xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 06f3ef66266f9a266c9979ef7686d085ac2a4df8)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/DebugCounter.h"
31 #include "llvm/Transforms/Scalar.h"
32 
33 #include <string>
34 
35 using namespace llvm;
36 using namespace PatternMatch;
37 
38 #define DEBUG_TYPE "constraint-elimination"
39 
40 STATISTIC(NumCondsRemoved, "Number of instructions removed");
41 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
42               "Controls which conditions are eliminated");
43 
44 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
45 
46 namespace {
47 
48 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
49 struct PreconditionTy {
50   CmpInst::Predicate Pred;
51   Value *Op0;
52   Value *Op1;
53 
54   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
55       : Pred(Pred), Op0(Op0), Op1(Op1) {}
56 };
57 
58 struct ConstraintTy {
59   SmallVector<int64_t, 8> Coefficients;
60 
61   ConstraintTy(SmallVector<int64_t, 8> Coefficients)
62       : Coefficients(Coefficients) {}
63 
64   unsigned size() const { return Coefficients.size(); }
65 };
66 
67 /// Struct to manage a list of constraints with pre-conditions that must be
68 /// satisfied before using the constraints.
69 struct ConstraintListTy {
70   SmallVector<ConstraintTy, 4> Constraints;
71   SmallVector<PreconditionTy, 4> Preconditions;
72 
73   ConstraintListTy() {}
74 
75   ConstraintListTy(ArrayRef<ConstraintTy> Constraints,
76                    ArrayRef<PreconditionTy> Preconditions)
77       : Constraints(Constraints.begin(), Constraints.end()),
78         Preconditions(Preconditions.begin(), Preconditions.end()) {}
79 
80   void mergeIn(const ConstraintListTy &Other) {
81     append_range(Constraints, Other.Constraints);
82     // TODO: Do smarter merges here, e.g. exclude duplicates.
83     append_range(Preconditions, Other.Preconditions);
84   }
85 
86   unsigned size() const { return Constraints.size(); }
87 
88   unsigned empty() const { return Constraints.empty(); }
89 
90   /// Returns true if any constraint has a non-zero coefficient for any of the
91   /// newly added indices. Zero coefficients for new indices are removed. If it
92   /// returns true, no new variable need to be added to the system.
93   bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) {
94     assert(size() == 1);
95     for (unsigned I = 0; I < NewIndices.size(); ++I) {
96       int64_t Last = get(0).Coefficients.pop_back_val();
97       if (Last != 0)
98         return true;
99     }
100     return false;
101   }
102 
103   ConstraintTy &get(unsigned I) { return Constraints[I]; }
104 
105   /// Returns true if all preconditions for this list of constraints are
106   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
107   bool isValid(const ConstraintSystem &CS,
108                DenseMap<Value *, unsigned> &Value2Index) const;
109   /// Returns true if there is exactly one constraint in the list and isValid is
110   /// also true.
111   bool isValidSingle(const ConstraintSystem &CS,
112                      DenseMap<Value *, unsigned> &Value2Index) const {
113     return size() == 1 && isValid(CS, Value2Index);
114   }
115 };
116 
117 } // namespace
118 
119 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
120 // sum of the pairs equals \p V.  The first pair is the constant-factor and X
121 // must be nullptr. If the expression cannot be decomposed, returns an empty
122 // vector.
123 static SmallVector<std::pair<int64_t, Value *>, 4>
124 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions) {
125   if (auto *CI = dyn_cast<ConstantInt>(V)) {
126     if (CI->isNegative() || CI->uge(MaxConstraintValue))
127       return {};
128     return {{CI->getSExtValue(), nullptr}};
129   }
130   auto *GEP = dyn_cast<GetElementPtrInst>(V);
131   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
132     Value *Op0, *Op1;
133     ConstantInt *CI;
134 
135     // If the index is zero-extended, it is guaranteed to be positive.
136     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
137               m_ZExt(m_Value(Op0)))) {
138       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))))
139         return {{0, nullptr},
140                 {1, GEP->getPointerOperand()},
141                 {std::pow(int64_t(2), CI->getSExtValue()), Op1}};
142       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))))
143         return {{CI->getSExtValue(), nullptr},
144                 {1, GEP->getPointerOperand()},
145                 {1, Op1}};
146       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
147     }
148 
149     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
150         !CI->isNegative())
151       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
152 
153     SmallVector<std::pair<int64_t, Value *>, 4> Result;
154     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
155               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))))
156       Result = {{0, nullptr},
157                 {1, GEP->getPointerOperand()},
158                 {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
159     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
160                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))))
161       Result = {{CI->getSExtValue(), nullptr},
162                 {1, GEP->getPointerOperand()},
163                 {1, Op0}};
164     else {
165       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
166       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
167     }
168     // If Op0 is signed non-negative, the GEP is increasing monotonically and
169     // can be de-composed.
170     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
171                                ConstantInt::get(Op0->getType(), 0));
172     return Result;
173   }
174 
175   Value *Op0;
176   if (match(V, m_ZExt(m_Value(Op0))))
177     V = Op0;
178 
179   Value *Op1;
180   ConstantInt *CI;
181   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))))
182     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
183   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
184     return {{0, nullptr}, {1, Op0}, {1, Op1}};
185 
186   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))))
187     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
188   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
189     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
190 
191   return {{0, nullptr}, {1, V}};
192 }
193 
194 /// Turn a condition \p CmpI into a vector of constraints, using indices from \p
195 /// Value2Index. Additional indices for newly discovered values are added to \p
196 /// NewIndices.
197 static ConstraintListTy
198 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
199               const DenseMap<Value *, unsigned> &Value2Index,
200               DenseMap<Value *, unsigned> &NewIndices) {
201   int64_t Offset1 = 0;
202   int64_t Offset2 = 0;
203 
204   SmallVector<PreconditionTy, 4> Preconditions;
205   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
206   // new entry to NewIndices.
207   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
208     auto V2I = Value2Index.find(V);
209     if (V2I != Value2Index.end())
210       return V2I->second;
211     auto NewI = NewIndices.find(V);
212     if (NewI != NewIndices.end())
213       return NewI->second;
214     auto Insert =
215         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
216     return Insert.first->second;
217   };
218 
219   if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE)
220     return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0,
221                          Value2Index, NewIndices);
222 
223   if (Pred == CmpInst::ICMP_EQ) {
224     if (match(Op1, m_Zero()))
225       return getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index,
226                            NewIndices);
227 
228     auto A =
229         getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, NewIndices);
230     auto B =
231         getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices);
232     A.mergeIn(B);
233     return A;
234   }
235 
236   if (Pred == CmpInst::ICMP_NE && match(Op1, m_Zero())) {
237     return getConstraint(CmpInst::ICMP_UGT, Op0, Op1, Value2Index, NewIndices);
238   }
239 
240   // Only ULE and ULT predicates are supported at the moment.
241   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT)
242     return {};
243 
244   auto ADec =
245       decompose(Op0->stripPointerCastsSameRepresentation(), Preconditions);
246   auto BDec =
247       decompose(Op1->stripPointerCastsSameRepresentation(), Preconditions);
248   // Skip if decomposing either of the values failed.
249   if (ADec.empty() || BDec.empty())
250     return {};
251 
252   // Skip trivial constraints without any variables.
253   if (ADec.size() == 1 && BDec.size() == 1)
254     return {};
255 
256   Offset1 = ADec[0].first;
257   Offset2 = BDec[0].first;
258   Offset1 *= -1;
259 
260   // Create iterator ranges that skip the constant-factor.
261   auto VariablesA = llvm::drop_begin(ADec);
262   auto VariablesB = llvm::drop_begin(BDec);
263 
264   // Make sure all variables have entries in Value2Index or NewIndices.
265   for (const auto &KV :
266        concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
267     GetOrAddIndex(KV.second);
268 
269   // Build result constraint, by first adding all coefficients from A and then
270   // subtracting all coefficients from B.
271   SmallVector<int64_t, 8> R(Value2Index.size() + NewIndices.size() + 1, 0);
272   for (const auto &KV : VariablesA)
273     R[GetOrAddIndex(KV.second)] += KV.first;
274 
275   for (const auto &KV : VariablesB)
276     R[GetOrAddIndex(KV.second)] -= KV.first;
277 
278   R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0);
279   return {{R}, Preconditions};
280 }
281 
282 static ConstraintListTy getConstraint(CmpInst *Cmp,
283                                       DenseMap<Value *, unsigned> &Value2Index,
284                                       DenseMap<Value *, unsigned> &NewIndices) {
285   return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
286                        Cmp->getOperand(1), Value2Index, NewIndices);
287 }
288 
289 bool ConstraintListTy::isValid(const ConstraintSystem &CS,
290                                DenseMap<Value *, unsigned> &Value2Index) const {
291   return all_of(Preconditions, [&CS, &Value2Index](const PreconditionTy &C) {
292     DenseMap<Value *, unsigned> NewIndices;
293     auto R = getConstraint(C.Pred, C.Op0, C.Op1, Value2Index, NewIndices);
294     // TODO: properly check NewIndices.
295     return NewIndices.empty() && R.Preconditions.empty() && R.size() == 1 &&
296            CS.isConditionImplied(R.get(0).Coefficients);
297   });
298 }
299 
300 namespace {
301 /// Represents either a condition that holds on entry to a block or a basic
302 /// block, with their respective Dominator DFS in and out numbers.
303 struct ConstraintOrBlock {
304   unsigned NumIn;
305   unsigned NumOut;
306   bool IsBlock;
307   bool Not;
308   union {
309     BasicBlock *BB;
310     CmpInst *Condition;
311   };
312 
313   ConstraintOrBlock(DomTreeNode *DTN)
314       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
315         BB(DTN->getBlock()) {}
316   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
317       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
318         Not(Not), Condition(Condition) {}
319 };
320 
321 struct StackEntry {
322   unsigned NumIn;
323   unsigned NumOut;
324   CmpInst *Condition;
325   bool IsNot;
326 
327   StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot)
328       : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {}
329 };
330 } // namespace
331 
332 #ifndef NDEBUG
333 static void dumpWithNames(ConstraintTy &C,
334                           DenseMap<Value *, unsigned> &Value2Index) {
335   SmallVector<std::string> Names(Value2Index.size(), "");
336   for (auto &KV : Value2Index) {
337     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
338   }
339   ConstraintSystem CS;
340   CS.addVariableRowFill(C.Coefficients);
341   CS.dump(Names);
342 }
343 #endif
344 
345 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
346   bool Changed = false;
347   DT.updateDFSNumbers();
348   ConstraintSystem CS;
349 
350   SmallVector<ConstraintOrBlock, 64> WorkList;
351 
352   // First, collect conditions implied by branches and blocks with their
353   // Dominator DFS in and out numbers.
354   for (BasicBlock &BB : F) {
355     if (!DT.getNode(&BB))
356       continue;
357     WorkList.emplace_back(DT.getNode(&BB));
358 
359     // True as long as long as the current instruction is guaranteed to execute.
360     bool GuaranteedToExecute = true;
361     // Scan BB for assume calls.
362     // TODO: also use this scan to queue conditions to simplify, so we can
363     // interleave facts from assumes and conditions to simplify in a single
364     // basic block. And to skip another traversal of each basic block when
365     // simplifying.
366     for (Instruction &I : BB) {
367       Value *Cond;
368       // For now, just handle assumes with a single compare as condition.
369       if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
370           isa<CmpInst>(Cond)) {
371         if (GuaranteedToExecute) {
372           // The assume is guaranteed to execute when BB is entered, hence Cond
373           // holds on entry to BB.
374           WorkList.emplace_back(DT.getNode(&BB), cast<CmpInst>(Cond), false);
375         } else {
376           // Otherwise the condition only holds in the successors.
377           for (BasicBlock *Succ : successors(&BB))
378             WorkList.emplace_back(DT.getNode(Succ), cast<CmpInst>(Cond), false);
379         }
380       }
381       GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
382     }
383 
384     auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
385     if (!Br || !Br->isConditional())
386       continue;
387 
388     // Returns true if we can add a known condition from BB to its successor
389     // block Succ. Each predecessor of Succ can either be BB or be dominated by
390     // Succ (e.g. the case when adding a condition from a pre-header to a loop
391     // header).
392     auto CanAdd = [&BB, &DT](BasicBlock *Succ) {
393       assert(isa<BranchInst>(BB.getTerminator()));
394       return any_of(successors(&BB),
395                     [Succ](const BasicBlock *S) { return S != Succ; }) &&
396              all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) {
397                return Pred == &BB || DT.dominates(Succ, Pred);
398              });
399     };
400     // If the condition is an OR of 2 compares and the false successor only has
401     // the current block as predecessor, queue both negated conditions for the
402     // false successor.
403     Value *Op0, *Op1;
404     if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
405         match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
406       BasicBlock *FalseSuccessor = Br->getSuccessor(1);
407       if (CanAdd(FalseSuccessor)) {
408         WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0),
409                               true);
410         WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1),
411                               true);
412       }
413       continue;
414     }
415 
416     // If the condition is an AND of 2 compares and the true successor only has
417     // the current block as predecessor, queue both conditions for the true
418     // successor.
419     if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
420         match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
421       BasicBlock *TrueSuccessor = Br->getSuccessor(0);
422       if (CanAdd(TrueSuccessor)) {
423         WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0),
424                               false);
425         WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1),
426                               false);
427       }
428       continue;
429     }
430 
431     auto *CmpI = dyn_cast<CmpInst>(Br->getCondition());
432     if (!CmpI)
433       continue;
434     if (CanAdd(Br->getSuccessor(0)))
435       WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
436     if (CanAdd(Br->getSuccessor(1)))
437       WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
438   }
439 
440   // Next, sort worklist by dominance, so that dominating blocks and conditions
441   // come before blocks and conditions dominated by them. If a block and a
442   // condition have the same numbers, the condition comes before the block, as
443   // it holds on entry to the block.
444   sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
445     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
446   });
447 
448   // Finally, process ordered worklist and eliminate implied conditions.
449   SmallVector<StackEntry, 16> DFSInStack;
450   DenseMap<Value *, unsigned> Value2Index;
451   for (ConstraintOrBlock &CB : WorkList) {
452     // First, pop entries from the stack that are out-of-scope for CB. Remove
453     // the corresponding entry from the constraint system.
454     while (!DFSInStack.empty()) {
455       auto &E = DFSInStack.back();
456       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
457                         << "\n");
458       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
459       assert(E.NumIn <= CB.NumIn);
460       if (CB.NumOut <= E.NumOut)
461         break;
462       LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
463                         << "\n");
464       DFSInStack.pop_back();
465       CS.popLastConstraint();
466     }
467 
468     LLVM_DEBUG({
469       dbgs() << "Processing ";
470       if (CB.IsBlock)
471         dbgs() << *CB.BB;
472       else
473         dbgs() << *CB.Condition;
474       dbgs() << "\n";
475     });
476 
477     // For a block, check if any CmpInsts become known based on the current set
478     // of constraints.
479     if (CB.IsBlock) {
480       for (Instruction &I : *CB.BB) {
481         auto *Cmp = dyn_cast<CmpInst>(&I);
482         if (!Cmp)
483           continue;
484 
485         DenseMap<Value *, unsigned> NewIndices;
486         auto R = getConstraint(Cmp, Value2Index, NewIndices);
487 
488         if (!R.isValidSingle(CS, Value2Index) || R.needsNewIndices(NewIndices))
489           continue;
490 
491         if (CS.isConditionImplied(R.get(0).Coefficients)) {
492           if (!DebugCounter::shouldExecute(EliminatedCounter))
493             continue;
494 
495           LLVM_DEBUG(dbgs() << "Condition " << *Cmp
496                             << " implied by dominating constraints\n");
497           LLVM_DEBUG({
498             for (auto &E : reverse(DFSInStack))
499               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
500           });
501           Cmp->replaceUsesWithIf(
502               ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
503                 // Conditions in an assume trivially simplify to true. Skip uses
504                 // in assume calls to not destroy the available information.
505                 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
506                 return !II || II->getIntrinsicID() != Intrinsic::assume;
507               });
508           NumCondsRemoved++;
509           Changed = true;
510         }
511         if (CS.isConditionImplied(
512                 ConstraintSystem::negate(R.get(0).Coefficients))) {
513           if (!DebugCounter::shouldExecute(EliminatedCounter))
514             continue;
515 
516           LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
517                             << " implied by dominating constraints\n");
518           LLVM_DEBUG({
519             for (auto &E : reverse(DFSInStack))
520               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
521           });
522           Cmp->replaceAllUsesWith(
523               ConstantInt::getFalse(F.getParent()->getContext()));
524           NumCondsRemoved++;
525           Changed = true;
526         }
527       }
528       continue;
529     }
530 
531     // Set up a function to restore the predicate at the end of the scope if it
532     // has been negated. Negate the predicate in-place, if required.
533     auto *CI = dyn_cast<CmpInst>(CB.Condition);
534     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
535       if (CB.Not && CI)
536         CI->setPredicate(CI->getInversePredicate());
537     });
538     if (CB.Not) {
539       if (CI) {
540         CI->setPredicate(CI->getInversePredicate());
541       } else {
542         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
543         continue;
544       }
545     }
546 
547     // Otherwise, add the condition to the system and stack, if we can transform
548     // it into a constraint.
549     DenseMap<Value *, unsigned> NewIndices;
550     auto R = getConstraint(CB.Condition, Value2Index, NewIndices);
551     if (!R.isValid(CS, Value2Index))
552       continue;
553 
554     for (auto &KV : NewIndices)
555       Value2Index.insert(KV);
556 
557     LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n");
558     bool Added = false;
559     for (auto &C : R.Constraints) {
560       auto Coeffs = C.Coefficients;
561       LLVM_DEBUG({
562         dbgs() << "  constraint: ";
563         dumpWithNames(C, Value2Index);
564       });
565       Added |= CS.addVariableRowFill(Coeffs);
566       // If R has been added to the system, queue it for removal once it goes
567       // out-of-scope.
568       if (Added)
569         DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not);
570     }
571   }
572 
573   assert(CS.size() == DFSInStack.size() &&
574          "updates to CS and DFSInStack are out of sync");
575   return Changed;
576 }
577 
578 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
579                                                  FunctionAnalysisManager &AM) {
580   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
581   if (!eliminateConstraints(F, DT))
582     return PreservedAnalyses::all();
583 
584   PreservedAnalyses PA;
585   PA.preserve<DominatorTreeAnalysis>();
586   PA.preserveSet<CFGAnalyses>();
587   return PA;
588 }
589 
590 namespace {
591 
592 class ConstraintElimination : public FunctionPass {
593 public:
594   static char ID;
595 
596   ConstraintElimination() : FunctionPass(ID) {
597     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
598   }
599 
600   bool runOnFunction(Function &F) override {
601     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
602     return eliminateConstraints(F, DT);
603   }
604 
605   void getAnalysisUsage(AnalysisUsage &AU) const override {
606     AU.setPreservesCFG();
607     AU.addRequired<DominatorTreeWrapperPass>();
608     AU.addPreserved<GlobalsAAWrapperPass>();
609     AU.addPreserved<DominatorTreeWrapperPass>();
610   }
611 };
612 
613 } // end anonymous namespace
614 
615 char ConstraintElimination::ID = 0;
616 
617 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
618                       "Constraint Elimination", false, false)
619 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
620 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
621 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
622                     "Constraint Elimination", false, false)
623 
624 FunctionPass *llvm::createConstraintEliminationPass() {
625   return new ConstraintElimination();
626 }
627