1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DebugCounter.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Scalar.h" 33 34 #include <cmath> 35 #include <string> 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 #define DEBUG_TYPE "constraint-elimination" 41 42 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 43 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 44 "Controls which conditions are eliminated"); 45 46 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 47 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 48 49 namespace { 50 51 class ConstraintInfo; 52 53 struct StackEntry { 54 unsigned NumIn; 55 unsigned NumOut; 56 bool IsNot; 57 bool IsSigned = false; 58 /// Variables that can be removed from the system once the stack entry gets 59 /// removed. 60 SmallVector<Value *, 2> ValuesToRelease; 61 62 StackEntry(unsigned NumIn, unsigned NumOut, bool IsNot, bool IsSigned, 63 SmallVector<Value *, 2> ValuesToRelease) 64 : NumIn(NumIn), NumOut(NumOut), IsNot(IsNot), IsSigned(IsSigned), 65 ValuesToRelease(ValuesToRelease) {} 66 }; 67 68 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 69 struct PreconditionTy { 70 CmpInst::Predicate Pred; 71 Value *Op0; 72 Value *Op1; 73 74 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 75 : Pred(Pred), Op0(Op0), Op1(Op1) {} 76 }; 77 78 struct ConstraintTy { 79 SmallVector<int64_t, 8> Coefficients; 80 SmallVector<PreconditionTy, 2> Preconditions; 81 82 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 83 84 bool IsSigned = false; 85 bool IsEq = false; 86 87 ConstraintTy() = default; 88 89 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 90 : Coefficients(Coefficients), IsSigned(IsSigned) {} 91 92 unsigned size() const { return Coefficients.size(); } 93 94 unsigned empty() const { return Coefficients.empty(); } 95 96 /// Returns true if all preconditions for this list of constraints are 97 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 98 bool isValid(const ConstraintInfo &Info) const; 99 }; 100 101 /// Wrapper encapsulating separate constraint systems and corresponding value 102 /// mappings for both unsigned and signed information. Facts are added to and 103 /// conditions are checked against the corresponding system depending on the 104 /// signed-ness of their predicates. While the information is kept separate 105 /// based on signed-ness, certain conditions can be transferred between the two 106 /// systems. 107 class ConstraintInfo { 108 DenseMap<Value *, unsigned> UnsignedValue2Index; 109 DenseMap<Value *, unsigned> SignedValue2Index; 110 111 ConstraintSystem UnsignedCS; 112 ConstraintSystem SignedCS; 113 114 public: 115 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 116 return Signed ? SignedValue2Index : UnsignedValue2Index; 117 } 118 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 119 return Signed ? SignedValue2Index : UnsignedValue2Index; 120 } 121 122 ConstraintSystem &getCS(bool Signed) { 123 return Signed ? SignedCS : UnsignedCS; 124 } 125 const ConstraintSystem &getCS(bool Signed) const { 126 return Signed ? SignedCS : UnsignedCS; 127 } 128 129 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 130 void popLastNVariables(bool Signed, unsigned N) { 131 getCS(Signed).popLastNVariables(N); 132 } 133 134 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 135 136 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, 137 unsigned NumIn, unsigned NumOut, 138 SmallVectorImpl<StackEntry> &DFSInStack); 139 140 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 141 /// constraints, using indices from the corresponding constraint system. 142 /// Additional indices for newly discovered values are added to \p NewIndices. 143 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 144 DenseMap<Value *, unsigned> &NewIndices) const; 145 146 /// Turn a condition \p CmpI into a vector of constraints, using indices from 147 /// the corresponding constraint system. Additional indices for newly 148 /// discovered values are added to \p NewIndices. 149 ConstraintTy getConstraint(CmpInst *Cmp, 150 DenseMap<Value *, unsigned> &NewIndices) const { 151 return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0), 152 Cmp->getOperand(1), NewIndices); 153 } 154 155 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 156 /// system if \p Pred is signed/unsigned. 157 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 158 bool IsNegated, unsigned NumIn, unsigned NumOut, 159 SmallVectorImpl<StackEntry> &DFSInStack); 160 }; 161 162 /// Represents a (Coefficient * Variable) entry after IR decomposition. 163 struct DecompEntry { 164 int64_t Coefficient; 165 Value *Variable; 166 /// True if the variable is known positive in the current constraint. 167 bool IsKnownPositive; 168 169 DecompEntry(int64_t Coefficient, Value *Variable, 170 bool IsKnownPositive = false) 171 : Coefficient(Coefficient), Variable(Variable), 172 IsKnownPositive(IsKnownPositive) {} 173 }; 174 175 } // namespace 176 177 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable 178 // } where Coefficient * Variable. The sum of the pairs equals \p V. The first 179 // pair is the constant-factor and X must be nullptr. If the expression cannot 180 // be decomposed, returns an empty vector. 181 static SmallVector<DecompEntry, 4> 182 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 183 bool IsSigned) { 184 185 auto CanUseSExt = [](ConstantInt *CI) { 186 const APInt &Val = CI->getValue(); 187 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 188 }; 189 // Decompose \p V used with a signed predicate. 190 if (IsSigned) { 191 if (auto *CI = dyn_cast<ConstantInt>(V)) { 192 if (CanUseSExt(CI)) 193 return {{CI->getSExtValue(), nullptr}}; 194 } 195 196 return {{0, nullptr}, {1, V}}; 197 } 198 199 if (auto *CI = dyn_cast<ConstantInt>(V)) { 200 if (CI->uge(MaxConstraintValue)) 201 return {}; 202 return {{int64_t(CI->getZExtValue()), nullptr}}; 203 } 204 auto *GEP = dyn_cast<GetElementPtrInst>(V); 205 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 206 Value *Op0, *Op1; 207 ConstantInt *CI; 208 209 // If the index is zero-extended, it is guaranteed to be positive. 210 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 211 m_ZExt(m_Value(Op0)))) { 212 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && 213 CanUseSExt(CI)) 214 return {{0, nullptr}, 215 {1, GEP->getPointerOperand()}, 216 {int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op1}}; 217 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) && 218 CanUseSExt(CI)) 219 return {{CI->getSExtValue(), nullptr}, 220 {1, GEP->getPointerOperand()}, 221 {1, Op1}}; 222 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0, true}}; 223 } 224 225 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 226 !CI->isNegative() && CanUseSExt(CI)) 227 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 228 229 SmallVector<DecompEntry, 4> Result; 230 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 231 m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) && 232 CanUseSExt(CI)) 233 Result = {{0, nullptr}, 234 {1, GEP->getPointerOperand()}, 235 {int(std::pow(int64_t(2), CI->getSExtValue())), Op0}}; 236 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 237 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) && 238 CanUseSExt(CI)) 239 Result = {{CI->getSExtValue(), nullptr}, 240 {1, GEP->getPointerOperand()}, 241 {1, Op0}}; 242 else { 243 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 244 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 245 } 246 // If Op0 is signed non-negative, the GEP is increasing monotonically and 247 // can be de-composed. 248 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 249 ConstantInt::get(Op0->getType(), 0)); 250 return Result; 251 } 252 253 Value *Op0; 254 bool IsKnownPositive = false; 255 if (match(V, m_ZExt(m_Value(Op0)))) { 256 IsKnownPositive = true; 257 V = Op0; 258 } 259 260 auto MergeResults = [&Preconditions, IsSigned]( 261 Value *A, Value *B, 262 bool IsSignedB) -> SmallVector<DecompEntry, 4> { 263 auto ResA = decompose(A, Preconditions, IsSigned); 264 auto ResB = decompose(B, Preconditions, IsSignedB); 265 if (ResA.empty() || ResB.empty()) 266 return {}; 267 ResA[0].Coefficient += ResB[0].Coefficient; 268 append_range(ResA, drop_begin(ResB)); 269 return ResA; 270 }; 271 Value *Op1; 272 ConstantInt *CI; 273 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 274 return MergeResults(Op0, Op1, IsSigned); 275 } 276 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 277 CanUseSExt(CI)) { 278 Preconditions.emplace_back( 279 CmpInst::ICMP_UGE, Op0, 280 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 281 return MergeResults(Op0, CI, true); 282 } 283 284 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI)) 285 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 286 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 287 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 288 289 return {{0, nullptr}, {1, V, IsKnownPositive}}; 290 } 291 292 ConstraintTy 293 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 294 DenseMap<Value *, unsigned> &NewIndices) const { 295 bool IsEq = false; 296 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 297 switch (Pred) { 298 case CmpInst::ICMP_UGT: 299 case CmpInst::ICMP_UGE: 300 case CmpInst::ICMP_SGT: 301 case CmpInst::ICMP_SGE: { 302 Pred = CmpInst::getSwappedPredicate(Pred); 303 std::swap(Op0, Op1); 304 break; 305 } 306 case CmpInst::ICMP_EQ: 307 if (match(Op1, m_Zero())) { 308 Pred = CmpInst::ICMP_ULE; 309 } else { 310 IsEq = true; 311 Pred = CmpInst::ICMP_ULE; 312 } 313 break; 314 case CmpInst::ICMP_NE: 315 if (!match(Op1, m_Zero())) 316 return {}; 317 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 318 std::swap(Op0, Op1); 319 break; 320 default: 321 break; 322 } 323 324 // Only ULE and ULT predicates are supported at the moment. 325 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 326 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 327 return {}; 328 329 SmallVector<PreconditionTy, 4> Preconditions; 330 bool IsSigned = CmpInst::isSigned(Pred); 331 auto &Value2Index = getValue2Index(IsSigned); 332 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 333 Preconditions, IsSigned); 334 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 335 Preconditions, IsSigned); 336 // Skip if decomposing either of the values failed. 337 if (ADec.empty() || BDec.empty()) 338 return {}; 339 340 int64_t Offset1 = ADec[0].Coefficient; 341 int64_t Offset2 = BDec[0].Coefficient; 342 Offset1 *= -1; 343 344 // Create iterator ranges that skip the constant-factor. 345 auto VariablesA = llvm::drop_begin(ADec); 346 auto VariablesB = llvm::drop_begin(BDec); 347 348 // First try to look up \p V in Value2Index and NewIndices. Otherwise add a 349 // new entry to NewIndices. 350 auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned { 351 auto V2I = Value2Index.find(V); 352 if (V2I != Value2Index.end()) 353 return V2I->second; 354 auto Insert = 355 NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1}); 356 return Insert.first->second; 357 }; 358 359 // Make sure all variables have entries in Value2Index or NewIndices. 360 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 361 GetOrAddIndex(KV.Variable); 362 363 // Build result constraint, by first adding all coefficients from A and then 364 // subtracting all coefficients from B. 365 ConstraintTy Res( 366 SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0), 367 IsSigned); 368 // Collect variables that are known to be positive in all uses in the 369 // constraint. 370 DenseMap<Value *, bool> KnownPositiveVariables; 371 Res.IsEq = IsEq; 372 auto &R = Res.Coefficients; 373 for (const auto &KV : VariablesA) { 374 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 375 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 376 I.first->second &= KV.IsKnownPositive; 377 } 378 379 for (const auto &KV : VariablesB) { 380 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 381 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 382 I.first->second &= KV.IsKnownPositive; 383 } 384 385 int64_t OffsetSum; 386 if (AddOverflow(Offset1, Offset2, OffsetSum)) 387 return {}; 388 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 389 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 390 return {}; 391 R[0] = OffsetSum; 392 Res.Preconditions = std::move(Preconditions); 393 394 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for the 395 // new variables that need to be added to the system. Set NewIndexNeeded to 396 // true if any of the new variables has a non-zero coefficient. 397 bool NewIndexNeeded = false; 398 for (unsigned I = 0; I < NewIndices.size(); ++I) { 399 int64_t Last = R.back(); 400 if (Last != 0) { 401 NewIndexNeeded = true; 402 break; 403 } 404 R.pop_back(); 405 } 406 // All new variables had Coefficients of 0, so no new variables are needed. 407 if (!NewIndexNeeded) 408 NewIndices.clear(); 409 410 // Add extra constraints for variables that are known positive. 411 for (auto &KV : KnownPositiveVariables) { 412 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 413 NewIndices.find(KV.first) == NewIndices.end())) 414 continue; 415 SmallVector<int64_t, 8> C(Value2Index.size() + NewIndices.size() + 1, 0); 416 C[GetOrAddIndex(KV.first)] = -1; 417 Res.ExtraInfo.push_back(C); 418 } 419 return Res; 420 } 421 422 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 423 return Coefficients.size() > 0 && 424 all_of(Preconditions, [&Info](const PreconditionTy &C) { 425 return Info.doesHold(C.Pred, C.Op0, C.Op1); 426 }); 427 } 428 429 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 430 Value *B) const { 431 DenseMap<Value *, unsigned> NewIndices; 432 auto R = getConstraint(Pred, A, B, NewIndices); 433 434 if (!NewIndices.empty()) 435 return false; 436 437 // TODO: properly check NewIndices. 438 return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq && 439 !R.empty() && 440 getCS(CmpInst::isSigned(Pred)).isConditionImplied(R.Coefficients); 441 } 442 443 void ConstraintInfo::transferToOtherSystem( 444 CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn, 445 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 446 // Check if we can combine facts from the signed and unsigned systems to 447 // derive additional facts. 448 if (!A->getType()->isIntegerTy()) 449 return; 450 // FIXME: This currently depends on the order we add facts. Ideally we 451 // would first add all known facts and only then try to add additional 452 // facts. 453 switch (Pred) { 454 default: 455 break; 456 case CmpInst::ICMP_ULT: 457 // If B is a signed positive constant, A >=s 0 and A <s B. 458 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 459 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), 460 IsNegated, NumIn, NumOut, DFSInStack); 461 addFact(CmpInst::ICMP_SLT, A, B, IsNegated, NumIn, NumOut, DFSInStack); 462 } 463 break; 464 case CmpInst::ICMP_SLT: 465 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 466 addFact(CmpInst::ICMP_ULT, A, B, IsNegated, NumIn, NumOut, DFSInStack); 467 break; 468 case CmpInst::ICMP_SGT: 469 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 470 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), 471 IsNegated, NumIn, NumOut, DFSInStack); 472 break; 473 case CmpInst::ICMP_SGE: 474 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 475 addFact(CmpInst::ICMP_UGE, A, B, IsNegated, NumIn, NumOut, DFSInStack); 476 } 477 break; 478 } 479 } 480 481 namespace { 482 /// Represents either a condition that holds on entry to a block or a basic 483 /// block, with their respective Dominator DFS in and out numbers. 484 struct ConstraintOrBlock { 485 unsigned NumIn; 486 unsigned NumOut; 487 bool IsBlock; 488 bool Not; 489 union { 490 BasicBlock *BB; 491 CmpInst *Condition; 492 }; 493 494 ConstraintOrBlock(DomTreeNode *DTN) 495 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 496 BB(DTN->getBlock()) {} 497 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 498 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 499 Not(Not), Condition(Condition) {} 500 }; 501 502 /// Keep state required to build worklist. 503 struct State { 504 DominatorTree &DT; 505 SmallVector<ConstraintOrBlock, 64> WorkList; 506 507 State(DominatorTree &DT) : DT(DT) {} 508 509 /// Process block \p BB and add known facts to work-list. 510 void addInfoFor(BasicBlock &BB); 511 512 /// Returns true if we can add a known condition from BB to its successor 513 /// block Succ. Each predecessor of Succ can either be BB or be dominated 514 /// by Succ (e.g. the case when adding a condition from a pre-header to a 515 /// loop header). 516 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 517 if (BB.getSingleSuccessor()) { 518 assert(BB.getSingleSuccessor() == Succ); 519 return DT.properlyDominates(&BB, Succ); 520 } 521 return any_of(successors(&BB), 522 [Succ](const BasicBlock *S) { return S != Succ; }) && 523 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 524 return Pred == &BB || DT.dominates(Succ, Pred); 525 }); 526 } 527 }; 528 529 } // namespace 530 531 #ifndef NDEBUG 532 static void dumpWithNames(const ConstraintSystem &CS, 533 DenseMap<Value *, unsigned> &Value2Index) { 534 SmallVector<std::string> Names(Value2Index.size(), ""); 535 for (auto &KV : Value2Index) { 536 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 537 } 538 CS.dump(Names); 539 } 540 541 static void dumpWithNames(ArrayRef<int64_t> C, 542 DenseMap<Value *, unsigned> &Value2Index) { 543 ConstraintSystem CS; 544 CS.addVariableRowFill(C); 545 dumpWithNames(CS, Value2Index); 546 } 547 #endif 548 549 void State::addInfoFor(BasicBlock &BB) { 550 WorkList.emplace_back(DT.getNode(&BB)); 551 552 // True as long as long as the current instruction is guaranteed to execute. 553 bool GuaranteedToExecute = true; 554 // Scan BB for assume calls. 555 // TODO: also use this scan to queue conditions to simplify, so we can 556 // interleave facts from assumes and conditions to simplify in a single 557 // basic block. And to skip another traversal of each basic block when 558 // simplifying. 559 for (Instruction &I : BB) { 560 Value *Cond; 561 // For now, just handle assumes with a single compare as condition. 562 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 563 isa<ICmpInst>(Cond)) { 564 if (GuaranteedToExecute) { 565 // The assume is guaranteed to execute when BB is entered, hence Cond 566 // holds on entry to BB. 567 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 568 } else { 569 // Otherwise the condition only holds in the successors. 570 for (BasicBlock *Succ : successors(&BB)) { 571 if (!canAddSuccessor(BB, Succ)) 572 continue; 573 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false); 574 } 575 } 576 } 577 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 578 } 579 580 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 581 if (!Br || !Br->isConditional()) 582 return; 583 584 // If the condition is an OR of 2 compares and the false successor only has 585 // the current block as predecessor, queue both negated conditions for the 586 // false successor. 587 Value *Op0, *Op1; 588 if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && 589 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 590 BasicBlock *FalseSuccessor = Br->getSuccessor(1); 591 if (canAddSuccessor(BB, FalseSuccessor)) { 592 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0), 593 true); 594 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1), 595 true); 596 } 597 return; 598 } 599 600 // If the condition is an AND of 2 compares and the true successor only has 601 // the current block as predecessor, queue both conditions for the true 602 // successor. 603 if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && 604 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 605 BasicBlock *TrueSuccessor = Br->getSuccessor(0); 606 if (canAddSuccessor(BB, TrueSuccessor)) { 607 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0), 608 false); 609 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1), 610 false); 611 } 612 return; 613 } 614 615 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 616 if (!CmpI) 617 return; 618 if (canAddSuccessor(BB, Br->getSuccessor(0))) 619 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 620 if (canAddSuccessor(BB, Br->getSuccessor(1))) 621 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 622 } 623 624 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 625 bool IsNegated, unsigned NumIn, unsigned NumOut, 626 SmallVectorImpl<StackEntry> &DFSInStack) { 627 // If the constraint has a pre-condition, skip the constraint if it does not 628 // hold. 629 DenseMap<Value *, unsigned> NewIndices; 630 auto R = getConstraint(Pred, A, B, NewIndices); 631 if (!R.isValid(*this)) 632 return; 633 634 //LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n"); 635 bool Added = false; 636 assert(CmpInst::isSigned(Pred) == R.IsSigned && 637 "condition and constraint signs must match"); 638 auto &CSToUse = getCS(R.IsSigned); 639 if (R.Coefficients.empty()) 640 return; 641 642 Added |= CSToUse.addVariableRowFill(R.Coefficients); 643 644 // If R has been added to the system, queue it for removal once it goes 645 // out-of-scope. 646 if (Added) { 647 SmallVector<Value *, 2> ValuesToRelease; 648 for (auto &KV : NewIndices) { 649 getValue2Index(R.IsSigned).insert(KV); 650 ValuesToRelease.push_back(KV.first); 651 } 652 653 LLVM_DEBUG({ 654 dbgs() << " constraint: "; 655 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 656 }); 657 658 DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned, 659 ValuesToRelease); 660 661 if (R.IsEq) { 662 // Also add the inverted constraint for equality constraints. 663 for (auto &Coeff : R.Coefficients) 664 Coeff *= -1; 665 CSToUse.addVariableRowFill(R.Coefficients); 666 667 DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned, 668 SmallVector<Value *, 2>()); 669 } 670 } 671 } 672 673 static void 674 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 675 SmallVectorImpl<Instruction *> &ToRemove) { 676 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 677 ConstraintInfo &Info) { 678 DenseMap<Value *, unsigned> NewIndices; 679 auto R = Info.getConstraint(Pred, A, B, NewIndices); 680 if (R.size() < 2 || !NewIndices.empty() || !R.isValid(Info)) 681 return false; 682 683 auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred)); 684 return CSToUse.isConditionImplied(R.Coefficients); 685 }; 686 687 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 688 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 689 // can be simplified to a regular sub. 690 Value *A = II->getArgOperand(0); 691 Value *B = II->getArgOperand(1); 692 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 693 !DoesConditionHold(CmpInst::ICMP_SGE, B, 694 ConstantInt::get(A->getType(), 0), Info)) 695 return; 696 697 IRBuilder<> Builder(II->getParent(), II->getIterator()); 698 Value *Sub = nullptr; 699 for (User *U : make_early_inc_range(II->users())) { 700 if (match(U, m_ExtractValue<0>(m_Value()))) { 701 if (!Sub) 702 Sub = Builder.CreateSub(A, B); 703 U->replaceAllUsesWith(Sub); 704 } else if (match(U, m_ExtractValue<1>(m_Value()))) 705 U->replaceAllUsesWith(Builder.getFalse()); 706 else 707 continue; 708 709 if (U->use_empty()) { 710 auto *I = cast<Instruction>(U); 711 ToRemove.push_back(I); 712 I->setOperand(0, PoisonValue::get(II->getType())); 713 } 714 } 715 716 if (II->use_empty()) 717 II->eraseFromParent(); 718 } 719 } 720 721 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 722 bool Changed = false; 723 DT.updateDFSNumbers(); 724 725 ConstraintInfo Info; 726 State S(DT); 727 728 // First, collect conditions implied by branches and blocks with their 729 // Dominator DFS in and out numbers. 730 for (BasicBlock &BB : F) { 731 if (!DT.getNode(&BB)) 732 continue; 733 S.addInfoFor(BB); 734 } 735 736 // Next, sort worklist by dominance, so that dominating blocks and conditions 737 // come before blocks and conditions dominated by them. If a block and a 738 // condition have the same numbers, the condition comes before the block, as 739 // it holds on entry to the block. 740 stable_sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 741 return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); 742 }); 743 744 SmallVector<Instruction *> ToRemove; 745 746 // Finally, process ordered worklist and eliminate implied conditions. 747 SmallVector<StackEntry, 16> DFSInStack; 748 for (ConstraintOrBlock &CB : S.WorkList) { 749 // First, pop entries from the stack that are out-of-scope for CB. Remove 750 // the corresponding entry from the constraint system. 751 while (!DFSInStack.empty()) { 752 auto &E = DFSInStack.back(); 753 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 754 << "\n"); 755 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 756 assert(E.NumIn <= CB.NumIn); 757 if (CB.NumOut <= E.NumOut) 758 break; 759 LLVM_DEBUG({ 760 dbgs() << "Removing "; 761 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 762 Info.getValue2Index(E.IsSigned)); 763 dbgs() << "\n"; 764 }); 765 766 Info.popLastConstraint(E.IsSigned); 767 // Remove variables in the system that went out of scope. 768 auto &Mapping = Info.getValue2Index(E.IsSigned); 769 for (Value *V : E.ValuesToRelease) 770 Mapping.erase(V); 771 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 772 DFSInStack.pop_back(); 773 } 774 775 LLVM_DEBUG({ 776 dbgs() << "Processing "; 777 if (CB.IsBlock) 778 dbgs() << *CB.BB; 779 else 780 dbgs() << *CB.Condition; 781 dbgs() << "\n"; 782 }); 783 784 // For a block, check if any CmpInsts become known based on the current set 785 // of constraints. 786 if (CB.IsBlock) { 787 for (Instruction &I : make_early_inc_range(*CB.BB)) { 788 if (auto *II = dyn_cast<WithOverflowInst>(&I)) { 789 tryToSimplifyOverflowMath(II, Info, ToRemove); 790 continue; 791 } 792 auto *Cmp = dyn_cast<ICmpInst>(&I); 793 if (!Cmp) 794 continue; 795 796 DenseMap<Value *, unsigned> NewIndices; 797 auto R = Info.getConstraint(Cmp, NewIndices); 798 if (R.IsEq || R.empty() || !NewIndices.empty() || !R.isValid(Info)) 799 continue; 800 801 auto &CSToUse = Info.getCS(R.IsSigned); 802 803 // If there was extra information collected during decomposition, apply 804 // it now and remove it immediately once we are done with reasoning 805 // about the constraint. 806 for (auto &Row : R.ExtraInfo) 807 CSToUse.addVariableRow(Row); 808 auto InfoRestorer = make_scope_exit([&]() { 809 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 810 CSToUse.popLastConstraint(); 811 }); 812 813 if (CSToUse.isConditionImplied(R.Coefficients)) { 814 if (!DebugCounter::shouldExecute(EliminatedCounter)) 815 continue; 816 817 LLVM_DEBUG({ 818 dbgs() << "Condition " << *Cmp 819 << " implied by dominating constraints\n"; 820 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 821 }); 822 Cmp->replaceUsesWithIf( 823 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 824 // Conditions in an assume trivially simplify to true. Skip uses 825 // in assume calls to not destroy the available information. 826 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 827 return !II || II->getIntrinsicID() != Intrinsic::assume; 828 }); 829 NumCondsRemoved++; 830 Changed = true; 831 } 832 if (CSToUse.isConditionImplied( 833 ConstraintSystem::negate(R.Coefficients))) { 834 if (!DebugCounter::shouldExecute(EliminatedCounter)) 835 continue; 836 837 LLVM_DEBUG({ 838 dbgs() << "Condition !" << *Cmp 839 << " implied by dominating constraints\n"; 840 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 841 }); 842 Cmp->replaceAllUsesWith( 843 ConstantInt::getFalse(F.getParent()->getContext())); 844 NumCondsRemoved++; 845 Changed = true; 846 } 847 } 848 continue; 849 } 850 851 // Set up a function to restore the predicate at the end of the scope if it 852 // has been negated. Negate the predicate in-place, if required. 853 auto *CI = dyn_cast<ICmpInst>(CB.Condition); 854 auto PredicateRestorer = make_scope_exit([CI, &CB]() { 855 if (CB.Not && CI) 856 CI->setPredicate(CI->getInversePredicate()); 857 }); 858 if (CB.Not) { 859 if (CI) { 860 CI->setPredicate(CI->getInversePredicate()); 861 } else { 862 LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n"); 863 continue; 864 } 865 } 866 867 ICmpInst::Predicate Pred; 868 Value *A, *B; 869 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 870 // Otherwise, add the condition to the system and stack, if we can 871 // transform it into a constraint. 872 Info.addFact(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, DFSInStack); 873 Info.transferToOtherSystem(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, 874 DFSInStack); 875 } 876 } 877 878 #ifndef NDEBUG 879 unsigned SignedEntries = 880 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 881 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 882 "updates to CS and DFSInStack are out of sync"); 883 assert(Info.getCS(true).size() == SignedEntries && 884 "updates to CS and DFSInStack are out of sync"); 885 #endif 886 887 for (Instruction *I : ToRemove) 888 I->eraseFromParent(); 889 return Changed; 890 } 891 892 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 893 FunctionAnalysisManager &AM) { 894 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 895 if (!eliminateConstraints(F, DT)) 896 return PreservedAnalyses::all(); 897 898 PreservedAnalyses PA; 899 PA.preserve<DominatorTreeAnalysis>(); 900 PA.preserveSet<CFGAnalyses>(); 901 return PA; 902 } 903 904 namespace { 905 906 class ConstraintElimination : public FunctionPass { 907 public: 908 static char ID; 909 910 ConstraintElimination() : FunctionPass(ID) { 911 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 912 } 913 914 bool runOnFunction(Function &F) override { 915 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 916 return eliminateConstraints(F, DT); 917 } 918 919 void getAnalysisUsage(AnalysisUsage &AU) const override { 920 AU.setPreservesCFG(); 921 AU.addRequired<DominatorTreeWrapperPass>(); 922 AU.addPreserved<GlobalsAAWrapperPass>(); 923 AU.addPreserved<DominatorTreeWrapperPass>(); 924 } 925 }; 926 927 } // end anonymous namespace 928 929 char ConstraintElimination::ID = 0; 930 931 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 932 "Constraint Elimination", false, false) 933 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 934 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 935 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 936 "Constraint Elimination", false, false) 937 938 FunctionPass *llvm::createConstraintEliminationPass() { 939 return new ConstraintElimination(); 940 } 941