909 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 910 Entry->getTerminator()->setOperand(0, Cond); 911 remapInstructionsInBlocks({Entry}, Old2New); 912 913 assert(!verifyFunction(*F, &dbgs())); 914 } 915 916 static bool checkAndReplaceCondition( 917 CmpInst *Cmp, ConstraintInfo &Info, Module *ReproducerModule, 918 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT) { 919 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 920 921 CmpInst::Predicate Pred = Cmp->getPredicate(); 922 Value *A = Cmp->getOperand(0); 923 Value *B = Cmp->getOperand(1); 924 925 auto R = Info.getConstraintForSolving(Pred, A, B); 926 if (R.empty() || !R.isValid(Info)){ 927 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 928 return false; 929 } 930 931 auto &CSToUse = Info.getCS(R.IsSigned); 932 933 // If there was extra information collected during decomposition, apply 934 // it now and remove it immediately once we are done with reasoning 935 // about the constraint. 936 for (auto &Row : R.ExtraInfo) 937 CSToUse.addVariableRow(Row); 938 auto InfoRestorer = make_scope_exit([&]() { 939 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 940 CSToUse.popLastConstraint(); 941 }); 942 943 bool Changed = false; 944 if (CSToUse.isConditionImplied(R.Coefficients)) { 945 if (!DebugCounter::shouldExecute(EliminatedCounter)) 946 return false; 947 948 LLVM_DEBUG({ 949 dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n"; 950 CSToUse.dump(); 951 }); 952 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 953 Constant *TrueC = 954 ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType())); 955 Cmp->replaceUsesWithIf(TrueC, [](Use &U) { 956 // Conditions in an assume trivially simplify to true. Skip uses 957 // in assume calls to not destroy the available information. 958 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 959 return !II || II->getIntrinsicID() != Intrinsic::assume; 960 }); 961 NumCondsRemoved++; 962 Changed = true; 963 } 964 auto Negated = ConstraintSystem::negate(R.Coefficients); 965 if (!Negated.empty() && CSToUse.isConditionImplied(Negated)) { 966 if (!DebugCounter::shouldExecute(EliminatedCounter)) 967 return false; 968 969 LLVM_DEBUG({ 970 dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n"; 971 CSToUse.dump(); 972 }); 973 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 974 Constant *FalseC = 975 ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType())); 976 Cmp->replaceAllUsesWith(FalseC); 977 NumCondsRemoved++; 978 Changed = true; 979 } 980 return Changed; 981 } 982 983 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 984 unsigned NumIn, unsigned NumOut, 985 SmallVectorImpl<StackEntry> &DFSInStack) { 986 // If the constraint has a pre-condition, skip the constraint if it does not 987 // hold. 988 SmallVector<Value *> NewVariables; 989 auto R = getConstraint(Pred, A, B, NewVariables); 990 if (!R.isValid(*this)) 991 return; 992 993 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; 994 A->printAsOperand(dbgs(), false); dbgs() << ", "; 995 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 996 bool Added = false; 997 auto &CSToUse = getCS(R.IsSigned); 998 if (R.Coefficients.empty()) 999 return; 1000 1001 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1002 1003 // If R has been added to the system, add the new variables and queue it for 1004 // removal once it goes out-of-scope. 1005 if (Added) { 1006 SmallVector<Value *, 2> ValuesToRelease; 1007 auto &Value2Index = getValue2Index(R.IsSigned); 1008 for (Value *V : NewVariables) { 1009 Value2Index.insert({V, Value2Index.size() + 1}); 1010 ValuesToRelease.push_back(V); 1011 } 1012 1013 LLVM_DEBUG({ 1014 dbgs() << " constraint: "; 1015 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1016 dbgs() << "\n"; 1017 }); 1018 1019 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1020 std::move(ValuesToRelease)); 1021 1022 if (R.IsEq) { 1023 // Also add the inverted constraint for equality constraints. 1024 for (auto &Coeff : R.Coefficients) 1025 Coeff *= -1; 1026 CSToUse.addVariableRowFill(R.Coefficients); 1027 1028 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1029 SmallVector<Value *, 2>()); 1030 } 1031 } 1032 } 1033 1034 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1035 SmallVectorImpl<Instruction *> &ToRemove) { 1036 bool Changed = false; 1037 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1038 Value *Sub = nullptr; 1039 for (User *U : make_early_inc_range(II->users())) { 1040 if (match(U, m_ExtractValue<0>(m_Value()))) { 1041 if (!Sub) 1042 Sub = Builder.CreateSub(A, B); 1043 U->replaceAllUsesWith(Sub); 1044 Changed = true; 1045 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1046 U->replaceAllUsesWith(Builder.getFalse()); 1047 Changed = true; 1048 } else 1049 continue; 1050 1051 if (U->use_empty()) { 1052 auto *I = cast<Instruction>(U); 1053 ToRemove.push_back(I); 1054 I->setOperand(0, PoisonValue::get(II->getType())); 1055 Changed = true; 1056 } 1057 } 1058 1059 if (II->use_empty()) { 1060 II->eraseFromParent(); 1061 Changed = true; 1062 } 1063 return Changed; 1064 } 1065 1066 static bool 1067 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1068 SmallVectorImpl<Instruction *> &ToRemove) { 1069 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1070 ConstraintInfo &Info) { 1071 auto R = Info.getConstraintForSolving(Pred, A, B); 1072 if (R.size() < 2 || !R.isValid(Info)) 1073 return false; 1074 1075 auto &CSToUse = Info.getCS(R.IsSigned); 1076 return CSToUse.isConditionImplied(R.Coefficients); 1077 }; 1078 1079 bool Changed = false; 1080 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1081 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1082 // can be simplified to a regular sub. 1083 Value *A = II->getArgOperand(0); 1084 Value *B = II->getArgOperand(1); 1085 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1086 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1087 ConstantInt::get(A->getType(), 0), Info)) 1088 return false; 1089 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1090 } 1091 return Changed; 1092 } 1093 1094 static bool eliminateConstraints(Function &F, DominatorTree &DT, 1095 OptimizationRemarkEmitter &ORE) { 1096 bool Changed = false; 1097 DT.updateDFSNumbers(); 1098 SmallVector<Value *> FunctionArgs; 1099 for (Value &Arg : F.args()) 1100 FunctionArgs.push_back(&Arg); 1101 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1102 State S(DT); 1103 std::unique_ptr<Module> ReproducerModule( 1104 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1105 1106 // First, collect conditions implied by branches and blocks with their 1107 // Dominator DFS in and out numbers. 1108 for (BasicBlock &BB : F) { 1109 if (!DT.getNode(&BB)) 1110 continue; 1111 S.addInfoFor(BB); 1112 } 1113 1114 // Next, sort worklist by dominance, so that dominating conditions to check 1115 // and facts come before conditions and facts dominated by them. If a 1116 // condition to check and a fact have the same numbers, conditional facts come 1117 // first. Assume facts and checks are ordered according to their relative 1118 // order in the containing basic block. Also make sure conditions with 1119 // constant operands come before conditions without constant operands. This 1120 // increases the effectiveness of the current signed <-> unsigned fact 1121 // transfer logic. 1122 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1123 auto HasNoConstOp = [](const FactOrCheck &B) { 1124 return !isa<ConstantInt>(B.Inst->getOperand(0)) && 1125 !isa<ConstantInt>(B.Inst->getOperand(1)); 1126 }; 1127 // If both entries have the same In numbers, conditional facts come first. 1128 // Otherwise use the relative order in the basic block. 1129 if (A.NumIn == B.NumIn) { 1130 if (A.isConditionFact() && B.isConditionFact()) { 1131 bool NoConstOpA = HasNoConstOp(A); 1132 bool NoConstOpB = HasNoConstOp(B); 1133 return NoConstOpA < NoConstOpB; 1134 } 1135 if (A.isConditionFact()) 1136 return true; 1137 if (B.isConditionFact()) 1138 return false; 1139 return A.Inst->comesBefore(B.Inst); 1140 } 1141 return A.NumIn < B.NumIn; 1142 }); 1143 1144 SmallVector<Instruction *> ToRemove; 1145 1146 // Finally, process ordered worklist and eliminate implied conditions. 1147 SmallVector<StackEntry, 16> DFSInStack; 1148 SmallVector<ReproducerEntry> ReproducerCondStack; 1149 for (FactOrCheck &CB : S.WorkList) { 1150 // First, pop entries from the stack that are out-of-scope for CB. Remove 1151 // the corresponding entry from the constraint system. 1152 while (!DFSInStack.empty()) { 1153 auto &E = DFSInStack.back(); 1154 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1155 << "\n"); 1156 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1157 assert(E.NumIn <= CB.NumIn); 1158 if (CB.NumOut <= E.NumOut) 1159 break; 1160 LLVM_DEBUG({ 1161 dbgs() << "Removing "; 1162 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1163 Info.getValue2Index(E.IsSigned)); 1164 dbgs() << "\n"; 1165 }); 1166 1167 Info.popLastConstraint(E.IsSigned); 1168 // Remove variables in the system that went out of scope. 1169 auto &Mapping = Info.getValue2Index(E.IsSigned); 1170 for (Value *V : E.ValuesToRelease) 1171 Mapping.erase(V); 1172 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1173 DFSInStack.pop_back(); 1174 if (ReproducerModule) 1175 ReproducerCondStack.pop_back(); 1176 } 1177 1178 LLVM_DEBUG({ 1179 dbgs() << "Processing "; 1180 if (CB.IsCheck) 1181 dbgs() << "condition to simplify: " << *CB.Inst; 1182 else 1183 dbgs() << "fact to add to the system: " << *CB.Inst; 1184 dbgs() << "\n"; 1185 }); 1186 1187 // For a block, check if any CmpInsts become known based on the current set 1188 // of constraints. 1189 if (CB.IsCheck) { 1190 if (auto *II = dyn_cast<WithOverflowInst>(CB.Inst)) { 1191 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1192 } else if (auto *Cmp = dyn_cast<ICmpInst>(CB.Inst)) { 1193 Changed |= checkAndReplaceCondition(Cmp, Info, ReproducerModule.get(), 1194 ReproducerCondStack, S.DT); 1195 } 1196 continue; 1197 } 1198 1199 ICmpInst::Predicate Pred; 1200 Value *A, *B; 1201 Value *Cmp = CB.Inst; 1202 match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp))); 1203 if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 1204 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1205 LLVM_DEBUG( 1206 dbgs() 1207 << "Skip adding constraint because system has too many rows.\n"); 1208 continue; 1209 } 1210 1211 // Use the inverse predicate if required. 1212 if (CB.Not) 1213 Pred = CmpInst::getInversePredicate(Pred); 1214 1215 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1216 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1217 ReproducerCondStack.emplace_back(cast<CmpInst>(Cmp), CB.Not); 1218 1219 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1220 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1221 // Add dummy entries to ReproducerCondStack to keep it in sync with 1222 // DFSInStack. 1223 for (unsigned I = 0, 1224 E = (DFSInStack.size() - ReproducerCondStack.size()); 1225 I < E; ++I) { 1226 ReproducerCondStack.emplace_back(nullptr, false); 1227 } 1228 } 1229 } 1230 } 1231 1232 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1233 std::string S; 1234 raw_string_ostream StringS(S); 1235 ReproducerModule->print(StringS, nullptr); 1236 StringS.flush(); 1237 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1238 Rem << ore::NV("module") << S; 1239 ORE.emit(Rem); 1240 } 1241 1242 #ifndef NDEBUG 1243 unsigned SignedEntries = 1244 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1245 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1246 "updates to CS and DFSInStack are out of sync"); 1247 assert(Info.getCS(true).size() == SignedEntries && 1248 "updates to CS and DFSInStack are out of sync"); 1249 #endif 1250 1251 for (Instruction *I : ToRemove) 1252 I->eraseFromParent(); 1253 return Changed; 1254 } 1255 1256 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1257 FunctionAnalysisManager &AM) { 1258 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1259 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1260 if (!eliminateConstraints(F, DT, ORE)) 1261 return PreservedAnalyses::all(); 1262 1263 PreservedAnalyses PA; 1264 PA.preserve<DominatorTreeAnalysis>(); 1265 PA.preserveSet<CFGAnalyses>(); 1266 return PA; 1267 } 1268