xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 04c711c78d2d2c9239b7e0c65a7a3c07d3bd89ed)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/DebugCounter.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Scalar.h"
33 
34 #include <cmath>
35 #include <string>
36 
37 using namespace llvm;
38 using namespace PatternMatch;
39 
40 #define DEBUG_TYPE "constraint-elimination"
41 
42 STATISTIC(NumCondsRemoved, "Number of instructions removed");
43 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
44               "Controls which conditions are eliminated");
45 
46 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
47 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
48 
49 namespace {
50 
51 class ConstraintInfo;
52 
53 struct StackEntry {
54   unsigned NumIn;
55   unsigned NumOut;
56   bool IsNot;
57   bool IsSigned = false;
58   /// Variables that can be removed from the system once the stack entry gets
59   /// removed.
60   SmallVector<Value *, 2> ValuesToRelease;
61 
62   StackEntry(unsigned NumIn, unsigned NumOut, bool IsNot, bool IsSigned,
63              SmallVector<Value *, 2> ValuesToRelease)
64       : NumIn(NumIn), NumOut(NumOut), IsNot(IsNot), IsSigned(IsSigned),
65         ValuesToRelease(ValuesToRelease) {}
66 };
67 
68 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
69 struct PreconditionTy {
70   CmpInst::Predicate Pred;
71   Value *Op0;
72   Value *Op1;
73 
74   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
75       : Pred(Pred), Op0(Op0), Op1(Op1) {}
76 };
77 
78 struct ConstraintTy {
79   SmallVector<int64_t, 8> Coefficients;
80   SmallVector<PreconditionTy, 2> Preconditions;
81 
82   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
83 
84   bool IsSigned = false;
85   bool IsEq = false;
86 
87   ConstraintTy() = default;
88 
89   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
90       : Coefficients(Coefficients), IsSigned(IsSigned) {}
91 
92   unsigned size() const { return Coefficients.size(); }
93 
94   unsigned empty() const { return Coefficients.empty(); }
95 
96   /// Returns true if all preconditions for this list of constraints are
97   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
98   bool isValid(const ConstraintInfo &Info) const;
99 };
100 
101 /// Wrapper encapsulating separate constraint systems and corresponding value
102 /// mappings for both unsigned and signed information. Facts are added to and
103 /// conditions are checked against the corresponding system depending on the
104 /// signed-ness of their predicates. While the information is kept separate
105 /// based on signed-ness, certain conditions can be transferred between the two
106 /// systems.
107 class ConstraintInfo {
108   DenseMap<Value *, unsigned> UnsignedValue2Index;
109   DenseMap<Value *, unsigned> SignedValue2Index;
110 
111   ConstraintSystem UnsignedCS;
112   ConstraintSystem SignedCS;
113 
114 public:
115   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
116     return Signed ? SignedValue2Index : UnsignedValue2Index;
117   }
118   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
119     return Signed ? SignedValue2Index : UnsignedValue2Index;
120   }
121 
122   ConstraintSystem &getCS(bool Signed) {
123     return Signed ? SignedCS : UnsignedCS;
124   }
125   const ConstraintSystem &getCS(bool Signed) const {
126     return Signed ? SignedCS : UnsignedCS;
127   }
128 
129   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
130   void popLastNVariables(bool Signed, unsigned N) {
131     getCS(Signed).popLastNVariables(N);
132   }
133 
134   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
135 
136   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated,
137                unsigned NumIn, unsigned NumOut,
138                SmallVectorImpl<StackEntry> &DFSInStack);
139 
140   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
141   /// constraints, using indices from the corresponding constraint system.
142   /// Additional indices for newly discovered values are added to \p NewIndices.
143   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
144                              DenseMap<Value *, unsigned> &NewIndices) const;
145 
146   /// Turn a condition \p CmpI into a vector of constraints, using indices from
147   /// the corresponding constraint system. Additional indices for newly
148   /// discovered values are added to \p NewIndices.
149   ConstraintTy getConstraint(CmpInst *Cmp,
150                              DenseMap<Value *, unsigned> &NewIndices) const {
151     return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
152                          Cmp->getOperand(1), NewIndices);
153   }
154 
155   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
156   /// system if \p Pred is signed/unsigned.
157   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
158                              bool IsNegated, unsigned NumIn, unsigned NumOut,
159                              SmallVectorImpl<StackEntry> &DFSInStack);
160 };
161 
162 /// Represents a (Coefficient * Variable) entry after IR decomposition.
163 struct DecompEntry {
164   int64_t Coefficient;
165   Value *Variable;
166   /// True if the variable is known positive in the current constraint.
167   bool IsKnownPositive;
168 
169   DecompEntry(int64_t Coefficient, Value *Variable,
170               bool IsKnownPositive = false)
171       : Coefficient(Coefficient), Variable(Variable),
172         IsKnownPositive(IsKnownPositive) {}
173 };
174 
175 } // namespace
176 
177 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable
178 // } where Coefficient * Variable. The sum of the pairs equals \p V.  The first
179 // pair is the constant-factor and X must be nullptr. If the expression cannot
180 // be decomposed, returns an empty vector.
181 static SmallVector<DecompEntry, 4>
182 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
183           bool IsSigned) {
184 
185   auto CanUseSExt = [](ConstantInt *CI) {
186     const APInt &Val = CI->getValue();
187     return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
188   };
189   // Decompose \p V used with a signed predicate.
190   if (IsSigned) {
191     if (auto *CI = dyn_cast<ConstantInt>(V)) {
192       if (CanUseSExt(CI))
193         return {{CI->getSExtValue(), nullptr}};
194     }
195 
196     return {{0, nullptr}, {1, V}};
197   }
198 
199   if (auto *CI = dyn_cast<ConstantInt>(V)) {
200     if (CI->uge(MaxConstraintValue))
201       return {};
202     return {{int64_t(CI->getZExtValue()), nullptr}};
203   }
204   auto *GEP = dyn_cast<GetElementPtrInst>(V);
205   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
206     Value *Op0, *Op1;
207     ConstantInt *CI;
208 
209     // If the index is zero-extended, it is guaranteed to be positive.
210     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
211               m_ZExt(m_Value(Op0)))) {
212       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) &&
213           CanUseSExt(CI))
214         return {{0, nullptr},
215                 {1, GEP->getPointerOperand()},
216                 {int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op1}};
217       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) &&
218           CanUseSExt(CI))
219         return {{CI->getSExtValue(), nullptr},
220                 {1, GEP->getPointerOperand()},
221                 {1, Op1}};
222       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0, true}};
223     }
224 
225     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
226         !CI->isNegative() && CanUseSExt(CI))
227       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
228 
229     SmallVector<DecompEntry, 4> Result;
230     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
231               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) &&
232         CanUseSExt(CI))
233       Result = {{0, nullptr},
234                 {1, GEP->getPointerOperand()},
235                 {int(std::pow(int64_t(2), CI->getSExtValue())), Op0}};
236     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
237                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
238              CanUseSExt(CI))
239       Result = {{CI->getSExtValue(), nullptr},
240                 {1, GEP->getPointerOperand()},
241                 {1, Op0}};
242     else {
243       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
244       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
245     }
246     // If Op0 is signed non-negative, the GEP is increasing monotonically and
247     // can be de-composed.
248     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
249                                ConstantInt::get(Op0->getType(), 0));
250     return Result;
251   }
252 
253   Value *Op0;
254   bool IsKnownPositive = false;
255   if (match(V, m_ZExt(m_Value(Op0)))) {
256     IsKnownPositive = true;
257     V = Op0;
258   }
259 
260   auto MergeResults = [&Preconditions, IsSigned](
261                           Value *A, Value *B,
262                           bool IsSignedB) -> SmallVector<DecompEntry, 4> {
263     auto ResA = decompose(A, Preconditions, IsSigned);
264     auto ResB = decompose(B, Preconditions, IsSignedB);
265     if (ResA.empty() || ResB.empty())
266       return {};
267     ResA[0].Coefficient += ResB[0].Coefficient;
268     append_range(ResA, drop_begin(ResB));
269     return ResA;
270   };
271   Value *Op1;
272   ConstantInt *CI;
273   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
274     return MergeResults(Op0, Op1, IsSigned);
275   }
276   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
277       CanUseSExt(CI)) {
278     Preconditions.emplace_back(
279         CmpInst::ICMP_UGE, Op0,
280         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
281     return MergeResults(Op0, CI, true);
282   }
283 
284   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI))
285     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
286   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
287     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
288 
289   return {{0, nullptr}, {1, V, IsKnownPositive}};
290 }
291 
292 ConstraintTy
293 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
294                               DenseMap<Value *, unsigned> &NewIndices) const {
295   bool IsEq = false;
296   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
297   switch (Pred) {
298   case CmpInst::ICMP_UGT:
299   case CmpInst::ICMP_UGE:
300   case CmpInst::ICMP_SGT:
301   case CmpInst::ICMP_SGE: {
302     Pred = CmpInst::getSwappedPredicate(Pred);
303     std::swap(Op0, Op1);
304     break;
305   }
306   case CmpInst::ICMP_EQ:
307     if (match(Op1, m_Zero())) {
308       Pred = CmpInst::ICMP_ULE;
309     } else {
310       IsEq = true;
311       Pred = CmpInst::ICMP_ULE;
312     }
313     break;
314   case CmpInst::ICMP_NE:
315     if (!match(Op1, m_Zero()))
316       return {};
317     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
318     std::swap(Op0, Op1);
319     break;
320   default:
321     break;
322   }
323 
324   // Only ULE and ULT predicates are supported at the moment.
325   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
326       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
327     return {};
328 
329   SmallVector<PreconditionTy, 4> Preconditions;
330   bool IsSigned = CmpInst::isSigned(Pred);
331   auto &Value2Index = getValue2Index(IsSigned);
332   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
333                         Preconditions, IsSigned);
334   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
335                         Preconditions, IsSigned);
336   // Skip if decomposing either of the values failed.
337   if (ADec.empty() || BDec.empty())
338     return {};
339 
340   int64_t Offset1 = ADec[0].Coefficient;
341   int64_t Offset2 = BDec[0].Coefficient;
342   Offset1 *= -1;
343 
344   // Create iterator ranges that skip the constant-factor.
345   auto VariablesA = llvm::drop_begin(ADec);
346   auto VariablesB = llvm::drop_begin(BDec);
347 
348   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
349   // new entry to NewIndices.
350   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
351     auto V2I = Value2Index.find(V);
352     if (V2I != Value2Index.end())
353       return V2I->second;
354     auto Insert =
355         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
356     return Insert.first->second;
357   };
358 
359   // Make sure all variables have entries in Value2Index or NewIndices.
360   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
361     GetOrAddIndex(KV.Variable);
362 
363   // Build result constraint, by first adding all coefficients from A and then
364   // subtracting all coefficients from B.
365   ConstraintTy Res(
366       SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0),
367       IsSigned);
368   // Collect variables that are known to be positive in all uses in the
369   // constraint.
370   DenseMap<Value *, bool> KnownPositiveVariables;
371   Res.IsEq = IsEq;
372   auto &R = Res.Coefficients;
373   for (const auto &KV : VariablesA) {
374     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
375     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
376     I.first->second &= KV.IsKnownPositive;
377   }
378 
379   for (const auto &KV : VariablesB) {
380     R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient;
381     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
382     I.first->second &= KV.IsKnownPositive;
383   }
384 
385   int64_t OffsetSum;
386   if (AddOverflow(Offset1, Offset2, OffsetSum))
387     return {};
388   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
389     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
390       return {};
391   R[0] = OffsetSum;
392   Res.Preconditions = std::move(Preconditions);
393 
394   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for the
395   // new variables that need to be added to the system. Set NewIndexNeeded to
396   // true if any of the new variables has a non-zero coefficient.
397   bool NewIndexNeeded = false;
398   for (unsigned I = 0; I < NewIndices.size(); ++I) {
399     int64_t Last = R.back();
400     if (Last != 0) {
401       NewIndexNeeded = true;
402       break;
403     }
404     R.pop_back();
405   }
406   // All new variables had Coefficients of 0, so no new variables are needed.
407   if (!NewIndexNeeded)
408     NewIndices.clear();
409 
410   // Add extra constraints for variables that are known positive.
411   for (auto &KV : KnownPositiveVariables) {
412     if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() &&
413                        NewIndices.find(KV.first) == NewIndices.end()))
414       continue;
415     SmallVector<int64_t, 8> C(Value2Index.size() + NewIndices.size() + 1, 0);
416     C[GetOrAddIndex(KV.first)] = -1;
417     Res.ExtraInfo.push_back(C);
418   }
419   return Res;
420 }
421 
422 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
423   return Coefficients.size() > 0 &&
424          all_of(Preconditions, [&Info](const PreconditionTy &C) {
425            return Info.doesHold(C.Pred, C.Op0, C.Op1);
426          });
427 }
428 
429 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
430                               Value *B) const {
431   DenseMap<Value *, unsigned> NewIndices;
432   auto R = getConstraint(Pred, A, B, NewIndices);
433 
434   if (!NewIndices.empty())
435     return false;
436 
437   // TODO: properly check NewIndices.
438   return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq &&
439          !R.empty() &&
440          getCS(CmpInst::isSigned(Pred)).isConditionImplied(R.Coefficients);
441 }
442 
443 void ConstraintInfo::transferToOtherSystem(
444     CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn,
445     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
446   // Check if we can combine facts from the signed and unsigned systems to
447   // derive additional facts.
448   if (!A->getType()->isIntegerTy())
449     return;
450   // FIXME: This currently depends on the order we add facts. Ideally we
451   // would first add all known facts and only then try to add additional
452   // facts.
453   switch (Pred) {
454   default:
455     break;
456   case CmpInst::ICMP_ULT:
457     //  If B is a signed positive constant, A >=s 0 and A <s B.
458     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
459       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0),
460               IsNegated, NumIn, NumOut, DFSInStack);
461       addFact(CmpInst::ICMP_SLT, A, B, IsNegated, NumIn, NumOut, DFSInStack);
462     }
463     break;
464   case CmpInst::ICMP_SLT:
465     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
466       addFact(CmpInst::ICMP_ULT, A, B, IsNegated, NumIn, NumOut, DFSInStack);
467     break;
468   case CmpInst::ICMP_SGT:
469     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
470       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0),
471               IsNegated, NumIn, NumOut, DFSInStack);
472     break;
473   case CmpInst::ICMP_SGE:
474     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
475       addFact(CmpInst::ICMP_UGE, A, B, IsNegated, NumIn, NumOut, DFSInStack);
476     }
477     break;
478   }
479 }
480 
481 namespace {
482 /// Represents either a condition that holds on entry to a block or a basic
483 /// block, with their respective Dominator DFS in and out numbers.
484 struct ConstraintOrBlock {
485   unsigned NumIn;
486   unsigned NumOut;
487   bool IsBlock;
488   bool Not;
489   union {
490     BasicBlock *BB;
491     CmpInst *Condition;
492   };
493 
494   ConstraintOrBlock(DomTreeNode *DTN)
495       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
496         BB(DTN->getBlock()) {}
497   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
498       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
499         Not(Not), Condition(Condition) {}
500 };
501 
502 /// Keep state required to build worklist.
503 struct State {
504   DominatorTree &DT;
505   SmallVector<ConstraintOrBlock, 64> WorkList;
506 
507   State(DominatorTree &DT) : DT(DT) {}
508 
509   /// Process block \p BB and add known facts to work-list.
510   void addInfoFor(BasicBlock &BB);
511 
512   /// Returns true if we can add a known condition from BB to its successor
513   /// block Succ. Each predecessor of Succ can either be BB or be dominated
514   /// by Succ (e.g. the case when adding a condition from a pre-header to a
515   /// loop header).
516   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
517     if (BB.getSingleSuccessor()) {
518       assert(BB.getSingleSuccessor() == Succ);
519       return DT.properlyDominates(&BB, Succ);
520     }
521     return any_of(successors(&BB),
522                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
523            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
524              return Pred == &BB || DT.dominates(Succ, Pred);
525            });
526   }
527 };
528 
529 } // namespace
530 
531 #ifndef NDEBUG
532 static void dumpWithNames(const ConstraintSystem &CS,
533                           DenseMap<Value *, unsigned> &Value2Index) {
534   SmallVector<std::string> Names(Value2Index.size(), "");
535   for (auto &KV : Value2Index) {
536     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
537   }
538   CS.dump(Names);
539 }
540 
541 static void dumpWithNames(ArrayRef<int64_t> C,
542                           DenseMap<Value *, unsigned> &Value2Index) {
543   ConstraintSystem CS;
544   CS.addVariableRowFill(C);
545   dumpWithNames(CS, Value2Index);
546 }
547 #endif
548 
549 void State::addInfoFor(BasicBlock &BB) {
550   WorkList.emplace_back(DT.getNode(&BB));
551 
552   // True as long as long as the current instruction is guaranteed to execute.
553   bool GuaranteedToExecute = true;
554   // Scan BB for assume calls.
555   // TODO: also use this scan to queue conditions to simplify, so we can
556   // interleave facts from assumes and conditions to simplify in a single
557   // basic block. And to skip another traversal of each basic block when
558   // simplifying.
559   for (Instruction &I : BB) {
560     Value *Cond;
561     // For now, just handle assumes with a single compare as condition.
562     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
563         isa<ICmpInst>(Cond)) {
564       if (GuaranteedToExecute) {
565         // The assume is guaranteed to execute when BB is entered, hence Cond
566         // holds on entry to BB.
567         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
568       } else {
569         // Otherwise the condition only holds in the successors.
570         for (BasicBlock *Succ : successors(&BB)) {
571           if (!canAddSuccessor(BB, Succ))
572             continue;
573           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
574         }
575       }
576     }
577     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
578   }
579 
580   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
581   if (!Br || !Br->isConditional())
582     return;
583 
584   // If the condition is an OR of 2 compares and the false successor only has
585   // the current block as predecessor, queue both negated conditions for the
586   // false successor.
587   Value *Op0, *Op1;
588   if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
589       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
590     BasicBlock *FalseSuccessor = Br->getSuccessor(1);
591     if (canAddSuccessor(BB, FalseSuccessor)) {
592       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0),
593                             true);
594       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1),
595                             true);
596     }
597     return;
598   }
599 
600   // If the condition is an AND of 2 compares and the true successor only has
601   // the current block as predecessor, queue both conditions for the true
602   // successor.
603   if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
604       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
605     BasicBlock *TrueSuccessor = Br->getSuccessor(0);
606     if (canAddSuccessor(BB, TrueSuccessor)) {
607       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0),
608                             false);
609       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1),
610                             false);
611     }
612     return;
613   }
614 
615   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
616   if (!CmpI)
617     return;
618   if (canAddSuccessor(BB, Br->getSuccessor(0)))
619     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
620   if (canAddSuccessor(BB, Br->getSuccessor(1)))
621     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
622 }
623 
624 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
625                              bool IsNegated, unsigned NumIn, unsigned NumOut,
626                              SmallVectorImpl<StackEntry> &DFSInStack) {
627   // If the constraint has a pre-condition, skip the constraint if it does not
628   // hold.
629   DenseMap<Value *, unsigned> NewIndices;
630   auto R = getConstraint(Pred, A, B, NewIndices);
631   if (!R.isValid(*this))
632     return;
633 
634   //LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n");
635   bool Added = false;
636   assert(CmpInst::isSigned(Pred) == R.IsSigned &&
637          "condition and constraint signs must match");
638   auto &CSToUse = getCS(R.IsSigned);
639   if (R.Coefficients.empty())
640     return;
641 
642   Added |= CSToUse.addVariableRowFill(R.Coefficients);
643 
644   // If R has been added to the system, queue it for removal once it goes
645   // out-of-scope.
646   if (Added) {
647     SmallVector<Value *, 2> ValuesToRelease;
648     for (auto &KV : NewIndices) {
649       getValue2Index(R.IsSigned).insert(KV);
650       ValuesToRelease.push_back(KV.first);
651     }
652 
653     LLVM_DEBUG({
654       dbgs() << "  constraint: ";
655       dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
656     });
657 
658     DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned,
659                             ValuesToRelease);
660 
661     if (R.IsEq) {
662       // Also add the inverted constraint for equality constraints.
663       for (auto &Coeff : R.Coefficients)
664         Coeff *= -1;
665       CSToUse.addVariableRowFill(R.Coefficients);
666 
667       DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned,
668                               SmallVector<Value *, 2>());
669     }
670   }
671 }
672 
673 static void
674 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
675                           SmallVectorImpl<Instruction *> &ToRemove) {
676   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
677                               ConstraintInfo &Info) {
678     DenseMap<Value *, unsigned> NewIndices;
679     auto R = Info.getConstraint(Pred, A, B, NewIndices);
680     if (R.size() < 2 || !NewIndices.empty() || !R.isValid(Info))
681       return false;
682 
683     auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred));
684     return CSToUse.isConditionImplied(R.Coefficients);
685   };
686 
687   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
688     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
689     // can be simplified to a regular sub.
690     Value *A = II->getArgOperand(0);
691     Value *B = II->getArgOperand(1);
692     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
693         !DoesConditionHold(CmpInst::ICMP_SGE, B,
694                            ConstantInt::get(A->getType(), 0), Info))
695       return;
696 
697     IRBuilder<> Builder(II->getParent(), II->getIterator());
698     Value *Sub = nullptr;
699     for (User *U : make_early_inc_range(II->users())) {
700       if (match(U, m_ExtractValue<0>(m_Value()))) {
701         if (!Sub)
702           Sub = Builder.CreateSub(A, B);
703         U->replaceAllUsesWith(Sub);
704       } else if (match(U, m_ExtractValue<1>(m_Value())))
705         U->replaceAllUsesWith(Builder.getFalse());
706       else
707         continue;
708 
709       if (U->use_empty()) {
710         auto *I = cast<Instruction>(U);
711         ToRemove.push_back(I);
712         I->setOperand(0, PoisonValue::get(II->getType()));
713       }
714     }
715 
716     if (II->use_empty())
717       II->eraseFromParent();
718   }
719 }
720 
721 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
722   bool Changed = false;
723   DT.updateDFSNumbers();
724 
725   ConstraintInfo Info;
726   State S(DT);
727 
728   // First, collect conditions implied by branches and blocks with their
729   // Dominator DFS in and out numbers.
730   for (BasicBlock &BB : F) {
731     if (!DT.getNode(&BB))
732       continue;
733     S.addInfoFor(BB);
734   }
735 
736   // Next, sort worklist by dominance, so that dominating blocks and conditions
737   // come before blocks and conditions dominated by them. If a block and a
738   // condition have the same numbers, the condition comes before the block, as
739   // it holds on entry to the block.
740   stable_sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
741     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
742   });
743 
744   SmallVector<Instruction *> ToRemove;
745 
746   // Finally, process ordered worklist and eliminate implied conditions.
747   SmallVector<StackEntry, 16> DFSInStack;
748   for (ConstraintOrBlock &CB : S.WorkList) {
749     // First, pop entries from the stack that are out-of-scope for CB. Remove
750     // the corresponding entry from the constraint system.
751     while (!DFSInStack.empty()) {
752       auto &E = DFSInStack.back();
753       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
754                         << "\n");
755       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
756       assert(E.NumIn <= CB.NumIn);
757       if (CB.NumOut <= E.NumOut)
758         break;
759       LLVM_DEBUG({
760         dbgs() << "Removing ";
761         dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
762                       Info.getValue2Index(E.IsSigned));
763         dbgs() << "\n";
764       });
765 
766       Info.popLastConstraint(E.IsSigned);
767       // Remove variables in the system that went out of scope.
768       auto &Mapping = Info.getValue2Index(E.IsSigned);
769       for (Value *V : E.ValuesToRelease)
770         Mapping.erase(V);
771       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
772       DFSInStack.pop_back();
773     }
774 
775     LLVM_DEBUG({
776       dbgs() << "Processing ";
777       if (CB.IsBlock)
778         dbgs() << *CB.BB;
779       else
780         dbgs() << *CB.Condition;
781       dbgs() << "\n";
782     });
783 
784     // For a block, check if any CmpInsts become known based on the current set
785     // of constraints.
786     if (CB.IsBlock) {
787       for (Instruction &I : make_early_inc_range(*CB.BB)) {
788         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
789           tryToSimplifyOverflowMath(II, Info, ToRemove);
790           continue;
791         }
792         auto *Cmp = dyn_cast<ICmpInst>(&I);
793         if (!Cmp)
794           continue;
795 
796         DenseMap<Value *, unsigned> NewIndices;
797         auto R = Info.getConstraint(Cmp, NewIndices);
798         if (R.IsEq || R.empty() || !NewIndices.empty() || !R.isValid(Info))
799           continue;
800 
801         auto &CSToUse = Info.getCS(R.IsSigned);
802 
803         // If there was extra information collected during decomposition, apply
804         // it now and remove it immediately once we are done with reasoning
805         // about the constraint.
806         for (auto &Row : R.ExtraInfo)
807           CSToUse.addVariableRow(Row);
808         auto InfoRestorer = make_scope_exit([&]() {
809           for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
810             CSToUse.popLastConstraint();
811         });
812 
813         if (CSToUse.isConditionImplied(R.Coefficients)) {
814           if (!DebugCounter::shouldExecute(EliminatedCounter))
815             continue;
816 
817           LLVM_DEBUG({
818             dbgs() << "Condition " << *Cmp
819                    << " implied by dominating constraints\n";
820             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
821           });
822           Cmp->replaceUsesWithIf(
823               ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
824                 // Conditions in an assume trivially simplify to true. Skip uses
825                 // in assume calls to not destroy the available information.
826                 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
827                 return !II || II->getIntrinsicID() != Intrinsic::assume;
828               });
829           NumCondsRemoved++;
830           Changed = true;
831         }
832         if (CSToUse.isConditionImplied(
833                 ConstraintSystem::negate(R.Coefficients))) {
834           if (!DebugCounter::shouldExecute(EliminatedCounter))
835             continue;
836 
837           LLVM_DEBUG({
838             dbgs() << "Condition !" << *Cmp
839                    << " implied by dominating constraints\n";
840             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
841           });
842           Cmp->replaceAllUsesWith(
843               ConstantInt::getFalse(F.getParent()->getContext()));
844           NumCondsRemoved++;
845           Changed = true;
846         }
847       }
848       continue;
849     }
850 
851     // Set up a function to restore the predicate at the end of the scope if it
852     // has been negated. Negate the predicate in-place, if required.
853     auto *CI = dyn_cast<ICmpInst>(CB.Condition);
854     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
855       if (CB.Not && CI)
856         CI->setPredicate(CI->getInversePredicate());
857     });
858     if (CB.Not) {
859       if (CI) {
860         CI->setPredicate(CI->getInversePredicate());
861       } else {
862         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
863         continue;
864       }
865     }
866 
867     ICmpInst::Predicate Pred;
868     Value *A, *B;
869     if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
870       // Otherwise, add the condition to the system and stack, if we can
871       // transform it into a constraint.
872       Info.addFact(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, DFSInStack);
873       Info.transferToOtherSystem(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut,
874                                  DFSInStack);
875     }
876   }
877 
878 #ifndef NDEBUG
879   unsigned SignedEntries =
880       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
881   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
882          "updates to CS and DFSInStack are out of sync");
883   assert(Info.getCS(true).size() == SignedEntries &&
884          "updates to CS and DFSInStack are out of sync");
885 #endif
886 
887   for (Instruction *I : ToRemove)
888     I->eraseFromParent();
889   return Changed;
890 }
891 
892 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
893                                                  FunctionAnalysisManager &AM) {
894   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
895   if (!eliminateConstraints(F, DT))
896     return PreservedAnalyses::all();
897 
898   PreservedAnalyses PA;
899   PA.preserve<DominatorTreeAnalysis>();
900   PA.preserveSet<CFGAnalyses>();
901   return PA;
902 }
903 
904 namespace {
905 
906 class ConstraintElimination : public FunctionPass {
907 public:
908   static char ID;
909 
910   ConstraintElimination() : FunctionPass(ID) {
911     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
912   }
913 
914   bool runOnFunction(Function &F) override {
915     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
916     return eliminateConstraints(F, DT);
917   }
918 
919   void getAnalysisUsage(AnalysisUsage &AU) const override {
920     AU.setPreservesCFG();
921     AU.addRequired<DominatorTreeWrapperPass>();
922     AU.addPreserved<GlobalsAAWrapperPass>();
923     AU.addPreserved<DominatorTreeWrapperPass>();
924   }
925 };
926 
927 } // end anonymous namespace
928 
929 char ConstraintElimination::ID = 0;
930 
931 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
932                       "Constraint Elimination", false, false)
933 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
934 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
935 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
936                     "Constraint Elimination", false, false)
937 
938 FunctionPass *llvm::createConstraintEliminationPass() {
939   return new ConstraintElimination();
940 }
941