1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/ValueMapper.h" 39 40 #include <cmath> 41 #include <string> 42 43 using namespace llvm; 44 using namespace PatternMatch; 45 46 #define DEBUG_TYPE "constraint-elimination" 47 48 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 49 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 50 "Controls which conditions are eliminated"); 51 52 static cl::opt<unsigned> 53 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 54 cl::desc("Maximum number of rows to keep in constraint system")); 55 56 static cl::opt<bool> DumpReproducers( 57 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 58 cl::desc("Dump IR to reproduce successful transformations.")); 59 60 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 61 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 62 63 // A helper to multiply 2 signed integers where overflowing is allowed. 64 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 65 int64_t Result; 66 MulOverflow(A, B, Result); 67 return Result; 68 } 69 70 // A helper to add 2 signed integers where overflowing is allowed. 71 static int64_t addWithOverflow(int64_t A, int64_t B) { 72 int64_t Result; 73 AddOverflow(A, B, Result); 74 return Result; 75 } 76 77 namespace { 78 79 class ConstraintInfo; 80 81 struct StackEntry { 82 unsigned NumIn; 83 unsigned NumOut; 84 bool IsSigned = false; 85 /// Variables that can be removed from the system once the stack entry gets 86 /// removed. 87 SmallVector<Value *, 2> ValuesToRelease; 88 89 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 90 SmallVector<Value *, 2> ValuesToRelease) 91 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 92 ValuesToRelease(ValuesToRelease) {} 93 }; 94 95 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 96 struct PreconditionTy { 97 CmpInst::Predicate Pred; 98 Value *Op0; 99 Value *Op1; 100 101 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 102 : Pred(Pred), Op0(Op0), Op1(Op1) {} 103 }; 104 105 struct ConstraintTy { 106 SmallVector<int64_t, 8> Coefficients; 107 SmallVector<PreconditionTy, 2> Preconditions; 108 109 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 110 111 bool IsSigned = false; 112 bool IsEq = false; 113 114 ConstraintTy() = default; 115 116 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 117 : Coefficients(Coefficients), IsSigned(IsSigned) {} 118 119 unsigned size() const { return Coefficients.size(); } 120 121 unsigned empty() const { return Coefficients.empty(); } 122 123 /// Returns true if all preconditions for this list of constraints are 124 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 125 bool isValid(const ConstraintInfo &Info) const; 126 }; 127 128 /// Wrapper encapsulating separate constraint systems and corresponding value 129 /// mappings for both unsigned and signed information. Facts are added to and 130 /// conditions are checked against the corresponding system depending on the 131 /// signed-ness of their predicates. While the information is kept separate 132 /// based on signed-ness, certain conditions can be transferred between the two 133 /// systems. 134 class ConstraintInfo { 135 136 ConstraintSystem UnsignedCS; 137 ConstraintSystem SignedCS; 138 139 const DataLayout &DL; 140 141 public: 142 ConstraintInfo(const DataLayout &DL) : DL(DL) {} 143 144 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 145 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 146 } 147 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 148 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 149 } 150 151 ConstraintSystem &getCS(bool Signed) { 152 return Signed ? SignedCS : UnsignedCS; 153 } 154 const ConstraintSystem &getCS(bool Signed) const { 155 return Signed ? SignedCS : UnsignedCS; 156 } 157 158 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 159 void popLastNVariables(bool Signed, unsigned N) { 160 getCS(Signed).popLastNVariables(N); 161 } 162 163 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 164 165 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 166 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 167 168 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 169 /// constraints, using indices from the corresponding constraint system. 170 /// New variables that need to be added to the system are collected in 171 /// \p NewVariables. 172 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 173 SmallVectorImpl<Value *> &NewVariables) const; 174 175 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 176 /// constraints using getConstraint. Returns an empty constraint if the result 177 /// cannot be used to query the existing constraint system, e.g. because it 178 /// would require adding new variables. Also tries to convert signed 179 /// predicates to unsigned ones if possible to allow using the unsigned system 180 /// which increases the effectiveness of the signed <-> unsigned transfer 181 /// logic. 182 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 183 Value *Op1) const; 184 185 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 186 /// system if \p Pred is signed/unsigned. 187 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 188 unsigned NumIn, unsigned NumOut, 189 SmallVectorImpl<StackEntry> &DFSInStack); 190 }; 191 192 /// Represents a (Coefficient * Variable) entry after IR decomposition. 193 struct DecompEntry { 194 int64_t Coefficient; 195 Value *Variable; 196 /// True if the variable is known positive in the current constraint. 197 bool IsKnownNonNegative; 198 199 DecompEntry(int64_t Coefficient, Value *Variable, 200 bool IsKnownNonNegative = false) 201 : Coefficient(Coefficient), Variable(Variable), 202 IsKnownNonNegative(IsKnownNonNegative) {} 203 }; 204 205 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 206 struct Decomposition { 207 int64_t Offset = 0; 208 SmallVector<DecompEntry, 3> Vars; 209 210 Decomposition(int64_t Offset) : Offset(Offset) {} 211 Decomposition(Value *V, bool IsKnownNonNegative = false) { 212 Vars.emplace_back(1, V, IsKnownNonNegative); 213 } 214 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 215 : Offset(Offset), Vars(Vars) {} 216 217 void add(int64_t OtherOffset) { 218 Offset = addWithOverflow(Offset, OtherOffset); 219 } 220 221 void add(const Decomposition &Other) { 222 add(Other.Offset); 223 append_range(Vars, Other.Vars); 224 } 225 226 void mul(int64_t Factor) { 227 Offset = multiplyWithOverflow(Offset, Factor); 228 for (auto &Var : Vars) 229 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 230 } 231 }; 232 233 } // namespace 234 235 static Decomposition decompose(Value *V, 236 SmallVectorImpl<PreconditionTy> &Preconditions, 237 bool IsSigned, const DataLayout &DL); 238 239 static bool canUseSExt(ConstantInt *CI) { 240 const APInt &Val = CI->getValue(); 241 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 242 } 243 244 static Decomposition 245 decomposeGEP(GEPOperator &GEP, SmallVectorImpl<PreconditionTy> &Preconditions, 246 bool IsSigned, const DataLayout &DL) { 247 // Do not reason about pointers where the index size is larger than 64 bits, 248 // as the coefficients used to encode constraints are 64 bit integers. 249 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 250 return &GEP; 251 252 if (!GEP.isInBounds()) 253 return &GEP; 254 255 assert(!IsSigned && "The logic below only supports decomposition for " 256 "unsinged predicates at the moment."); 257 Type *PtrTy = GEP.getType()->getScalarType(); 258 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 259 MapVector<Value *, APInt> VariableOffsets; 260 APInt ConstantOffset(BitWidth, 0); 261 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 262 return &GEP; 263 264 // Handle the (gep (gep ....), C) case by incrementing the constant 265 // coefficient of the inner GEP, if C is a constant. 266 auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand()); 267 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 268 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 269 Result.add(ConstantOffset.getSExtValue()); 270 271 if (ConstantOffset.isNegative()) { 272 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 273 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 274 if (ConstantOffsetI % Scale != 0) 275 return &GEP; 276 // Add pre-condition ensuring the GEP is increasing monotonically and 277 // can be de-composed. 278 // Both sides are normalized by being divided by Scale. 279 Preconditions.emplace_back( 280 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 281 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 282 -1 * (ConstantOffsetI / Scale))); 283 } 284 return Result; 285 } 286 287 Decomposition Result(ConstantOffset.getSExtValue(), 288 DecompEntry(1, GEP.getPointerOperand())); 289 for (auto [Index, Scale] : VariableOffsets) { 290 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 291 IdxResult.mul(Scale.getSExtValue()); 292 Result.add(IdxResult); 293 294 // If Op0 is signed non-negative, the GEP is increasing monotonically and 295 // can be de-composed. 296 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 297 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 298 ConstantInt::get(Index->getType(), 0)); 299 } 300 return Result; 301 } 302 303 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 304 // Variable } where Coefficient * Variable. The sum of the constant offset and 305 // pairs equals \p V. 306 static Decomposition decompose(Value *V, 307 SmallVectorImpl<PreconditionTy> &Preconditions, 308 bool IsSigned, const DataLayout &DL) { 309 310 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 311 bool IsSignedB) { 312 auto ResA = decompose(A, Preconditions, IsSigned, DL); 313 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 314 ResA.add(ResB); 315 return ResA; 316 }; 317 318 // Decompose \p V used with a signed predicate. 319 if (IsSigned) { 320 if (auto *CI = dyn_cast<ConstantInt>(V)) { 321 if (canUseSExt(CI)) 322 return CI->getSExtValue(); 323 } 324 Value *Op0; 325 Value *Op1; 326 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 327 return MergeResults(Op0, Op1, IsSigned); 328 329 return V; 330 } 331 332 if (auto *CI = dyn_cast<ConstantInt>(V)) { 333 if (CI->uge(MaxConstraintValue)) 334 return V; 335 return int64_t(CI->getZExtValue()); 336 } 337 338 if (auto *GEP = dyn_cast<GEPOperator>(V)) 339 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 340 341 Value *Op0; 342 bool IsKnownNonNegative = false; 343 if (match(V, m_ZExt(m_Value(Op0)))) { 344 IsKnownNonNegative = true; 345 V = Op0; 346 } 347 348 Value *Op1; 349 ConstantInt *CI; 350 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 351 return MergeResults(Op0, Op1, IsSigned); 352 } 353 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 354 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 355 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 356 ConstantInt::get(Op0->getType(), 0)); 357 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 358 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 359 ConstantInt::get(Op1->getType(), 0)); 360 361 return MergeResults(Op0, Op1, IsSigned); 362 } 363 364 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 365 canUseSExt(CI)) { 366 Preconditions.emplace_back( 367 CmpInst::ICMP_UGE, Op0, 368 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 369 return MergeResults(Op0, CI, true); 370 } 371 372 // Decompose or as an add if there are no common bits between the operands. 373 if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && 374 haveNoCommonBitsSet(Op0, CI, DL)) { 375 return MergeResults(Op0, CI, IsSigned); 376 } 377 378 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 379 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 380 return {V, IsKnownNonNegative}; 381 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 382 Result.mul(int64_t{1} << CI->getSExtValue()); 383 return Result; 384 } 385 386 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 387 (!CI->isNegative())) { 388 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 389 Result.mul(CI->getSExtValue()); 390 return Result; 391 } 392 393 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 394 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 395 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 396 return {0, {{1, Op0}, {-1, Op1}}}; 397 398 return {V, IsKnownNonNegative}; 399 } 400 401 ConstraintTy 402 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 403 SmallVectorImpl<Value *> &NewVariables) const { 404 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 405 bool IsEq = false; 406 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 407 switch (Pred) { 408 case CmpInst::ICMP_UGT: 409 case CmpInst::ICMP_UGE: 410 case CmpInst::ICMP_SGT: 411 case CmpInst::ICMP_SGE: { 412 Pred = CmpInst::getSwappedPredicate(Pred); 413 std::swap(Op0, Op1); 414 break; 415 } 416 case CmpInst::ICMP_EQ: 417 if (match(Op1, m_Zero())) { 418 Pred = CmpInst::ICMP_ULE; 419 } else { 420 IsEq = true; 421 Pred = CmpInst::ICMP_ULE; 422 } 423 break; 424 case CmpInst::ICMP_NE: 425 if (!match(Op1, m_Zero())) 426 return {}; 427 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 428 std::swap(Op0, Op1); 429 break; 430 default: 431 break; 432 } 433 434 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 435 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 436 return {}; 437 438 SmallVector<PreconditionTy, 4> Preconditions; 439 bool IsSigned = CmpInst::isSigned(Pred); 440 auto &Value2Index = getValue2Index(IsSigned); 441 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 442 Preconditions, IsSigned, DL); 443 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 444 Preconditions, IsSigned, DL); 445 int64_t Offset1 = ADec.Offset; 446 int64_t Offset2 = BDec.Offset; 447 Offset1 *= -1; 448 449 auto &VariablesA = ADec.Vars; 450 auto &VariablesB = BDec.Vars; 451 452 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 453 // new entry to NewVariables. 454 DenseMap<Value *, unsigned> NewIndexMap; 455 auto GetOrAddIndex = [&Value2Index, &NewVariables, 456 &NewIndexMap](Value *V) -> unsigned { 457 auto V2I = Value2Index.find(V); 458 if (V2I != Value2Index.end()) 459 return V2I->second; 460 auto Insert = 461 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 462 if (Insert.second) 463 NewVariables.push_back(V); 464 return Insert.first->second; 465 }; 466 467 // Make sure all variables have entries in Value2Index or NewVariables. 468 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 469 GetOrAddIndex(KV.Variable); 470 471 // Build result constraint, by first adding all coefficients from A and then 472 // subtracting all coefficients from B. 473 ConstraintTy Res( 474 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 475 IsSigned); 476 // Collect variables that are known to be positive in all uses in the 477 // constraint. 478 DenseMap<Value *, bool> KnownNonNegativeVariables; 479 Res.IsEq = IsEq; 480 auto &R = Res.Coefficients; 481 for (const auto &KV : VariablesA) { 482 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 483 auto I = 484 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 485 I.first->second &= KV.IsKnownNonNegative; 486 } 487 488 for (const auto &KV : VariablesB) { 489 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 490 auto I = 491 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 492 I.first->second &= KV.IsKnownNonNegative; 493 } 494 495 int64_t OffsetSum; 496 if (AddOverflow(Offset1, Offset2, OffsetSum)) 497 return {}; 498 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 499 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 500 return {}; 501 R[0] = OffsetSum; 502 Res.Preconditions = std::move(Preconditions); 503 504 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 505 // variables. 506 while (!NewVariables.empty()) { 507 int64_t Last = R.back(); 508 if (Last != 0) 509 break; 510 R.pop_back(); 511 Value *RemovedV = NewVariables.pop_back_val(); 512 NewIndexMap.erase(RemovedV); 513 } 514 515 // Add extra constraints for variables that are known positive. 516 for (auto &KV : KnownNonNegativeVariables) { 517 if (!KV.second || 518 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 519 continue; 520 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 521 C[GetOrAddIndex(KV.first)] = -1; 522 Res.ExtraInfo.push_back(C); 523 } 524 return Res; 525 } 526 527 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 528 Value *Op0, 529 Value *Op1) const { 530 // If both operands are known to be non-negative, change signed predicates to 531 // unsigned ones. This increases the reasoning effectiveness in combination 532 // with the signed <-> unsigned transfer logic. 533 if (CmpInst::isSigned(Pred) && 534 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 535 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 536 Pred = CmpInst::getUnsignedPredicate(Pred); 537 538 SmallVector<Value *> NewVariables; 539 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 540 if (R.IsEq || !NewVariables.empty()) 541 return {}; 542 return R; 543 } 544 545 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 546 return Coefficients.size() > 0 && 547 all_of(Preconditions, [&Info](const PreconditionTy &C) { 548 return Info.doesHold(C.Pred, C.Op0, C.Op1); 549 }); 550 } 551 552 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 553 Value *B) const { 554 auto R = getConstraintForSolving(Pred, A, B); 555 return R.Preconditions.empty() && !R.empty() && 556 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 557 } 558 559 void ConstraintInfo::transferToOtherSystem( 560 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 561 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 562 // Check if we can combine facts from the signed and unsigned systems to 563 // derive additional facts. 564 if (!A->getType()->isIntegerTy()) 565 return; 566 // FIXME: This currently depends on the order we add facts. Ideally we 567 // would first add all known facts and only then try to add additional 568 // facts. 569 switch (Pred) { 570 default: 571 break; 572 case CmpInst::ICMP_ULT: 573 // If B is a signed positive constant, A >=s 0 and A <s B. 574 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 575 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 576 NumOut, DFSInStack); 577 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 578 } 579 break; 580 case CmpInst::ICMP_SLT: 581 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 582 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 583 break; 584 case CmpInst::ICMP_SGT: 585 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 586 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 587 NumOut, DFSInStack); 588 break; 589 case CmpInst::ICMP_SGE: 590 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 591 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 592 } 593 break; 594 } 595 } 596 597 namespace { 598 /// Represents either 599 /// * a condition that holds on entry to a block (=conditional fact) 600 /// * an assume (=assume fact) 601 /// * an instruction to simplify. 602 /// It also tracks the Dominator DFS in and out numbers for each entry. 603 struct FactOrCheck { 604 Instruction *Inst; 605 unsigned NumIn; 606 unsigned NumOut; 607 bool IsCheck; 608 bool Not; 609 610 FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool IsCheck, bool Not) 611 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 612 IsCheck(IsCheck), Not(Not) {} 613 614 static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst, 615 bool Not = false) { 616 return FactOrCheck(DTN, Inst, false, Not); 617 } 618 619 static FactOrCheck getCheck(DomTreeNode *DTN, Instruction *Inst) { 620 return FactOrCheck(DTN, Inst, true, false); 621 } 622 623 bool isAssumeFact() const { 624 if (!IsCheck && isa<IntrinsicInst>(Inst)) { 625 assert(match(Inst, m_Intrinsic<Intrinsic::assume>())); 626 return true; 627 } 628 return false; 629 } 630 631 bool isConditionFact() const { return !IsCheck && isa<CmpInst>(Inst); } 632 }; 633 634 /// Keep state required to build worklist. 635 struct State { 636 DominatorTree &DT; 637 SmallVector<FactOrCheck, 64> WorkList; 638 639 State(DominatorTree &DT) : DT(DT) {} 640 641 /// Process block \p BB and add known facts to work-list. 642 void addInfoFor(BasicBlock &BB); 643 644 /// Returns true if we can add a known condition from BB to its successor 645 /// block Succ. 646 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 647 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 648 } 649 }; 650 651 } // namespace 652 653 #ifndef NDEBUG 654 655 static void dumpConstraint(ArrayRef<int64_t> C, 656 const DenseMap<Value *, unsigned> &Value2Index) { 657 ConstraintSystem CS(Value2Index); 658 CS.addVariableRowFill(C); 659 CS.dump(); 660 } 661 #endif 662 663 void State::addInfoFor(BasicBlock &BB) { 664 // True as long as long as the current instruction is guaranteed to execute. 665 bool GuaranteedToExecute = true; 666 // Queue conditions and assumes. 667 for (Instruction &I : BB) { 668 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 669 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), Cmp)); 670 continue; 671 } 672 673 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 674 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), &I)); 675 continue; 676 } 677 678 Value *Cond; 679 // For now, just handle assumes with a single compare as condition. 680 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 681 isa<ICmpInst>(Cond)) { 682 if (GuaranteedToExecute) { 683 // The assume is guaranteed to execute when BB is entered, hence Cond 684 // holds on entry to BB. 685 WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()), 686 cast<Instruction>(Cond))); 687 } else { 688 WorkList.emplace_back( 689 FactOrCheck::getFact(DT.getNode(I.getParent()), &I)); 690 } 691 } 692 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 693 } 694 695 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 696 if (!Br || !Br->isConditional()) 697 return; 698 699 Value *Cond = Br->getCondition(); 700 701 // If the condition is a chain of ORs/AND and the successor only has the 702 // current block as predecessor, queue conditions for the successor. 703 Value *Op0, *Op1; 704 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 705 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 706 bool IsOr = match(Cond, m_LogicalOr()); 707 bool IsAnd = match(Cond, m_LogicalAnd()); 708 // If there's a select that matches both AND and OR, we need to commit to 709 // one of the options. Arbitrarily pick OR. 710 if (IsOr && IsAnd) 711 IsAnd = false; 712 713 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 714 if (canAddSuccessor(BB, Successor)) { 715 SmallVector<Value *> CondWorkList; 716 SmallPtrSet<Value *, 8> SeenCond; 717 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 718 if (SeenCond.insert(V).second) 719 CondWorkList.push_back(V); 720 }; 721 QueueValue(Op1); 722 QueueValue(Op0); 723 while (!CondWorkList.empty()) { 724 Value *Cur = CondWorkList.pop_back_val(); 725 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 726 WorkList.emplace_back( 727 FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr)); 728 continue; 729 } 730 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 731 QueueValue(Op1); 732 QueueValue(Op0); 733 continue; 734 } 735 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 736 QueueValue(Op1); 737 QueueValue(Op0); 738 continue; 739 } 740 } 741 } 742 return; 743 } 744 745 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 746 if (!CmpI) 747 return; 748 if (canAddSuccessor(BB, Br->getSuccessor(0))) 749 WorkList.emplace_back( 750 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI)); 751 if (canAddSuccessor(BB, Br->getSuccessor(1))) 752 WorkList.emplace_back( 753 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true)); 754 } 755 756 namespace { 757 /// Helper to keep track of a condition and if it should be treated as negated 758 /// for reproducer construction. 759 struct ReproducerEntry { 760 CmpInst *Cond; 761 bool IsNot; 762 763 ReproducerEntry(CmpInst *Cond, bool IsNot) : Cond(Cond), IsNot(IsNot) {} 764 }; 765 } // namespace 766 767 /// Helper function to generate a reproducer function for simplifying \p Cond. 768 /// The reproducer function contains a series of @llvm.assume calls, one for 769 /// each condition in \p Stack. For each condition, the operand instruction are 770 /// cloned until we reach operands that have an entry in \p Value2Index. Those 771 /// will then be added as function arguments. \p DT is used to order cloned 772 /// instructions. The reproducer function will get added to \p M, if it is 773 /// non-null. Otherwise no reproducer function is generated. 774 static void generateReproducer(CmpInst *Cond, Module *M, 775 ArrayRef<ReproducerEntry> Stack, 776 ConstraintInfo &Info, DominatorTree &DT) { 777 if (!M) 778 return; 779 780 LLVMContext &Ctx = Cond->getContext(); 781 782 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 783 784 ValueToValueMapTy Old2New; 785 SmallVector<Value *> Args; 786 SmallPtrSet<Value *, 8> Seen; 787 // Traverse Cond and its operands recursively until we reach a value that's in 788 // Value2Index or not an instruction, or not a operation that 789 // ConstraintElimination can decompose. Such values will be considered as 790 // external inputs to the reproducer, they are collected and added as function 791 // arguments later. 792 auto CollectArguments = [&](CmpInst *Cond) { 793 if (!Cond) 794 return; 795 auto &Value2Index = 796 Info.getValue2Index(CmpInst::isSigned(Cond->getPredicate())); 797 SmallVector<Value *, 4> WorkList; 798 WorkList.push_back(Cond); 799 while (!WorkList.empty()) { 800 Value *V = WorkList.pop_back_val(); 801 if (!Seen.insert(V).second) 802 continue; 803 if (Old2New.find(V) != Old2New.end()) 804 continue; 805 if (isa<Constant>(V)) 806 continue; 807 808 auto *I = dyn_cast<Instruction>(V); 809 if (Value2Index.contains(V) || !I || 810 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 811 Old2New[V] = V; 812 Args.push_back(V); 813 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 814 } else { 815 append_range(WorkList, I->operands()); 816 } 817 } 818 }; 819 820 for (auto &Entry : Stack) 821 CollectArguments(Entry.Cond); 822 CollectArguments(Cond); 823 824 SmallVector<Type *> ParamTys; 825 for (auto *P : Args) 826 ParamTys.push_back(P->getType()); 827 828 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 829 /*isVarArg=*/false); 830 Function *F = Function::Create(FTy, Function::ExternalLinkage, 831 Cond->getModule()->getName() + 832 Cond->getFunction()->getName() + "repro", 833 M); 834 // Add arguments to the reproducer function for each external value collected. 835 for (unsigned I = 0; I < Args.size(); ++I) { 836 F->getArg(I)->setName(Args[I]->getName()); 837 Old2New[Args[I]] = F->getArg(I); 838 } 839 840 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 841 IRBuilder<> Builder(Entry); 842 Builder.CreateRet(Builder.getTrue()); 843 Builder.SetInsertPoint(Entry->getTerminator()); 844 845 // Clone instructions in \p Ops and their operands recursively until reaching 846 // an value in Value2Index (external input to the reproducer). Update Old2New 847 // mapping for the original and cloned instructions. Sort instructions to 848 // clone by dominance, then insert the cloned instructions in the function. 849 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 850 SmallVector<Value *, 4> WorkList(Ops); 851 SmallVector<Instruction *> ToClone; 852 auto &Value2Index = Info.getValue2Index(IsSigned); 853 while (!WorkList.empty()) { 854 Value *V = WorkList.pop_back_val(); 855 if (Old2New.find(V) != Old2New.end()) 856 continue; 857 858 auto *I = dyn_cast<Instruction>(V); 859 if (!Value2Index.contains(V) && I) { 860 Old2New[V] = nullptr; 861 ToClone.push_back(I); 862 append_range(WorkList, I->operands()); 863 } 864 } 865 866 sort(ToClone, 867 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 868 for (Instruction *I : ToClone) { 869 Instruction *Cloned = I->clone(); 870 Old2New[I] = Cloned; 871 Old2New[I]->setName(I->getName()); 872 Cloned->insertBefore(&*Builder.GetInsertPoint()); 873 Cloned->dropUnknownNonDebugMetadata(); 874 Cloned->setDebugLoc({}); 875 } 876 }; 877 878 // Materialize the assumptions for the reproducer using the entries in Stack. 879 // That is, first clone the operands of the condition recursively until we 880 // reach an external input to the reproducer and add them to the reproducer 881 // function. Then add an ICmp for the condition (with the inverse predicate if 882 // the entry is negated) and an assert using the ICmp. 883 for (auto &Entry : Stack) { 884 if (!Entry.Cond) 885 continue; 886 887 LLVM_DEBUG(dbgs() << " Materializing assumption " << *Entry.Cond << "\n"); 888 CmpInst::Predicate Pred = Entry.Cond->getPredicate(); 889 if (Entry.IsNot) 890 Pred = CmpInst::getInversePredicate(Pred); 891 892 CloneInstructions({Entry.Cond->getOperand(0), Entry.Cond->getOperand(1)}, 893 CmpInst::isSigned(Entry.Cond->getPredicate())); 894 895 auto *Cmp = Builder.CreateICmp(Pred, Entry.Cond->getOperand(0), 896 Entry.Cond->getOperand(1)); 897 Builder.CreateAssumption(Cmp); 898 } 899 900 // Finally, clone the condition to reproduce and remap instruction operands in 901 // the reproducer using Old2New. 902 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 903 Entry->getTerminator()->setOperand(0, Cond); 904 remapInstructionsInBlocks({Entry}, Old2New); 905 906 assert(!verifyFunction(*F, &dbgs())); 907 } 908 909 static bool checkAndReplaceCondition( 910 CmpInst *Cmp, ConstraintInfo &Info, Module *ReproducerModule, 911 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT) { 912 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 913 914 CmpInst::Predicate Pred = Cmp->getPredicate(); 915 Value *A = Cmp->getOperand(0); 916 Value *B = Cmp->getOperand(1); 917 918 auto R = Info.getConstraintForSolving(Pred, A, B); 919 if (R.empty() || !R.isValid(Info)){ 920 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 921 return false; 922 } 923 924 auto &CSToUse = Info.getCS(R.IsSigned); 925 926 // If there was extra information collected during decomposition, apply 927 // it now and remove it immediately once we are done with reasoning 928 // about the constraint. 929 for (auto &Row : R.ExtraInfo) 930 CSToUse.addVariableRow(Row); 931 auto InfoRestorer = make_scope_exit([&]() { 932 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 933 CSToUse.popLastConstraint(); 934 }); 935 936 bool Changed = false; 937 if (CSToUse.isConditionImplied(R.Coefficients)) { 938 if (!DebugCounter::shouldExecute(EliminatedCounter)) 939 return false; 940 941 LLVM_DEBUG({ 942 dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n"; 943 CSToUse.dump(); 944 }); 945 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 946 Constant *TrueC = 947 ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType())); 948 Cmp->replaceUsesWithIf(TrueC, [](Use &U) { 949 // Conditions in an assume trivially simplify to true. Skip uses 950 // in assume calls to not destroy the available information. 951 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 952 return !II || II->getIntrinsicID() != Intrinsic::assume; 953 }); 954 NumCondsRemoved++; 955 Changed = true; 956 } 957 if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) { 958 if (!DebugCounter::shouldExecute(EliminatedCounter)) 959 return false; 960 961 LLVM_DEBUG({ 962 dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n"; 963 CSToUse.dump(); 964 }); 965 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 966 Constant *FalseC = 967 ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType())); 968 Cmp->replaceAllUsesWith(FalseC); 969 NumCondsRemoved++; 970 Changed = true; 971 } 972 return Changed; 973 } 974 975 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 976 unsigned NumIn, unsigned NumOut, 977 SmallVectorImpl<StackEntry> &DFSInStack) { 978 // If the constraint has a pre-condition, skip the constraint if it does not 979 // hold. 980 SmallVector<Value *> NewVariables; 981 auto R = getConstraint(Pred, A, B, NewVariables); 982 if (!R.isValid(*this)) 983 return; 984 985 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; 986 A->printAsOperand(dbgs(), false); dbgs() << ", "; 987 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 988 bool Added = false; 989 auto &CSToUse = getCS(R.IsSigned); 990 if (R.Coefficients.empty()) 991 return; 992 993 Added |= CSToUse.addVariableRowFill(R.Coefficients); 994 995 // If R has been added to the system, add the new variables and queue it for 996 // removal once it goes out-of-scope. 997 if (Added) { 998 SmallVector<Value *, 2> ValuesToRelease; 999 auto &Value2Index = getValue2Index(R.IsSigned); 1000 for (Value *V : NewVariables) { 1001 Value2Index.insert({V, Value2Index.size() + 1}); 1002 ValuesToRelease.push_back(V); 1003 } 1004 1005 LLVM_DEBUG({ 1006 dbgs() << " constraint: "; 1007 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1008 dbgs() << "\n"; 1009 }); 1010 1011 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1012 std::move(ValuesToRelease)); 1013 1014 if (R.IsEq) { 1015 // Also add the inverted constraint for equality constraints. 1016 for (auto &Coeff : R.Coefficients) 1017 Coeff *= -1; 1018 CSToUse.addVariableRowFill(R.Coefficients); 1019 1020 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1021 SmallVector<Value *, 2>()); 1022 } 1023 } 1024 } 1025 1026 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1027 SmallVectorImpl<Instruction *> &ToRemove) { 1028 bool Changed = false; 1029 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1030 Value *Sub = nullptr; 1031 for (User *U : make_early_inc_range(II->users())) { 1032 if (match(U, m_ExtractValue<0>(m_Value()))) { 1033 if (!Sub) 1034 Sub = Builder.CreateSub(A, B); 1035 U->replaceAllUsesWith(Sub); 1036 Changed = true; 1037 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1038 U->replaceAllUsesWith(Builder.getFalse()); 1039 Changed = true; 1040 } else 1041 continue; 1042 1043 if (U->use_empty()) { 1044 auto *I = cast<Instruction>(U); 1045 ToRemove.push_back(I); 1046 I->setOperand(0, PoisonValue::get(II->getType())); 1047 Changed = true; 1048 } 1049 } 1050 1051 if (II->use_empty()) { 1052 II->eraseFromParent(); 1053 Changed = true; 1054 } 1055 return Changed; 1056 } 1057 1058 static bool 1059 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1060 SmallVectorImpl<Instruction *> &ToRemove) { 1061 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1062 ConstraintInfo &Info) { 1063 auto R = Info.getConstraintForSolving(Pred, A, B); 1064 if (R.size() < 2 || !R.isValid(Info)) 1065 return false; 1066 1067 auto &CSToUse = Info.getCS(R.IsSigned); 1068 return CSToUse.isConditionImplied(R.Coefficients); 1069 }; 1070 1071 bool Changed = false; 1072 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1073 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1074 // can be simplified to a regular sub. 1075 Value *A = II->getArgOperand(0); 1076 Value *B = II->getArgOperand(1); 1077 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1078 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1079 ConstantInt::get(A->getType(), 0), Info)) 1080 return false; 1081 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1082 } 1083 return Changed; 1084 } 1085 1086 static bool eliminateConstraints(Function &F, DominatorTree &DT, 1087 OptimizationRemarkEmitter &ORE) { 1088 bool Changed = false; 1089 DT.updateDFSNumbers(); 1090 1091 ConstraintInfo Info(F.getParent()->getDataLayout()); 1092 State S(DT); 1093 std::unique_ptr<Module> ReproducerModule( 1094 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1095 1096 // First, collect conditions implied by branches and blocks with their 1097 // Dominator DFS in and out numbers. 1098 for (BasicBlock &BB : F) { 1099 if (!DT.getNode(&BB)) 1100 continue; 1101 S.addInfoFor(BB); 1102 } 1103 1104 // Next, sort worklist by dominance, so that dominating conditions to check 1105 // and facts come before conditions and facts dominated by them. If a 1106 // condition to check and a fact have the same numbers, conditional facts come 1107 // first. Assume facts and checks are ordered according to their relative 1108 // order in the containing basic block. Also make sure conditions with 1109 // constant operands come before conditions without constant operands. This 1110 // increases the effectiveness of the current signed <-> unsigned fact 1111 // transfer logic. 1112 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1113 auto HasNoConstOp = [](const FactOrCheck &B) { 1114 return !isa<ConstantInt>(B.Inst->getOperand(0)) && 1115 !isa<ConstantInt>(B.Inst->getOperand(1)); 1116 }; 1117 // If both entries have the same In numbers, conditional facts come first. 1118 // Otherwise use the relative order in the basic block. 1119 if (A.NumIn == B.NumIn) { 1120 if (A.isConditionFact() && B.isConditionFact()) { 1121 bool NoConstOpA = HasNoConstOp(A); 1122 bool NoConstOpB = HasNoConstOp(B); 1123 return NoConstOpA < NoConstOpB; 1124 } 1125 if (A.isConditionFact()) 1126 return true; 1127 if (B.isConditionFact()) 1128 return false; 1129 return A.Inst->comesBefore(B.Inst); 1130 } 1131 return A.NumIn < B.NumIn; 1132 }); 1133 1134 SmallVector<Instruction *> ToRemove; 1135 1136 // Finally, process ordered worklist and eliminate implied conditions. 1137 SmallVector<StackEntry, 16> DFSInStack; 1138 SmallVector<ReproducerEntry> ReproducerCondStack; 1139 for (FactOrCheck &CB : S.WorkList) { 1140 // First, pop entries from the stack that are out-of-scope for CB. Remove 1141 // the corresponding entry from the constraint system. 1142 while (!DFSInStack.empty()) { 1143 auto &E = DFSInStack.back(); 1144 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1145 << "\n"); 1146 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1147 assert(E.NumIn <= CB.NumIn); 1148 if (CB.NumOut <= E.NumOut) 1149 break; 1150 LLVM_DEBUG({ 1151 dbgs() << "Removing "; 1152 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1153 Info.getValue2Index(E.IsSigned)); 1154 dbgs() << "\n"; 1155 }); 1156 1157 Info.popLastConstraint(E.IsSigned); 1158 // Remove variables in the system that went out of scope. 1159 auto &Mapping = Info.getValue2Index(E.IsSigned); 1160 for (Value *V : E.ValuesToRelease) 1161 Mapping.erase(V); 1162 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1163 DFSInStack.pop_back(); 1164 if (ReproducerModule) 1165 ReproducerCondStack.pop_back(); 1166 } 1167 1168 LLVM_DEBUG({ 1169 dbgs() << "Processing "; 1170 if (CB.IsCheck) 1171 dbgs() << "condition to simplify: " << *CB.Inst; 1172 else 1173 dbgs() << "fact to add to the system: " << *CB.Inst; 1174 dbgs() << "\n"; 1175 }); 1176 1177 // For a block, check if any CmpInsts become known based on the current set 1178 // of constraints. 1179 if (CB.IsCheck) { 1180 if (auto *II = dyn_cast<WithOverflowInst>(CB.Inst)) { 1181 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1182 } else if (auto *Cmp = dyn_cast<ICmpInst>(CB.Inst)) { 1183 Changed |= checkAndReplaceCondition(Cmp, Info, ReproducerModule.get(), 1184 ReproducerCondStack, S.DT); 1185 } 1186 continue; 1187 } 1188 1189 ICmpInst::Predicate Pred; 1190 Value *A, *B; 1191 Value *Cmp = CB.Inst; 1192 match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp))); 1193 if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 1194 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1195 LLVM_DEBUG( 1196 dbgs() 1197 << "Skip adding constraint because system has too many rows.\n"); 1198 continue; 1199 } 1200 1201 // Use the inverse predicate if required. 1202 if (CB.Not) 1203 Pred = CmpInst::getInversePredicate(Pred); 1204 1205 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1206 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1207 ReproducerCondStack.emplace_back(cast<CmpInst>(Cmp), CB.Not); 1208 1209 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1210 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1211 // Add dummy entries to ReproducerCondStack to keep it in sync with 1212 // DFSInStack. 1213 for (unsigned I = 0, 1214 E = (DFSInStack.size() - ReproducerCondStack.size()); 1215 I < E; ++I) { 1216 ReproducerCondStack.emplace_back(nullptr, false); 1217 } 1218 } 1219 } 1220 } 1221 1222 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1223 std::string S; 1224 raw_string_ostream StringS(S); 1225 ReproducerModule->print(StringS, nullptr); 1226 StringS.flush(); 1227 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1228 Rem << ore::NV("module") << S; 1229 ORE.emit(Rem); 1230 } 1231 1232 #ifndef NDEBUG 1233 unsigned SignedEntries = 1234 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1235 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1236 "updates to CS and DFSInStack are out of sync"); 1237 assert(Info.getCS(true).size() == SignedEntries && 1238 "updates to CS and DFSInStack are out of sync"); 1239 #endif 1240 1241 for (Instruction *I : ToRemove) 1242 I->eraseFromParent(); 1243 return Changed; 1244 } 1245 1246 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1247 FunctionAnalysisManager &AM) { 1248 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1249 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1250 if (!eliminateConstraints(F, DT, ORE)) 1251 return PreservedAnalyses::all(); 1252 1253 PreservedAnalyses PA; 1254 PA.preserve<DominatorTreeAnalysis>(); 1255 PA.preserveSet<CFGAnalyses>(); 1256 return PA; 1257 } 1258