xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 098b0b18a7df42434d3cc747c89dd62ddac73afa)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/DebugCounter.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Scalar.h"
33 
34 #include <string>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "constraint-elimination"
40 
41 STATISTIC(NumCondsRemoved, "Number of instructions removed");
42 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
43               "Controls which conditions are eliminated");
44 
45 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
46 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
47 
48 namespace {
49 
50 class ConstraintInfo;
51 
52 struct StackEntry {
53   unsigned NumIn;
54   unsigned NumOut;
55   bool IsNot;
56   bool IsSigned = false;
57   /// Variables that can be removed from the system once the stack entry gets
58   /// removed.
59   SmallVector<Value *, 2> ValuesToRelease;
60 
61   StackEntry(unsigned NumIn, unsigned NumOut, bool IsNot, bool IsSigned,
62              SmallVector<Value *, 2> ValuesToRelease)
63       : NumIn(NumIn), NumOut(NumOut), IsNot(IsNot), IsSigned(IsSigned),
64         ValuesToRelease(ValuesToRelease) {}
65 };
66 
67 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
68 struct PreconditionTy {
69   CmpInst::Predicate Pred;
70   Value *Op0;
71   Value *Op1;
72 
73   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
74       : Pred(Pred), Op0(Op0), Op1(Op1) {}
75 };
76 
77 struct ConstraintTy {
78   SmallVector<int64_t, 8> Coefficients;
79   SmallVector<PreconditionTy, 2> Preconditions;
80 
81   bool IsSigned = false;
82   bool IsEq = false;
83 
84   ConstraintTy() = default;
85 
86   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
87       : Coefficients(Coefficients), IsSigned(IsSigned) {}
88 
89   unsigned size() const { return Coefficients.size(); }
90 
91   unsigned empty() const { return Coefficients.empty(); }
92 
93   /// Returns true if any constraint has a non-zero coefficient for any of the
94   /// newly added indices. Zero coefficients for new indices are removed. If it
95   /// returns true, no new variable need to be added to the system.
96   bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) {
97     for (unsigned I = 0; I < NewIndices.size(); ++I) {
98       int64_t Last = Coefficients.pop_back_val();
99       if (Last != 0)
100         return true;
101     }
102     return false;
103   }
104 
105   /// Returns true if all preconditions for this list of constraints are
106   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
107   bool isValid(const ConstraintInfo &Info) const;
108 };
109 
110 /// Wrapper encapsulating separate constraint systems and corresponding value
111 /// mappings for both unsigned and signed information. Facts are added to and
112 /// conditions are checked against the corresponding system depending on the
113 /// signed-ness of their predicates. While the information is kept separate
114 /// based on signed-ness, certain conditions can be transferred between the two
115 /// systems.
116 class ConstraintInfo {
117   DenseMap<Value *, unsigned> UnsignedValue2Index;
118   DenseMap<Value *, unsigned> SignedValue2Index;
119 
120   ConstraintSystem UnsignedCS;
121   ConstraintSystem SignedCS;
122 
123 public:
124   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
125     return Signed ? SignedValue2Index : UnsignedValue2Index;
126   }
127   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
128     return Signed ? SignedValue2Index : UnsignedValue2Index;
129   }
130 
131   ConstraintSystem &getCS(bool Signed) {
132     return Signed ? SignedCS : UnsignedCS;
133   }
134   const ConstraintSystem &getCS(bool Signed) const {
135     return Signed ? SignedCS : UnsignedCS;
136   }
137 
138   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
139   void popLastNVariables(bool Signed, unsigned N) {
140     getCS(Signed).popLastNVariables(N);
141   }
142 
143   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
144 
145   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated,
146                unsigned NumIn, unsigned NumOut,
147                SmallVectorImpl<StackEntry> &DFSInStack);
148 
149   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
150   /// constraints, using indices from the corresponding constraint system.
151   /// Additional indices for newly discovered values are added to \p NewIndices.
152   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
153                              DenseMap<Value *, unsigned> &NewIndices) const;
154 
155   /// Turn a condition \p CmpI into a vector of constraints, using indices from
156   /// the corresponding constraint system. Additional indices for newly
157   /// discovered values are added to \p NewIndices.
158   ConstraintTy getConstraint(CmpInst *Cmp,
159                              DenseMap<Value *, unsigned> &NewIndices) const {
160     return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
161                          Cmp->getOperand(1), NewIndices);
162   }
163 
164   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
165   /// system if \p Pred is signed/unsigned.
166   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
167                              bool IsNegated, unsigned NumIn, unsigned NumOut,
168                              SmallVectorImpl<StackEntry> &DFSInStack);
169 };
170 
171 } // namespace
172 
173 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
174 // sum of the pairs equals \p V.  The first pair is the constant-factor and X
175 // must be nullptr. If the expression cannot be decomposed, returns an empty
176 // vector.
177 static SmallVector<std::pair<int64_t, Value *>, 4>
178 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
179           bool IsSigned) {
180 
181   auto CanUseSExt = [](ConstantInt *CI) {
182     const APInt &Val = CI->getValue();
183     return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
184   };
185   // Decompose \p V used with a signed predicate.
186   if (IsSigned) {
187     if (auto *CI = dyn_cast<ConstantInt>(V)) {
188       if (CanUseSExt(CI))
189         return {{CI->getSExtValue(), nullptr}};
190     }
191 
192     return {{0, nullptr}, {1, V}};
193   }
194 
195   if (auto *CI = dyn_cast<ConstantInt>(V)) {
196     if (CI->uge(MaxConstraintValue))
197       return {};
198     return {{CI->getZExtValue(), nullptr}};
199   }
200   auto *GEP = dyn_cast<GetElementPtrInst>(V);
201   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
202     Value *Op0, *Op1;
203     ConstantInt *CI;
204 
205     // If the index is zero-extended, it is guaranteed to be positive.
206     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
207               m_ZExt(m_Value(Op0)))) {
208       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) &&
209           CanUseSExt(CI))
210         return {{0, nullptr},
211                 {1, GEP->getPointerOperand()},
212                 {std::pow(int64_t(2), CI->getSExtValue()), Op1}};
213       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) &&
214           CanUseSExt(CI))
215         return {{CI->getSExtValue(), nullptr},
216                 {1, GEP->getPointerOperand()},
217                 {1, Op1}};
218       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
219     }
220 
221     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
222         !CI->isNegative() && CanUseSExt(CI))
223       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
224 
225     SmallVector<std::pair<int64_t, Value *>, 4> Result;
226     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
227               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) &&
228         CanUseSExt(CI))
229       Result = {{0, nullptr},
230                 {1, GEP->getPointerOperand()},
231                 {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
232     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
233                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
234              CanUseSExt(CI))
235       Result = {{CI->getSExtValue(), nullptr},
236                 {1, GEP->getPointerOperand()},
237                 {1, Op0}};
238     else {
239       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
240       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
241     }
242     // If Op0 is signed non-negative, the GEP is increasing monotonically and
243     // can be de-composed.
244     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
245                                ConstantInt::get(Op0->getType(), 0));
246     return Result;
247   }
248 
249   Value *Op0;
250   if (match(V, m_ZExt(m_Value(Op0))))
251     V = Op0;
252 
253   Value *Op1;
254   ConstantInt *CI;
255   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
256       !CI->uge(MaxConstraintValue))
257     return {{CI->getZExtValue(), nullptr}, {1, Op0}};
258   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
259       CanUseSExt(CI)) {
260     Preconditions.emplace_back(
261         CmpInst::ICMP_UGE, Op0,
262         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
263     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
264   }
265   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
266     return {{0, nullptr}, {1, Op0}, {1, Op1}};
267 
268   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI))
269     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
270   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
271     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
272 
273   return {{0, nullptr}, {1, V}};
274 }
275 
276 ConstraintTy
277 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
278                               DenseMap<Value *, unsigned> &NewIndices) const {
279   bool IsEq = false;
280   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
281   switch (Pred) {
282   case CmpInst::ICMP_UGT:
283   case CmpInst::ICMP_UGE:
284   case CmpInst::ICMP_SGT:
285   case CmpInst::ICMP_SGE: {
286     Pred = CmpInst::getSwappedPredicate(Pred);
287     std::swap(Op0, Op1);
288     break;
289   }
290   case CmpInst::ICMP_EQ:
291     if (match(Op1, m_Zero())) {
292       Pred = CmpInst::ICMP_ULE;
293     } else {
294       IsEq = true;
295       Pred = CmpInst::ICMP_ULE;
296     }
297     break;
298   case CmpInst::ICMP_NE:
299     if (!match(Op1, m_Zero()))
300       return {};
301     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
302     std::swap(Op0, Op1);
303     break;
304   default:
305     break;
306   }
307 
308   // Only ULE and ULT predicates are supported at the moment.
309   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
310       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
311     return {};
312 
313   SmallVector<PreconditionTy, 4> Preconditions;
314   bool IsSigned = CmpInst::isSigned(Pred);
315   auto &Value2Index = getValue2Index(IsSigned);
316   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
317                         Preconditions, IsSigned);
318   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
319                         Preconditions, IsSigned);
320   // Skip if decomposing either of the values failed.
321   if (ADec.empty() || BDec.empty())
322     return {};
323 
324   int64_t Offset1 = ADec[0].first;
325   int64_t Offset2 = BDec[0].first;
326   Offset1 *= -1;
327 
328   // Create iterator ranges that skip the constant-factor.
329   auto VariablesA = llvm::drop_begin(ADec);
330   auto VariablesB = llvm::drop_begin(BDec);
331 
332   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
333   // new entry to NewIndices.
334   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
335     auto V2I = Value2Index.find(V);
336     if (V2I != Value2Index.end())
337       return V2I->second;
338     auto Insert =
339         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
340     return Insert.first->second;
341   };
342 
343   // Make sure all variables have entries in Value2Index or NewIndices.
344   for (const auto &KV :
345        concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
346     GetOrAddIndex(KV.second);
347 
348   // Build result constraint, by first adding all coefficients from A and then
349   // subtracting all coefficients from B.
350   ConstraintTy Res(
351       SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0),
352       IsSigned);
353   Res.IsEq = IsEq;
354   auto &R = Res.Coefficients;
355   for (const auto &KV : VariablesA)
356     R[GetOrAddIndex(KV.second)] += KV.first;
357 
358   for (const auto &KV : VariablesB)
359     R[GetOrAddIndex(KV.second)] -= KV.first;
360 
361   int64_t OffsetSum;
362   if (AddOverflow(Offset1, Offset2, OffsetSum))
363     return {};
364   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
365     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
366       return {};
367   R[0] = OffsetSum;
368   Res.Preconditions = std::move(Preconditions);
369   return Res;
370 }
371 
372 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
373   return Coefficients.size() > 0 &&
374          all_of(Preconditions, [&Info](const PreconditionTy &C) {
375            return Info.doesHold(C.Pred, C.Op0, C.Op1);
376          });
377 }
378 
379 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
380                               Value *B) const {
381   DenseMap<Value *, unsigned> NewIndices;
382   auto R = getConstraint(Pred, A, B, NewIndices);
383 
384   if (!NewIndices.empty())
385     return false;
386 
387   // TODO: properly check NewIndices.
388   return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq &&
389          !R.empty() &&
390          getCS(CmpInst::isSigned(Pred)).isConditionImplied(R.Coefficients);
391 }
392 
393 void ConstraintInfo::transferToOtherSystem(
394     CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn,
395     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
396   // Check if we can combine facts from the signed and unsigned systems to
397   // derive additional facts.
398   if (!A->getType()->isIntegerTy())
399     return;
400   // FIXME: This currently depends on the order we add facts. Ideally we
401   // would first add all known facts and only then try to add additional
402   // facts.
403   switch (Pred) {
404   default:
405     break;
406   case CmpInst::ICMP_SGE:
407     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
408       addFact(CmpInst::ICMP_UGE, A, B, IsNegated, NumIn, NumOut, DFSInStack);
409     }
410     break;
411   }
412 }
413 
414 namespace {
415 /// Represents either a condition that holds on entry to a block or a basic
416 /// block, with their respective Dominator DFS in and out numbers.
417 struct ConstraintOrBlock {
418   unsigned NumIn;
419   unsigned NumOut;
420   bool IsBlock;
421   bool Not;
422   union {
423     BasicBlock *BB;
424     CmpInst *Condition;
425   };
426 
427   ConstraintOrBlock(DomTreeNode *DTN)
428       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
429         BB(DTN->getBlock()) {}
430   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
431       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
432         Not(Not), Condition(Condition) {}
433 };
434 
435 /// Keep state required to build worklist.
436 struct State {
437   DominatorTree &DT;
438   SmallVector<ConstraintOrBlock, 64> WorkList;
439 
440   State(DominatorTree &DT) : DT(DT) {}
441 
442   /// Process block \p BB and add known facts to work-list.
443   void addInfoFor(BasicBlock &BB);
444 
445   /// Returns true if we can add a known condition from BB to its successor
446   /// block Succ. Each predecessor of Succ can either be BB or be dominated
447   /// by Succ (e.g. the case when adding a condition from a pre-header to a
448   /// loop header).
449   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
450     if (BB.getSingleSuccessor()) {
451       assert(BB.getSingleSuccessor() == Succ);
452       return DT.properlyDominates(&BB, Succ);
453     }
454     return any_of(successors(&BB),
455                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
456            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
457              return Pred == &BB || DT.dominates(Succ, Pred);
458            });
459   }
460 };
461 
462 } // namespace
463 
464 #ifndef NDEBUG
465 static void dumpWithNames(const ConstraintSystem &CS,
466                           DenseMap<Value *, unsigned> &Value2Index) {
467   SmallVector<std::string> Names(Value2Index.size(), "");
468   for (auto &KV : Value2Index) {
469     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
470   }
471   CS.dump(Names);
472 }
473 
474 static void dumpWithNames(ArrayRef<int64_t> C,
475                           DenseMap<Value *, unsigned> &Value2Index) {
476   ConstraintSystem CS;
477   CS.addVariableRowFill(C);
478   dumpWithNames(CS, Value2Index);
479 }
480 #endif
481 
482 void State::addInfoFor(BasicBlock &BB) {
483   WorkList.emplace_back(DT.getNode(&BB));
484 
485   // True as long as long as the current instruction is guaranteed to execute.
486   bool GuaranteedToExecute = true;
487   // Scan BB for assume calls.
488   // TODO: also use this scan to queue conditions to simplify, so we can
489   // interleave facts from assumes and conditions to simplify in a single
490   // basic block. And to skip another traversal of each basic block when
491   // simplifying.
492   for (Instruction &I : BB) {
493     Value *Cond;
494     // For now, just handle assumes with a single compare as condition.
495     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
496         isa<ICmpInst>(Cond)) {
497       if (GuaranteedToExecute) {
498         // The assume is guaranteed to execute when BB is entered, hence Cond
499         // holds on entry to BB.
500         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
501       } else {
502         // Otherwise the condition only holds in the successors.
503         for (BasicBlock *Succ : successors(&BB)) {
504           if (!canAddSuccessor(BB, Succ))
505             continue;
506           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
507         }
508       }
509     }
510     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
511   }
512 
513   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
514   if (!Br || !Br->isConditional())
515     return;
516 
517   // If the condition is an OR of 2 compares and the false successor only has
518   // the current block as predecessor, queue both negated conditions for the
519   // false successor.
520   Value *Op0, *Op1;
521   if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
522       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
523     BasicBlock *FalseSuccessor = Br->getSuccessor(1);
524     if (canAddSuccessor(BB, FalseSuccessor)) {
525       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0),
526                             true);
527       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1),
528                             true);
529     }
530     return;
531   }
532 
533   // If the condition is an AND of 2 compares and the true successor only has
534   // the current block as predecessor, queue both conditions for the true
535   // successor.
536   if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
537       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
538     BasicBlock *TrueSuccessor = Br->getSuccessor(0);
539     if (canAddSuccessor(BB, TrueSuccessor)) {
540       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0),
541                             false);
542       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1),
543                             false);
544     }
545     return;
546   }
547 
548   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
549   if (!CmpI)
550     return;
551   if (canAddSuccessor(BB, Br->getSuccessor(0)))
552     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
553   if (canAddSuccessor(BB, Br->getSuccessor(1)))
554     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
555 }
556 
557 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
558                              bool IsNegated, unsigned NumIn, unsigned NumOut,
559                              SmallVectorImpl<StackEntry> &DFSInStack) {
560   // If the constraint has a pre-condition, skip the constraint if it does not
561   // hold.
562   DenseMap<Value *, unsigned> NewIndices;
563   auto R = getConstraint(Pred, A, B, NewIndices);
564   if (!R.isValid(*this))
565     return;
566 
567   //LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n");
568   bool Added = false;
569   assert(CmpInst::isSigned(Pred) == R.IsSigned &&
570          "condition and constraint signs must match");
571   auto &CSToUse = getCS(R.IsSigned);
572   if (R.Coefficients.empty())
573     return;
574 
575   Added |= CSToUse.addVariableRowFill(R.Coefficients);
576 
577   // If R has been added to the system, queue it for removal once it goes
578   // out-of-scope.
579   if (Added) {
580     SmallVector<Value *, 2> ValuesToRelease;
581     for (auto &KV : NewIndices) {
582       getValue2Index(R.IsSigned).insert(KV);
583       ValuesToRelease.push_back(KV.first);
584     }
585 
586     LLVM_DEBUG({
587       dbgs() << "  constraint: ";
588       dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
589     });
590 
591     DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned,
592                             ValuesToRelease);
593 
594     if (R.IsEq) {
595       // Also add the inverted constraint for equality constraints.
596       for (auto &Coeff : R.Coefficients)
597         Coeff *= -1;
598       CSToUse.addVariableRowFill(R.Coefficients);
599 
600       DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned,
601                               SmallVector<Value *, 2>());
602     }
603   }
604 }
605 
606 static void
607 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
608                           SmallVectorImpl<Instruction *> &ToRemove) {
609   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
610                               ConstraintInfo &Info) {
611     DenseMap<Value *, unsigned> NewIndices;
612     auto R = Info.getConstraint(Pred, A, B, NewIndices);
613     if (R.size() < 2 || R.needsNewIndices(NewIndices) || !R.isValid(Info))
614       return false;
615 
616     auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred));
617     return CSToUse.isConditionImplied(R.Coefficients);
618   };
619 
620   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
621     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
622     // can be simplified to a regular sub.
623     Value *A = II->getArgOperand(0);
624     Value *B = II->getArgOperand(1);
625     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
626         !DoesConditionHold(CmpInst::ICMP_SGE, B,
627                            ConstantInt::get(A->getType(), 0), Info))
628       return;
629 
630     IRBuilder<> Builder(II->getParent(), II->getIterator());
631     Value *Sub = nullptr;
632     for (User *U : make_early_inc_range(II->users())) {
633       if (match(U, m_ExtractValue<0>(m_Value()))) {
634         if (!Sub)
635           Sub = Builder.CreateSub(A, B);
636         U->replaceAllUsesWith(Sub);
637       } else if (match(U, m_ExtractValue<1>(m_Value())))
638         U->replaceAllUsesWith(Builder.getFalse());
639       else
640         continue;
641 
642       if (U->use_empty()) {
643         auto *I = cast<Instruction>(U);
644         ToRemove.push_back(I);
645         I->setOperand(0, PoisonValue::get(II->getType()));
646       }
647     }
648 
649     if (II->use_empty())
650       II->eraseFromParent();
651   }
652 }
653 
654 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
655   bool Changed = false;
656   DT.updateDFSNumbers();
657 
658   ConstraintInfo Info;
659   State S(DT);
660 
661   // First, collect conditions implied by branches and blocks with their
662   // Dominator DFS in and out numbers.
663   for (BasicBlock &BB : F) {
664     if (!DT.getNode(&BB))
665       continue;
666     S.addInfoFor(BB);
667   }
668 
669   // Next, sort worklist by dominance, so that dominating blocks and conditions
670   // come before blocks and conditions dominated by them. If a block and a
671   // condition have the same numbers, the condition comes before the block, as
672   // it holds on entry to the block.
673   sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
674     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
675   });
676 
677   SmallVector<Instruction *> ToRemove;
678 
679   // Finally, process ordered worklist and eliminate implied conditions.
680   SmallVector<StackEntry, 16> DFSInStack;
681   for (ConstraintOrBlock &CB : S.WorkList) {
682     // First, pop entries from the stack that are out-of-scope for CB. Remove
683     // the corresponding entry from the constraint system.
684     while (!DFSInStack.empty()) {
685       auto &E = DFSInStack.back();
686       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
687                         << "\n");
688       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
689       assert(E.NumIn <= CB.NumIn);
690       if (CB.NumOut <= E.NumOut)
691         break;
692       LLVM_DEBUG({
693         dbgs() << "Removing ";
694         dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
695                       Info.getValue2Index(E.IsSigned));
696         dbgs() << "\n";
697       });
698 
699       Info.popLastConstraint(E.IsSigned);
700       // Remove variables in the system that went out of scope.
701       auto &Mapping = Info.getValue2Index(E.IsSigned);
702       for (Value *V : E.ValuesToRelease)
703         Mapping.erase(V);
704       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
705       DFSInStack.pop_back();
706     }
707 
708     LLVM_DEBUG({
709       dbgs() << "Processing ";
710       if (CB.IsBlock)
711         dbgs() << *CB.BB;
712       else
713         dbgs() << *CB.Condition;
714       dbgs() << "\n";
715     });
716 
717     // For a block, check if any CmpInsts become known based on the current set
718     // of constraints.
719     if (CB.IsBlock) {
720       for (Instruction &I : make_early_inc_range(*CB.BB)) {
721         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
722           tryToSimplifyOverflowMath(II, Info, ToRemove);
723           continue;
724         }
725         auto *Cmp = dyn_cast<ICmpInst>(&I);
726         if (!Cmp)
727           continue;
728 
729         DenseMap<Value *, unsigned> NewIndices;
730         auto R = Info.getConstraint(Cmp, NewIndices);
731         if (R.IsEq || R.empty() || R.needsNewIndices(NewIndices) ||
732             !R.isValid(Info))
733           continue;
734 
735         auto &CSToUse = Info.getCS(R.IsSigned);
736         if (CSToUse.isConditionImplied(R.Coefficients)) {
737           if (!DebugCounter::shouldExecute(EliminatedCounter))
738             continue;
739 
740           LLVM_DEBUG({
741             dbgs() << "Condition " << *Cmp
742                    << " implied by dominating constraints\n";
743             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
744           });
745           Cmp->replaceUsesWithIf(
746               ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
747                 // Conditions in an assume trivially simplify to true. Skip uses
748                 // in assume calls to not destroy the available information.
749                 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
750                 return !II || II->getIntrinsicID() != Intrinsic::assume;
751               });
752           NumCondsRemoved++;
753           Changed = true;
754         }
755         if (CSToUse.isConditionImplied(
756                 ConstraintSystem::negate(R.Coefficients))) {
757           if (!DebugCounter::shouldExecute(EliminatedCounter))
758             continue;
759 
760           LLVM_DEBUG({
761             dbgs() << "Condition !" << *Cmp
762                    << " implied by dominating constraints\n";
763             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
764           });
765           Cmp->replaceAllUsesWith(
766               ConstantInt::getFalse(F.getParent()->getContext()));
767           NumCondsRemoved++;
768           Changed = true;
769         }
770       }
771       continue;
772     }
773 
774     // Set up a function to restore the predicate at the end of the scope if it
775     // has been negated. Negate the predicate in-place, if required.
776     auto *CI = dyn_cast<ICmpInst>(CB.Condition);
777     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
778       if (CB.Not && CI)
779         CI->setPredicate(CI->getInversePredicate());
780     });
781     if (CB.Not) {
782       if (CI) {
783         CI->setPredicate(CI->getInversePredicate());
784       } else {
785         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
786         continue;
787       }
788     }
789 
790     ICmpInst::Predicate Pred;
791     Value *A, *B;
792     if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
793       // Otherwise, add the condition to the system and stack, if we can
794       // transform it into a constraint.
795       Info.addFact(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, DFSInStack);
796       Info.transferToOtherSystem(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut,
797                                  DFSInStack);
798     }
799   }
800 
801 #ifndef NDEBUG
802   unsigned SignedEntries =
803       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
804   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
805          "updates to CS and DFSInStack are out of sync");
806   assert(Info.getCS(true).size() == SignedEntries &&
807          "updates to CS and DFSInStack are out of sync");
808 #endif
809 
810   for (Instruction *I : ToRemove)
811     I->eraseFromParent();
812   return Changed;
813 }
814 
815 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
816                                                  FunctionAnalysisManager &AM) {
817   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
818   if (!eliminateConstraints(F, DT))
819     return PreservedAnalyses::all();
820 
821   PreservedAnalyses PA;
822   PA.preserve<DominatorTreeAnalysis>();
823   PA.preserveSet<CFGAnalyses>();
824   return PA;
825 }
826 
827 namespace {
828 
829 class ConstraintElimination : public FunctionPass {
830 public:
831   static char ID;
832 
833   ConstraintElimination() : FunctionPass(ID) {
834     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
835   }
836 
837   bool runOnFunction(Function &F) override {
838     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
839     return eliminateConstraints(F, DT);
840   }
841 
842   void getAnalysisUsage(AnalysisUsage &AU) const override {
843     AU.setPreservesCFG();
844     AU.addRequired<DominatorTreeWrapperPass>();
845     AU.addPreserved<GlobalsAAWrapperPass>();
846     AU.addPreserved<DominatorTreeWrapperPass>();
847   }
848 };
849 
850 } // end anonymous namespace
851 
852 char ConstraintElimination::ID = 0;
853 
854 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
855                       "Constraint Elimination", false, false)
856 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
857 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
858 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
859                     "Constraint Elimination", false, false)
860 
861 FunctionPass *llvm::createConstraintEliminationPass() {
862   return new ConstraintElimination();
863 }
864